中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (12): 1752-1763 DOI: 10.7536/PC230415 Previous Articles   Next Articles

• Review •

Research Progress in Synthesis of Titanium-Based Organic Framework Materials

Suhui Liu1,2, Feifei Zhang1,2, Xiaoqing Wang1,2, Puxu Liu1,2, Jiangfeng Yang1,2,*()   

  1. 1 College of Chemical Engineering and Technology, Taiyuan University of Technology,Taiyuan 030024, China
    2 Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization,Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yangjiangfeng@tyut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21908153)
Richhtml ( 50 ) PDF ( 580 ) Cited
Export

EndNote

Ris

BibTeX

As a kind of metal-organic framework (MOF) with high valence, titanium-based metal-organic framework (Ti-MOF) has superior chemical stability, appealing photoresponsive properties, low toxicity and so on. However, due to the high reactivity of titanium sources, it brings certain challenges to the synthesis of materials. In this paper, the research progress of Ti-MOF synthesis in recent years is reviewed, and the solvothermal synthesis, post-synthetic modification and in situ SBUs construction methods are introduced in detail. The topological types and crystal structures formed are analyzed, and the synthesis rules of Ti-MOF and the advantages and disadvantages of various methods are summarized. It is pointed out that the control of the metal source and coordination environment is the most important strategy to obtain Ti-MOF, and the construction of Ti-MOF by in-situ formation of SBUs and heterometallic Ti/M-MOF are prospected.

Contents

1 Introduction

2 Synthesis of Ti-MOF

2.1 Solvothermal synthesis

2.2 Post-synthetic modification

2.3 In situ SBUs construction methods

3 Conclusion and outlook

Fig. 1 Metal that has been used to construct MOF. Orange: used; blue: unused[7]
Table 1 Application fields of Ti-MOF[11]
Fig. 2 Development of Ti-MOF (Orange: solvothermal synthesis; yellow: post-synthetic modification; green: in situ SBUs construction method)
Fig. 3 Structure of MIL-125[11]
Table 2 Ti-MOF synthesized by solvothermal synthesis
Fig. 4 Synthesis of Cd-Ti-MOF-1[13]
Fig. 5 (a) Crystal structure of Cd-Ti-MOF-1. (b) Topology of ctm[13]
Fig. 6 Zn/Ti-oxo clusters of ZTOF-1 and ZTOF-2[13]
Fig. 7 Representative structures of ZTOF-1 and ZTOF-2[13]
Fig. 8 Structures of CTOF-1 and CTOF-2[47]
Fig. 9 The structure of MUV-10(Ca)[24]
Fig. 10 Stability of MUV-10(Ca) between pH 2 and 12[24]
Fig. 11 SEM images of MIL-173(Ti/Zr) samples of variable Ti content[48]
Fig. 12 The mechanism of UiO-66@TiO2 by PSM[56]
Fig. 13 Synthesis of MOF-5(Zn/Me) (Me=Ti, V, Cr, Mn, Fe)[57]
Fig. 14 Synthesis of Ti-MOF by HVMO[20]
Fig. 15 Heterometallic Ti-MOFs by Metal-exchange reactions[50]
Fig. 16 Synthesis process of PCN-22[19]
Fig. 17 7-connected Ti-oxo-clusters of PCN-22[13]
Fig. 18 Isoreticular MOF-901 and MOF-902[60]
Fig. 19 Diversity of Ti-oxo-clusters[61?~63]
Table 3 Ti-MOF synthesized by in situ SBUs construction methods
Table 4 Comparison of three synthesis methods
Method Advantage and disadvantage Common synthesis condition
Solvothermal synthesis Ti-MOF Ad: The available ligands are diverse, and the synthesized structures are rich with few restrictions.
Dis: High reaction activity, easy hydrolysis, and the majority of synthesized sample powders.
Ti sources: organic Ti sources
Solvent environment: organic solvent
pH controller:acetic acid
Heterometallic Ti/M-MOF Ad: Properly reduce the reactivity of Ti and synthesize materials with heterometallic advantages.
Dis: The high polarizing power of Ti4+ prevents a direct reaction with other metals that would likely result in poor control over their distribution in the final material for the formation of segregated phases.
Ti sources:organic sources
Solvent environment:organic solvent
Post-synthetic modification M-MOF transform into Ti/M-MOF
by PSM
Ad: Capable of functionalizing the introduction of specific Ti ions into existing MOFs.
Dis: 1. Titanium sources are prone to severe hydrolysis and are dangerous to operate.
2. Easy to be MOF@metal oxide rather than Ti/M-MOF
Ti sources:TiCl3、TiCl4 etc.
Synthetic environment:Inert
gas environment
Ti/M1-MOF transform into Ti/M2-MOF by PSM Ad: Heterometallic Ti-MOF that cannot be obtained under high-temperature solvothermal conditions can be synthesized.
Dis: Ti/M1-MOF is relatively rare, and not all bimetallic MOFs are suitable for this strategy.
In situ SBUs construction methods Ad: It is another effective method to control the hydrolysis Condensation reaction reaction of Ti.
Dis: The addition of reaction steps has made the stability of titanium clusters another factor limiting the reaction.
Ti sources:Ti6O6(OiPr)6(abz)6
Solvent environment:organic solvent
[1]
Eddaoudi M, MolerD B, Li H L, Chen B L, Reineke T M, O’Keeffe M, Yaghi O M. Acc. Chem. Res., 2001, 34(4): 319.

