中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 120-131 DOI: 10.7536/PC230423 Previous Articles   Next Articles

• Review •

Construction and Application in Food Contaminants Detection of Novel Optical Fiber Biosensors

Jialin Huang1, Yaohua Qin2, Sheng Tang1(), Dezhao Kong2, Chang Liu2()   

  1. 1 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    2 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: tangsheng.nju@gmail.com (Sheng Tang); liuchang01890@just.edu.cn (Chang Liu)
  • Supported by:
    National Natural Science Foundation of China(22276080); Shuangchuang Ph.D Award of Jiangsu Province(1184902001)
Richhtml ( 21 ) PDF ( 217 ) Cited
Export

EndNote

Ris

BibTeX

Food safety is closely related to people’s quality of life. The establishment of simple, sensitive and intelligent detection methods for food contaminants is an important guarantee for food safety and health management. Nevertheless, traditional analysis methods have certain limitations such as time-consuming detection process, high cost, and complicated operation. Optical fiber biosensors, which rely on the interaction between light and fluids, have the characteristics of good signal sensitivity, rapid detection and real-time response. They have recently emerged as advanced optical sensing methods with diverse functions and high sensitivity, and can realize rapid and accurate detection of various pollutants in food. In this review, we summarized the basic principles, classification and research status of various novel optical fiber biosensors. The applications in the detection of various pollutants such as mycotoxins, heavy metal ions, antibiotics, and pesticide residues in food samples were introduced. Furthermore, the development trend of this novel sensing strategy was also briefly discussed.

Contents

1 Introduction

2 Optical fiber biosensor

2.1 Composition of optical fiber biosensor

2.2 Basic principle of optical fiber biosensor

2.3 Classification of optical fiber biosensor

3 Application of optical fiber biosensors in detection of food contaminants

3.1 Mycotoxin

3.2 Heavy metal ion

3.3 Antibiotic

3.4 Pesticide residue

3.5 Pathogen

4 Conclusion and prospect

Fig. 1 (a) Basic structure of optical fiber sensor; (b) different structures of optical fiber[20]. Copyright 2021, Multidisciplinary Digital Publishing Institute
Fig. 2 Schematic diagram of an optical fiber sensing device for detecting H2O2[29]. Copyright 2021, Elsevier
Fig. 3 Schematic diagram of double antibody sandwich immunosensor for detecting human-immunoglobulin G[33]. Copyright 2021, Multidisciplinary Digital Publishing Institute
Fig. 4 SARS-CoV-2 detection with enzyme-free amplification coupled CRISPR-Cas13a[35]. Copyright 2021, Elsevier
Fig. 5 (a) Schematic of the bacteria based fiber-optic sensor for monitoring heavy metal in water; (b) schematic of the experimental setup[39]. Copyright 2019, Elsevier
Fig. 6 Schematic diagram of the optical fiber-based LSPR biosensors for detecting zearalenone[19]. Copyright 2021, Elsevier
Fig. 7 Schematic illustration of FRET-based dual-color aptasensor for simultaneous detection of AFM1 and OTA[48]. Copyright 2018, Springer Vienna
Fig. 8 Schematic diagram of portable evanescent wave optofluidic biosensor for detecting Hg2+[49]. Copyright 2021, Elsevier
Fig. 9 Optical fiber-mediated immunosensor with a tunable detection range for multiplexed analysis of veterinary drug residues[57]. Copyright 2019, American Chemical Society
Fig. 10 Schematic of the preparation of functional plasmonic optical-fiber sensor for pesticides solid-phase extraction and detection[61]. Copyright 2020, Elsevier
Fig. 11 Optical fiber probe-based quantum dots immunofluorescence biosensors in the detection of staphylococcus aureus[67]. Copyright 2021, Frontiers Media S.A.
[1]
Yao Y, Hu T, Song C, Liu C, Kong D Z, Huang C, Zhu J, Shen W, Shi H W, Tang S. Anal. Chim. Acta, 2021, 1187: 339169.

doi: 10.1016/j.aca.2021.339169
[2]
Yan C, Teng J, Liu F Y, Yao B B, Xu Z L, Yao L, Chen W. Microchem. J., 2020, 159: 105414.

doi: 10.1016/j.microc.2020.105414
[3]
Feng Y, Zhang W J, Liu Y W, Xue J M, Zhang S Q, Li Z J. Molecules, 2018, 23(8):1953.

