中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1686-1700 DOI: 10.7536/PC230411 Previous Articles   Next Articles

• Review •

Preparation and Application of Direct Electrospun Fibrous Sponges

Song Yilong, Zhao Shuang, Li Kunfeng, Fei Zhifang, Chen Guobing, Yang Zichun()   

  1. School of Power Engineering, Naval University of Engineering,Wuhan 430033, China
  • Received: Revised: Online: Published:
  • Contact: Yang Zichun
  • Supported by:
    National Natural Science Foundation of China(51802347)
Richhtml ( 4 ) PDF ( 78 ) Cited
Export

EndNote

Ris

BibTeX

Electrospun fibrous sponge is a fluffy three-dimensional (3D) material based on one-dimensional fibers. The increase of dimension makes this material have many more prominent advantages than traditional electrospun films, so it has shown great application potential in various fields. With the in-depth study of the three-dimensional structure of electrospinning, it has become a current challenge to obtain stable fibrous sponges directly by electrospinning and improve their performance. In this paper, various new strategies for preparing fibrous sponges by direct electrospinning in recent years are reviewed in detail. Firstly, the mechanism, characteristics and representative research results of different methods are analyzed and summarized. Then the application status of this material in the fields of tissue engineering, environmental governance, safety protection and intelligent equipment is introduced. Finally, the future development trend of electrospinning fibrous sponge is prospected.