doi: 10.1021/ar000034b
[2]
TranchemontagneD J, Mendoza-Cortés J L, O’Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38(5): 1257.

doi: 10.1039/b817735j pmid: 19384437
[3]
Wang H, Yuan X Z, Wu Y, Zeng G M, Chen X H, Leng L J, Li H. Appl. Catal. B Environ., 2015, 174/175: 445.

doi: 10.1016/j.apcatb.2015.03.037
[4]
Wang H, Yuan X Z, Wu Y, Chen X H, Leng L J, Zeng G M. RSC Adv., 2015, 5(41): 32531.

doi: 10.1039/C5RA01283J
[5]
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem. A Eur. J., 2011, 17(24): 6643.

doi: 10.1002/chem.v17.24
[6]
Mouchaham G, Cooper L, Guillou N, Martineau C, Elkaïm E, Bourrelly S, Llewellyn P L, Allain C, Clavier G, Serre C, Devic T. Angew. Chem. Int. Ed., 2015, 54(45): 13297.

doi: 10.1002/anie.201507058 pmid: 26457412
[7]
Yuan S, Qin J S, Lollar C T, Zhou H C. ACS Cent. Sci., 2018, 4(4): 440.

doi: 10.1021/acscentsci.8b00073
[8]
Canivet J, Fateeva A, Guo Y M, Coasne B, Farrusseng D. Chem. Soc. Rev., 2014, 43(16): 5594.

doi: 10.1039/c4cs00078a pmid: 24875439
[9]
Wang C H, Liu X L, KeserDemir N, Chen J P, Li K. Chem. Soc. Rev., 2016, 45(18): 5107.

doi: 10.1039/C6CS00362A
[10]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.

doi: 10.1021/cr5002589
[11]
Nguyen H L. J. Phys. Energy, 2021, 3(2): 021003.

doi: 10.1088/2515-7655/abe3c9
[12]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.

doi: 10.1021/ja8057953
[13]
Nguyen H L. New J. Chem., 2017, 41(23): 14030.

doi: 10.1039/C7NJ03153J
[14]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16(23): 4919.

doi: 10.1039/C4CE00032C
[15]
Abedi S, Morsali A. New J. Chem., 2015, 39(2): 931.

doi: 10.1039/C4NJ01536C
[16]
Guillerm V, Gross S, Serre C, Devic T, Bauer M, Férey G. Chem. Commun., 2010, 46(5): 767.

doi: 10.1039/B914919H
[17]
Gao J K, Miao J W, Li P Z, Teng W Y, Yang L, Zhao Y L, Liu B, Zhang Q C. Chem. Commun., 2014, 50(29): 3786.

doi: 10.1039/C3CC49440C
[18]
Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Férey G. J. Am. Chem. Soc., 2009, 131(31): 10857.