doi: 10.3390/molecules23081953
[4]
Wang W J, Fu M, Zhang Q D, Zhen Y R, Liu J J, Xiang S N, Michal J J, Jiang Z H, Zhou X, Liu B. Food Chem., 2021, 341: 128170.

doi: 10.1016/j.foodchem.2020.128170
[5]
Al-Dalali S, Li C, Xu B C. Food Chem., 2022, 376: 131881.

doi: 10.1016/j.foodchem.2021.131881
[6]
Jia Y X, Zhao S Q, Li D S, Yang J L, Yang L. Food Contr., 2023, 144: 109361.

doi: 10.1016/j.foodcont.2022.109361
[7]
Allsop T, Neal R. Sensors, 2019, 19(22): 4874.

doi: 10.3390/s19224874
[8]
Kadhum Hisham H. Am. J. Remote. Sens., 2018, 6(1): 1.
[9]
Al Mahmud R, Sagor R H, Khan M Z M. Opt. Laser Technol., 2023, 159: 108939.

doi: 10.1016/j.optlastec.2022.108939
[10]
Caucheteur C, Guo T, Albert J. Anal. Bioanal. Chem., 2015, 407(14): 3883.

doi: 10.1007/s00216-014-8411-6
[11]
Nag P, Sadani K, Mohapatra S, Mukherji S, Mukherji S,. Anal. Chem., 2021, 93(4): 2299.

doi: 10.1021/acs.analchem.0c04169
[12]
Xu Y, Luo Z W, Chen J M, Huang Z J, Wang X, An H F, Duan Y X. Anal. Chem., 2018, 90(22): 13640.

doi: 10.1021/acs.analchem.8b03905
[13]
Sai V V R, Kundu T, Mukherji S. Biosens. Bioelectron., 2009, 24(9): 2804.

doi: 10.1016/j.bios.2009.02.007 pmid: 19285853
[14]
Zakaria R, Kam W, Ong Y S, Yusoff S F A Z, Ahmad H, Mohammed W S. J. Mod. Opt., 2017, 64(14): 1443.

doi: 10.1080/09500340.2017.1293858
[15]
Gasior K, Martynkien T, Wojcik G, Mergo P, Urbanczyk W. Opto Electron. Rev., 2017, 25(1): R1.

doi: 10.1016/j.opelre.2017.05.001
[16]
Li H T, Huang Y Y, Hou G H, Xiao A X, Chen P W, Liang H, Huang Y G, Zhao X T, Liang L L, Feng X H, Guan B O. Sci. Adv., 2019, 5(12): eaax4659.

doi: 10.1126/sciadv.aax4659
[17]
Jia H, Zhang A, Yang Y Q, Cui Y Q, Xu J R, Jiang H W, Tao S C, Zhang D W, Zeng H P, Hou Z Y, Feng J J. Lab Chip, 2021, 21(12): 2398.

doi: 10.1039/D0LC01231A
[18]
Wang M, Yang F, Dai S X, Cao Z F, Su J X, Ding S J, Zhang P Q. J. Light. Technol., 2021, 39(14): 4828.

doi: 10.1109/JLT.2021.3078146
[19]
Xu Y C, Xiong M, Yan H. Sens. Actuat. B Chem., 2021, 336: 129752.

doi: 10.1016/j.snb.2021.129752
[20]
Soares M S, Vidal M, Santos N F, Costa F M, Marques C, Pereira S O, Leitão C. Biosensors, 2021, 11(9): 305.

doi: 10.3390/bios11090305
[21]
Li L K, Zhang Y N, Zheng W L, Lv R Q, Zhao Y. Opt. Lett., 2023, 48(4): 952.

doi: 10.1364/OL.480724
[22]
Wang Q, Jiang X, Niu L Y, Fan X C. Opt. Lasers Eng., 2020, 128: 105997.

doi: 10.1016/j.optlaseng.2019.105997
[23]
Kant R, Tabassum R, Gupta B D. Sens. Actuat. B Chem., 2017, 242: 810.

doi: 10.1016/j.snb.2016.09.178
[24]
Huang Q, Zhu W J, Wang Y, Deng Z, Li Z, Peng J K, Lyu D J, Lewis E, Yang M H. Sens. Actuators B, 2020, 321: 128480.

doi: 10.1016/j.snb.2020.128480
[25]
Singh R, Kumar S, Liu F Z, Shuang C, Zhang B Y, Jha R, Kaushik B K. Biosens. Bioelectron., 2020, 168: 112557.