Contents

1 Introduction

2 Preparation process of direct electrospinning fibrous sponges

2.1 Sol-controlled self-assembly

2.2 Humidity induced phase separation

2.3 Air-assisted electrospinning

2.4 Near-field electrospinning / 3D printing

2.5 Template-assisted collection

3 Application of direct electrospinning fibrous sponges

3.1 Tissue engineering

3.2 Sound absorption and noise reduction

3.3 Fire protection and heat insulation

3.4 Filtration and separation

3.5 Sensors

4 Conclusion and outlook

Fig.1 3D electrospun structure of PS. (a) Top-view, (b) side view, (c) finished size and (d) the fibers on the top of 3D stack repel a rod with negative charges, and attract a rod with positive charges[21,28]. Copyright 2012, Elsevier
Fig.2 (a) Schematic illustration for the fabrication of PSFS. (b) The chemical reaction of TTMA during the crosslink treatment process (c) SEM of the lamellar corrugated microstructure. (d,e) Photographs showing that the ultralight PSFS could stand on the tip of a feather and the large scale of PSFS[36]. Copyright 2019, American Chemical Society
Fig.3 (a) Schematic diagram of stepped airflow-assisted electrospinning set-up[48]. (b) Side and bottom views of the spinning unit[48]. (c) Illustration of the turbulent-flow-assisted electrospinning[49]. Copyright 2022, Nature
Fig.4 (a) Schematic setup of the 3D electrospinning process and a close-up schematic of stacked fibers. (b) SEM image of a 10-layer 3D grid structure on paper substrate. (c) SEM image showing the cross-over area of the grid. (d) An optical photo showing a whole grid structure[52]. Copyright 2015, American Chemical Society
Fig.5 (a) Three dimension nanofibrous macrostructures on “dumbbell” collector[61]. (b) The schematic set-up for the production of 3D nanofibrous structures (bulk and aligned) using liquid vortex[67]. (c) Configuration of divergence electrospinning[62]. Copyright 2021, Springer Berlin Heidelberg
Fig.6 (a) Schematic diagram of hydrogel-assisted electrospinning (GelES) with the two sequential processes of molding and electrospinning; (b) photographs of the multi-bifurcated 3D gelatin cylindrical structure and the 3D PCL nanofiber macrostructure; and (c) photographs of various complex 3D macroscopic configurations fabricated by GelES including the bellow-shaped tubular macrostructure, miniaturized human alveoli-like macrostructure, and brain-like shell macrostructure. Copyright 2020, American Chemical Society
Fig.7 (a) Energy of sound is consumed by reflections multilayer in gradient structure fibrous sponge (PSFS). (b) Energy consumed by Helmholtz resonators like structure. (c) Comparison of the macro and microstructure for dense-packed fibers and fluffy PSFS-10. (d) Sound absorption performance of PSFS and dense packed fibers in a similar weight. (e) Sound absorption performance of PSFS with various thicknesses. (f) Comparison of the sound absorption performance for the commercial sound absorption materials and the prepared PSFS[36]. Copyright 2019, American Chemical Society
Table 1 Performance comparison of electrospun fiber sponges applied in the field of fire resistance and thermal insulation
Fig.8 Thermal insulation properties of the ZrAlNFAs. (a) Thermal conductivities of the ZrAlNFAs. (b) Thermal conductivity at room temperature versus maximum working temperature for aerogel-like materials. (c) Optical photograph of the front side subjected to a butane blowtorch flame. (d) Infrared images of the back side during the 10 min heating process. (e) Time-dependent temperature profile of the center point on the back side. (f) Optical photograph and SEM image of front side and cross section of the ZrAlNFAs after a 10 min fire resistance test[87]. Copyright 2020, American Chemical Society