doi: 10.1021/ja903726m
[19]
Yuan S, Liu T F, FengD W, Tian J, Wang K C, Qin J S, Zhang Q, Chen Y P, Bosch M, Zou L F, Teat S J, Dalgarno S J, Zhou H C. Chem. Sci., 2015, 6(7): 3926.

doi: 10.1039/C5SC00916B
[20]
Zou L F, FengD W, Liu T F, Chen Y P, Yuan S, Wang K C, Wang X, Fordham S, Zhou H C. Chem. Sci., 2016, 7(2): 1063.

doi: 10.1039/C5SC03620H
[21]
Hendon C H, TianaD, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A. J. Am. Chem. Soc., 2013, 135(30): 10942.

doi: 10.1021/ja405350u
[22]
Nguyen H L, Gándara F, Furukawa H, Doan T L H, Cordova K E, Yaghi O M. J. Am. Chem. Soc., 2016, 138(13): 4330.

doi: 10.1021/jacs.6b01233 pmid: 26998612
[23]
Li C Q, Xu H, Gao J K, Du W N, Shangguan L Q, Zhang X, Lin R B, Wu H, Zhou W, Liu X F, Yao J M, Chen B L. J. Mater. Chem. A, 2019, 7(19): 11928.

doi: 10.1039/C9TA01942A
[24]
Castells-Gil J, Padial N M, Almora-Barrios N, Albero J, Ruiz-Salvador A R, González-Platas J, García H, Martí-Gastaldo C. Angew. Chem. Int. Ed., 2018, 57(28): 8453.

doi: 10.1002/anie.201802089 pmid: 29873868
[25]
Castells-Gil J, Padial N M, Almora-Barrios N, Gil-San-Millán R, Romero-Ángel M, Torres V, da Silva I, Vieira B C J, Waerenborgh J C, Jagiello J, Navarro J A R, Tatay S, Martí-Gastaldo C. Chem., 2020, 6(11): 3118.

doi: 10.1016/j.chempr.2020.09.002
[26]
Sun Y Y, LuD F, Sun Y X, Gao M Y, Zheng N, Gu C, Wang F, Zhang J. ACS Mater. Lett., 2021, 3(1): 64.
[27]
Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248
[28]
Serre C, Férey G. Inorg. Chem., 1999, 38(23): 5370.

doi: 10.1021/ic990345m
[29]
Serre C, Groves J A, Lightfoot P, Slawin A M Z, Wright P A, Stock N, Bein T, Haouas M, Taulelle F, Férey G. Chem. Mater., 2006, 18(6): 1451.

doi: 10.1021/cm052149l
[30]
Khaletskaya K, Pougin A, Medishetty R, Rösler C, Wiktor C, Strunk J, Fischer R A. Chem. Mater., 2015, 27(21): 7248.

doi: 10.1021/acs.chemmater.5b03017
[31]
Cai Y L, Zou L J, Ji Q H, Yong J Y, Qian X F, Gao J K. Polyhedron, 2020, 190: 114771.

doi: 10.1016/j.poly.2020.114771
[32]
Wang C, Liu C, He X, Sun Z M. Chem. Commun., 2017, 53(85): 11670.

doi: 10.1039/C7CC06652J
[33]
Wang S J, Reinsch H, Heymans N, Wahiduzzaman M, Martineau-Corcos C, De Weireld G, Maurin G, Serre C. Matter, 2020, 2(2): 440.

doi: 10.1016/j.matt.2019.11.002
[34]
Salcedo-Abraira P, Babaryk A A, Montero-Lanzuela E, Contreras-Almengor O R, Cabrero-Antonino M, Grape E S, Willhammar T, Navalón S, Elkäim E, García H, Horcajada P. Adv. Mater., 2021, 33(52): 2106627.

doi: 10.1002/adma.v33.52
[35]
Assi H, Pardo Pérez L C, Mouchaham G, Ragon F, Nasalevich M, Guillou N, Martineau C, Chevreau H, Kapteijn F, Gascon J, Fertey P, Elkaim E, Serre C, Devic T. Inorg. Chem., 2016, 55(15): 7192.