doi: 10.1016/j.bios.2020.112557
[26]
Zhou J R, Qi Q Q, Wang C, Qian Y F, Liu G M, Wang Y B, Fu L L. Biosens. Bioelectron., 2019, 142: 111449.

doi: 10.1016/j.bios.2019.111449
[27]
Fang S Y, Song D, Zhuo Y X, Chen Y, Zhu A N, Long F. Biosens. Bioelectron., 2021, 185: 113288.

doi: 10.1016/j.bios.2021.113288
[28]
Liang G L, Luo Z W, Liu K P, Wang Y M, Dai J X, Duan Y X. Crit. Rev. Anal. Chem., 2016, 46(3): 213.

doi: 10.1021/ac60338a012
[29]
Semwal V, Gupta B D. Sens. Actuat. B Chem., 2021, 329: 129062.

doi: 10.1016/j.snb.2020.129062
[30]
Wang Y, Zhu G, Li M Y, Singh R, Marques C, Min R, Kaushik B K, Zhang B Y, Jha R, Kumar S. IEEE T Nanobioscie, 2021, 20(3): 377.
[31]
Chaudhari P P, Chau L K, Tseng Y T, Huang C J, Chen Y L. Mikrochim. Acta, 2020, 187(7): 396.

doi: 10.1007/s00604-020-04381-w pmid: 32564163
[32]
Kim H M, Jeong D H, Lee H Y, Park J H, Lee S K. Sci. Rep., 2021, 11(1): 15985.

doi: 10.1038/s41598-021-95375-y
[33]
Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G. Nanomaterials, 2021, 11(8):2137.

doi: 10.3390/nano11082137
[34]
Kim H M, Lee H Y, Park J H, Lee S K. ACS Sens., 2022, 7(5): 1451.

doi: 10.1021/acssensors.2c00154
[35]
Yang Y H, Liu J C, Zhou X H. Biosens. Bioelectron., 2021, 190: 113418.

doi: 10.1016/j.bios.2021.113418
[36]
Janik M, Hamidi S V, Koba M, Perreault J, Walsh R, Bock W J, Smietana M. Lab Chip, 2021, 21(2): 397.

doi: 10.1039/D0LC01069C
[37]
Tseng Y T, Li W Y, Yu Y W, Chiang C Y, Liu S Q, Chau L K, Lai N S, Chou C C. Sensors, 2020, 20(11):3137.

doi: 10.3390/s20113137
[38]
Ngo L T, Wang W K, Tseng Y T, Chang T C, Kuo P L, Chau L K, Huang T T. Anal. Bioanal. Chem., 2021, 413(12): 3329.

doi: 10.1007/s00216-021-03271-1
[39]
Halkare P, Punjabi N, Wangchuk J, Nair A, Kondabagil K, Mukherji S. Sens. Actuat. B Chem., 2019, 281: 643.

doi: 10.1016/j.snb.2018.10.119
[40]
Futra D, Heng L E, Ahmad A, Surif S, Ling T. Sensors, 2015, 15(6): 12668.

doi: 10.3390/s150612668 pmid: 26029952
[41]
Zajic J, Ripp S, Trogl J, Kuncova G, Pospisilova M. Sensors, 2020, 20(11):3237.

doi: 10.3390/s20113237
[42]
Loyez M, DeRosa M C, Caucheteur C, Wattiez R. Biosens. Bioelectron., 2022, 196: 113694.

doi: 10.1016/j.bios.2021.113694
[43]
Xu B, Xiang X Y, Ding L Y, Luo Z H, Zhao J, Huang J, Li H J, Jiang X D. IEEE Sens. J., 2023, 23(7): 6832.

doi: 10.1109/JSEN.2022.3225086
[44]
Narsaiah K, Jha S N, Bhardwaj R, Sharma R, Kumar R. J. Food Sci. Technol., 2012, 49(4): 383.
[45]
Ganesan A R, Mohan K, Karthick Rajan D, Pillay A A, Palanisami T, Sathishkumar P, Conterno L. Food Chem., 2022, 378: 131978.

doi: 10.1016/j.foodchem.2021.131978
[46]
Chen H Y, Zhang L, Hu Y, Zhou C S, Lan W, Fu H Y, She Y B. Sens. Actuators B, 2021, 329: 129135.