Fig.9 Dual-Network structured fibrous sponges. (a) The filtration efficiency and pressure drop when PM 0.3 particles are used and the airflow velocity is 5.33 cm·s-1. (b) Pore size distribution. (c) The porosity and filling density of PAN nanofiber networks with dual network structure prepared at different RH. (d~f) The process diagram of PAN nanofiber filter capturing particles in the air with or without voids. (d' ~f') The pressure field model of airflow passing through these three filters at a surface velocity of 5.33 cm · s-1 [42]. Copyright 2019, Wiley-VCH Verlag
Fig.10 Wearable device assembled from CNFNs for various physiological signal monitoring. (a and b) Real-time resistance response during pronouncing. (c) Photograph of the CNFN sensor fixed on the wrist to measure the pulse. (d) Pulse signal with clear waveforms, indicating 76 beats per min. (e) Respiratory signal caused by air movements for breathing smoothly and hurriedly, respectively. (f) Resistance responses of the CNFN sensor attached to the finger joint for different degrees of bending[26]. Copyright 2019, Royal Society of Chemistry
[36]
Cao L T, Si Y, Yin X, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2019, 11(38): 35333.
[37]
Wu H Y, Zhao L, Zhang S C, Si Y, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(15): 18165.
[38]
Yu W J, Xin B J, Lu Z. Compos. Commun., 2022, 32: 101164.
[39]
Liang T, Parhizkar M, Edirisinghe M, Mahalingam S. Eur. Polym. J., 2014, 61: 72.
[40]
Wu H Y, Zhao L, Si Y, Zhang S C, Yu J Y, Ding B. Compos. Commun., 2021, 25: 100766.
[41]
Feng Y Y, Zong D D, Hou Y J, Yin X, Zhang S C, Duan L Y, Si Y, Jia Y T, Ding B. J. Colloid Interface Sci., 2021, 593: 59.
[42]
Liu H, Zhang S C, Liu L F, Yu J Y, Ding B. Adv. Funct. Mater., 2019, 29(39): 1904108.
[43]
Weinbreck F, Tromp R H, de Kruif C G. Biomacromolecules, 2004, 5(4): 1437.
[44]
Chang G Q, Zhu X F, Li A K, Kan W W, Warren R, Zhao R G, Wang X L, Xue G, Shen J Y, Lin L W. Mater. Des., 2016, 97: 126.
[45]
Wang H L, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C S, Liu Z L, Fang M H, Ou G, Gao H J, Li X Y, Wu H. Sci. Adv., 2017, 3(6): e1603170.
[46]
Wang H L, Lin S, Yang S, Yang X D, Song J N, Wang D, Wang H Y, Liu Z L, Li B, Fang M H, Wang N, Wu H. Small, 2018, 14(19): 1800258.
[47]
Wang H L, Huang Y, Liao S Y, He H C, Wu H. IOP Conf. Ser.: Earth Environ. Sci., 2019, 358(5): 052015.
[48]
Zhou Y M, Wang H B, He J X, Qi K, Ding B, Cui S Z. Fibers Polym., 2018, 19(10): 2169.
[49]
Guo J R, Fu S B, Deng Y P, Xu X, Laima S J, Liu D Z, Zhang P Y, Zhou J, Zhao H, Yu H X, Dang S X, Zhang J N, Zhao Y D, Li H, Duan X F. Nature, 2022, 606(7916): 909.
[50]
He X X, Zheng J, Yu G F, You M H, Yu M, Ning X, Long Y Z. J. Phys. Chem. C, 2017, 121(16): 8663.
[51]
Sun D H, Chang C, Li S, Lin L W. Nano Lett., 2006, 6(4): 839.
[52]
Luo G X, Teh K S, Liu Y M, Zang X N, Wen Z Y, Lin L W. ACS Appl. Mater. Interfaces, 2015, 7(50): 27765.
[53]
Park Y S, Kim J, Oh J M, Park S, Cho S, Ko H, Cho Y K. Nano Lett., 2020, 20(1): 441.
[54]
Vong M, Speirs E, Klomkliang C, Akinwumi I, Nuansing W, Radacsi N. RSC Adv., 2018, 8(28): 15501.
[55]
Yousefzadeh M, Latifi M, Amani-Tehran M, Teo W E, Ramakrishna S. J. Eng. Fibers Fabr., 2012, 7(2): 17.
[56]
Schneider O D, Weber F, Brunner T J, Loher S, Ehrbar M, Schmidlin P R, Stark W J. Acta Biomater., 2009, 5(5): 1775.
[57]
Zhou Y G, Hu Z Y, Du D P, Tan G Z. Int. J. Adv. Manuf. Technol., 2019, 100(9/12): 3045.
[58]
Zhou Y, Tan G Z. ASME 2018 13th International Manufacturing Science and Engineering Conference. 2018.
[59]
Tan G Z, Zhou Y G. Nano Micro Lett., 2018, 10(4): 73.
[60]
Zhou Y G, Mahesh T, Edward L. Q, Tan G Z. JOM, 2019, 71: 956.
[61]
Zhu P, Lin A M, Tang X C, Lu X Z, Zheng J Y, Zheng G F, Lei T P. AIP Adv., 2016, 6(5): 55304.
[62]
Zaman M A U, Sooriyaarachchi D, Zhou Y G, Tan G Z, Du D P. Adv. Manuf., 2021, 9(3): 414.
[63]
Kim J I, Kim J Y, Park C H. Sci. Rep., 2018, 8: 3424.
[64]
Lin S J, Xue Y P, Chang G Q, Han Q L, Chen L F, Jia Y B, Zheng Y G. Mater. Res. Express, 2018, 5(2): 025401.
[65]
Shah Hosseini N, Bölgen N, Khenoussi N, Yılmazş N, Yetkin D, Hekmati A H, Schacher L, Adolphe D. Int. J. Polym. Mater. Polym. Biomater., 2018, 67(3): 143.