doi: 10.1021/acs.inorgchem.6b01060
[36]
Bueken B, Vermoortele F, VanpouckeD E P, Reinsch H, Tsou C C, Valvekens P, De Baerdemaeker T, Ameloot R, Kirschhock C E A, Van Speybroeck V, Mayer J M, De VosD. Angew. Chem. Int. Ed., 2015, 54(47): 13912.

doi: 10.1002/anie.201505512 pmid: 26404186
[37]
Mason J A, Darago L E, Lukens W W Jr, Long J R. Inorg. Chem., 2015, 54(20): 10096.

doi: 10.1021/acs.inorgchem.5b02046
[38]
Li Y F, Aschauer U, Chen J, Selloni A. Acc. Chem. Res., 2014, 47(11): 3361.

doi: 10.1021/ar400312t
[39]
Wang S J, Kitao T, Guillou N, Wahiduzzaman M, Martineau-Corcos C, Nouar F, Tissot A, Binet L, Ramsahye N, Devautour-Vinot S, Kitagawa S, Seki S, Tsutsui Y, Briois V, Steunou N, Maurin G, Uemura T, Serre C. Nat. Commun., 2018, 9: 1660.

doi: 10.1038/s41467-018-04034-w
[40]
Lan G X, Ni K Y, Veroneau S S, Feng X Y, Nash G T, Luo T K, Xu Z W, Lin W B. J. Am. Chem. Soc., 2019, 141(10): 4204.

doi: 10.1021/jacs.8b13804
[41]
Padial N M, Castells-Gil J, Almora-Barrios N, Romero-Angel M, da Silva I, Barawi M, García-Sánchez A, de la Peña O’Shea V A, Martí-Gastaldo C. J. Am. Chem. Soc., 2019, 141(33): 13124.

doi: 10.1021/jacs.9b04915
[42]
Cadiau A, Kolobov N, Srinivasan S, Goesten M G, Haspel H, Bavykina A V, Tchalala M R, Maity P, Goryachev A, Poryvaev A S, Eddaoudi M, Fedin M V, Mohammed O F, Gascon J. Angew. Chem. Int. Ed., 2020, 59(32): 13468.

doi: 10.1002/anie.v59.32
[43]
Zhu C F, Chen X, Yang Z W, Du X, Liu Y, Cui Y. Chem. Commun., 2013, 49(64): 7120.

doi: 10.1039/c3cc43225d
[44]
Xuan W M, Ye C C, Zhang M N, Chen Z J, Cui Y. Chem. Sci., 2013, 4(8): 3154.

doi: 10.1039/c3sc50487e
[45]
Hong K, Bak W, Chun H. Inorg. Chem., 2013, 52(10): 5645.

doi: 10.1021/ic400607w
[46]
Hong K, Chun H. Chem. Commun., 2013, 49(93): 10953.

doi: 10.1039/c3cc46761a
[47]
Hong K, Bak W, MoonD, Chun H. Cryst. GrowthDes., 2013, 13(9): 4066.
[48]
Gikonyo B, Montero-Lanzuela E, Baldovi H G, De S, Journet C, Devic T, Guillou N, TianaD, Navalon S, Fateeva A. J. Mater. Chem. A, 2022, 10(46): 24938.

doi: 10.1039/D2TA06652A
[49]
Li M M, Yuan J W, Wang G, Yang L J, Shao J X, Li H, Lu J M. Sep. Purif. Technol., 2022, 298: 121658.

doi: 10.1016/j.seppur.2022.121658
[50]
Padial N M, Lerma-Berlanga B, Almora-Barrios N, Castells-Gil J, da Silva I, de la Mata M, Molina S I, Hernández-Saz J, Platero-Prats A E, Tatay S, Martí-Gastaldo C. J. Am. Chem. Soc., 2020, 142(14): 6638.

doi: 10.1021/jacs.0c00117
[51]
Shultz A M, Sarjeant A A, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2011, 133(34): 13252.

doi: 10.1021/ja204820d
[52]
Grancha T, Ferrando-Soria J, Zhou H C, Gascon J, Seoane B, Pasán J, Fabelo O, Julve M, Pardo E. Angew. Chem. Int. Ed., 2015, 54(22): 6521.