doi: 10.1016/j.snb.2020.129135
[47]
Lee B B, Park J H, Byun J Y, Kim J H, Kim M G. Biosens. Bioelectron., 2018, 102: 504.

doi: 10.1016/j.bios.2017.11.062
[48]
Song D, Yang R, Fang S Y, Liu Y P, Long F. Microchim. Acta, 2018, 185(11): 508.

doi: 10.1007/s00604-018-3046-5
[49]
Zhou Y, Wang H L, Song D, Li Z G, Han S T, Long F, Zhu A N. Anal. Chim. Acta, 2021, 1155: 338351.

doi: 10.1016/j.aca.2021.338351
[50]
Han S T, Zhou X H, Tang Y F, He M, Zhang X Y, Shi H C, Xiang Y. Biosens. Bioelectron., 2016, 80: 265.

doi: 10.1016/j.bios.2016.01.070
[51]
Zhang J J, Cheng F F, Li J J, Zhu J J, Lu Y. Nano Today, 2016, 11(3): 309.

doi: 10.1016/j.nantod.2016.05.010
[52]
Sadani K, Nag P, Mukherji S. Biosens. Bioelectron., 2019, 134: 90.

doi: S0956-5663(19)30250-7 pmid: 30959393
[53]
Verma R, Gupta B D. Food Chem., 2015, 166: 568.

doi: S0308-8146(14)00931-5 pmid: 25053095
[54]
Zhou C, Zou H M, Sun C J, Li Y X. Food Chem., 2021, 361: 130109.

doi: 10.1016/j.foodchem.2021.130109
[55]
Khan M Z H. Crit. Rev. Anal. Chem., 2022, 52(4): 780.

doi: 10.1080/10408347.2020.1828027
[56]
Shrivastav A M, Usha S P, Gupta B D. Biosens. Bioelectron., 2017, 90: 516.

doi: S0956-5663(16)31058-2 pmid: 27825873
[57]
Nie R B, Xu X X, Chen Y P, Yang L. ACS Sens., 2019, 4(7): 1864.

doi: 10.1021/acssensors.9b00653
[58]
Tang Y F, Gu C M, Wang C, Song B D, Zhou X H, Lou X H, He M. Biosens. Bioelectron., 2018, 102: 646.

doi: 10.1016/j.bios.2017.12.006
[59]
Zhu Q, Liu L H, Wang R Y, Zhou X H. J. Hazard. Mater., 2021, 403: 123941.
[60]
Carvalho F P. Food Energy Secur., 2017, 6(2): 48.

doi: 10.1002/fes3.2017.6.issue-2
[61]
Miliutina E, Guselnikova O, Burtsev V, Elashnikov R, Postnikov P, Svorcik V, Lyutakov O. Talanta, 2020, 208: 120480.

doi: 10.1016/j.talanta.2019.120480
[62]
Long F, Zhu A N, Shi H C, Sheng J W, Zhao Z. Chemosphere, 2015, 120: 615.

doi: 10.1016/j.chemosphere.2014.09.072
[63]
Qu L L, Ying Y L, Yu R J, Long Y T. Mikrochim. Acta, 2021, 188(6): 201.

doi: 10.1007/s00604-021-04864-4
[64]
Heredia N, García S. Anim. Nutr., 2018, 4(3): 250.

doi: 10.1016/j.aninu.2018.04.006 pmid: 30175252
[65]
Franz C M A P, den Besten H M W, Böhnlein C, Gareis M, Zwietering M H, Fusco V. Trends Food Sci. Technol., 2018, 81: 155.

doi: 10.1016/j.tifs.2018.09.019
[66]
Zhang R Y, Belwal T, Li L, Lin X Y, Xu Y Q, Luo Z S. Compr. Rev. Food Sci. Food Saf., 2020, 19(4): 1465.

doi: 10.1111/crf3.v19.4
[67]
Cui J W, Zhou M J, Li Y, Liang Z X, Li Y Q, Yu L, Liu Y, Liang Y, Chen L G, Yang C X. Front. Cell. Infect. Microbiol., 2021, 11: 665241.

doi: 10.3389/fcimb.2021.665241
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[7] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[8] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[9] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[10] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[11] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[12] Dai Yingping, Ji Zhengping, Wang Chengyin, Hu Xiaoya, Wang Guoxiu. Microcantilever Biosensors [J]. Progress in Chemistry, 2016, 28(5): 697-710.
[13] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[14] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[15] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.