doi: 10.1002/anie.201501691 pmid: 25873186
[53]
Li B J, Gui B, Hu G P, YuanD Q, Wang C. Inorg. Chem., 2015, 54(11): 5139.

doi: 10.1021/acs.inorgchem.5b00535
[54]
Wang Z Q, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368.

doi: 10.1021/ja074366o
[55]
Kim M, Cahill J F, Fei H H, Prather K A, Cohen S M. J. Am. Chem. Soc., 2012, 134(43): 18082.

doi: 10.1021/ja3079219
[56]
Denny M S Jr, Parent L R, Patterson J P, Meena S K, Pham H, Abellan P, Ramasse Q M, Paesani F, Gianneschi N C, Cohen S M. J. Am. Chem. Soc., 2018, 140(4): 1348.

doi: 10.1021/jacs.7b10453
[57]
Brozek C K, Dincă M. J. Am. Chem. Soc., 2013, 135(34): 12886.

doi: 10.1021/ja4064475 pmid: 23902330
[58]
Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423(6941): 705.

doi: 10.1038/nature01650
[59]
Assi H, Mouchaham G, Steunou N, Devic T, Serre C. Chem. Soc. Rev., 2017, 46(11): 3431.

doi: 10.1039/C7CS00001D
[60]
Nguyen H L, Vu T T, LeD, Doan T L H, Nguyen V Q, Phan N T S. ACS Catal., 2017, 7(1): 338.

doi: 10.1021/acscatal.6b02642
[61]
Gao M Y, Wang Z R, Li Q H, LiD J, Sun Y Y, Andaloussi Y H, Ma C, Deng C H, Zhang J, Zhang L. J. Am. Chem. Soc., 2022, 144(18): 8153.

doi: 10.1021/jacs.2c00765
[62]
Lv H T, Li H M, Zou GD, Cui Y, Huang Y, Fan Y. Dalton Trans., 2018, 47(24): 8158.

doi: 10.1039/C8DT01844H
[63]
Hong K, Bak W, Chun H. Inorg. Chem., 2014, 53(14): 7288.

doi: 10.1021/ic500629y
[64]
Hong K, Chun H. Inorg. Chem., 2013, 52(17): 9705.

doi: 10.1021/ic401122u
[65]
Keum Y, Park S, Chen Y P, Park J. Angew. Chem. Int. Ed., 2018, 57(45): 14852.

doi: 10.1002/anie.v57.45
[66]
Wang S J, Cabrero-Antonino M, Navalón S, Cao C C, Tissot A, Dovgaliuk I, Marrot J, Martineau-Corcos C, Yu L, Wang H, Shepard W, García H, Serre C. Chem, 2020, 6(12): 3409.

doi: 10.1016/j.chempr.2020.10.017
[67]
Feng X Y, Song Y, Chen J S, Li Z, Chen E Y, Kaufmann M, Wang C, Lin W B. Chem. Sci., 2019, 10(7): 2193.

doi: 10.1039/C8SC04610G
[68]
Castells-Gil J, Padial N M, Almora-Barrios N, da Silva I, MateoD, Albero J, García H, Martí-Gastaldo C. Chem. Sci., 2019, 10(15): 4313.

doi: 10.1039/c8sc05218b pmid: 31057758
[1] Yunhua Ma, Han Shao, Tenglong Lin, Qinyue Deng. Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds [J]. Progress in Chemistry, 2023, 35(9): 1369-1388.
[2] Ziyu Pan, Haodong Ji. Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications [J]. Progress in Chemistry, 2023, 35(8): 1229-1257.
[3] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[4] Xueli Wang, Qianru Wang, Di Li, Junnian Wei, Jianping Guo, Liang Yu, Dehui Deng, Ping Chen, Zhenfeng Xi. Condensed Matter Chemistry in Nitrogen Fixation [J]. Progress in Chemistry, 2023, 35(6): 904-917.
[5] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[6] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[7] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[8] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[9] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[10] Deng Xiangyu, Zhang Baochang, Qu Qian. Segment Solubilizing Strategy in Protein Chemical Synthesis [J]. Progress in Chemistry, 2023, 35(11): 1579-1594.
[11] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[12] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[13] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[14] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[15] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.