[66]
Hong S, Kim G. Appl. Phys. A, 2011, 103(4): 1009.
[67]
Yang X L, Chen X, Zhao J Y, Lv W L, Wu Q L, Ren H J, Chen C T, Sun D P. J. Nanomater., 2021, 2021: 4639317.
[68]
Ki C S, Kim J W, Hyun J H, Lee K H, Hattori M, Rah D K, Park Y H. J. Appl. Polym. Sci., 2007, 106(6): 3922.
[69]
Kasuga T, Obata A, Maeda H, Ota Y, Yao X F, Oribe K. J. Mater. Sci. Mater. Med., 2012, 23(10): 2349.
[70]
Mi H Y, Jing X, Huang H X, Turng L S. Mater. Lett., 2017, 204: 45.
[71]
Baji A, Mai Y W, Wong S C, Abtahi M, Chen P. Compos. Sci. Technol., 2010, 70(5): 703.
[72]
Song J Y, Kim D Y, Yun H J, Kim J H, Yi C C, Park S M. Compos. Sci. Technol., 2022, 227: 109629.
[73]
Zhong H L, Huang J, Wu J, Du J H. Nano Res., 2022, 15(2): 787.
[1]
Rahmati M, Mills D K, Urbanska A M, Saeb M R, Venugopal J R, Ramakrishna S, Mozafari M. Prog. Mater. Sci., 2021, 117: 100721.
[2]
Hu J, Zhang S F, Tang B T. Energy Storage Mater., 2021, 37: 530.
[3]
Li X Y, Zhou R F, Wang Z Z, Zhang M H, He T S. J. Mater. Chem. A, 2022, 10(4): 1642.
[4]
Gbewonyo S, Carpenter A W, Gause C B, Mucha N R, Zhang L F. Mater. Des., 2017, 134: 218.
[5]
Ponce-Alcántara S, Martín-Sánchez D, PÉrez-Márquez A, Maudes J, Murillo N, García-RupÉrez J. Opt. Mater. Express, 2018, 8(10): 3163.
[6]
Cho H J, Kim Y H, Park S, Kim I D. ChemNanoMat, 2020, 6(7): 1014.
[7]
Haghighat F, Hosseini Ravandi S A, Nasr Esfahany M, Valipouri A. J. Mater. Sci., 2018, 53(6): 4665.
[8]
Danish Ali Zaidi S, Wang C, Jin Y Z, Zhu S D, Yuan H F, Yang Y Y, Chen J. J. Alloys Compd., 2020, 848: 156531.
[9]
Xia S H, Zhang Y Y, Zhao Y, Wang X, Yan J H. ACS Appl. Mater. Interfaces, 2021, 13(37): 44768.
[10]
Cheng Y, An Q, Li D W, Fu Y Y, Zhang W, Zhang Y. J. Text. Res., 2021, 42(03):71.
( 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. 纺织学报, 2021, 42(03):71.)
[11]
Liu H Z, Li D W, Shen Y, Deng B Y. Fibers Polym., 2021, 22(3): 664.
[12]
Zong D D, Bai W Y, Geng M, Yin X, Yu J Y, Zhang S C, Ding B. ACS Nano, 2022, 16(9): 13740.
[13]
Zheng Z B, Wu H Y, Si Y, Jia Y T, Ding B. Compos. Commun., 2021, 27: 100788.
[14]
Li Y, Wang J, Qian D J, Chen L, Mo X M, Wang L, Wang Y, Cui W G. J. Nanobiotechnology, 2021, 19(1): 131.
[15]
Li S Y, Qiu F, Xia Y G, Chen D R, Jiao X L. ACS Appl. Mater. Interfaces, 2022, 14(17): 19409.
[16]
Rao F, Yuan Z P, Li M, Yu F, Fang X X, Jiang B G, Wen Y Q, Zhang P X. Artif. Cells Nanomed. Biotechnol., 2019, 47(1): 491.
[17]
Mi H Y, Jing X, Napiwocki B N, Li Z T, Turng L S, Huang H X. Chem. Eng. J., 2018, 331: 652.
[18]
Yan G D, Yu J, Qiu Y J, Yi X H, Lu J, Zhou X S, Bai X D. Langmuir, 2011, 27(8): 4285.
[74]
Ng R, Zang R, Yang K K, Liu N, Yang S T. RSC Adv., 2012, 2(27): 10110.
[75]
Choi W, Lee S, Kim S H, Jang J H. Macromol. Biosci., 2016, 16(6): 824.
[76]
Li L, Zhou G L, Wang Y, Yang G, Ding S, Zhou S B. Biomaterials, 2015, 37: 218.
[77]
Taskin M B, Xu R D, Gregersen H, Nygaard J V, Besenbacher F, Chen M L. ACS Appl. Mater. Interfaces, 2016, 8(25): 15864.
[78]
Qian Y, Song J, Zheng W, Zhao X, Ouyang Y, Yuan W, Fan C. Adv. Funct. Mater., 2018, 28(14): 1707077.
[79]
Walser J, Stok K S, Caversaccio M D, Ferguson S J. Biofabrication, 2016, 8(2): 025007.
[80]
Zhang Y G, Zhang M M, Cheng D R, Xu S X, Du C, Xie L, Zhao W. Biomater. Sci., 2022, 10(6): 1423.
[81]
McClure M J, Wolfe P S, Simpson D G, Sell S A, Bowlin G L. Biomaterials, 2012, 33(3): 771.
[82]
Bosworth L A, Alam N, Wong J K, Downes S. J. Mater. Sci. Mater. Med., 2013, 24(6): 1605.
[83]
Eom S S, Park S M, Hong H J, Kwon J J, Oh S R, Kim J S, Kim D S. ACS Appl. Mater. Interfaces, 2020, 12(46): 51212.
[84]
Zou Y L, Shi L, Zhou Y, Yao L R. Tech. Text., 2014, 32(9): 22.
( 邹亚玲, 石琳, 周颖, 姚理荣. 产业用纺织品, 2014, 32(9): 22.)
[85]
Ozkal A, Callioglu F C. Applied Acoustics, 2020(11): 107468.
[86]
Bai W Y, Zong D D, Liu X Y, Wang F, Yin X, Yu J Y, Zhang S C, Ding B. J. Text. Inst., 2023(4):1.
[87]
Zhang X X, Wang F, Dou L Y, Cheng X T, Si Y, Yu J Y, Ding B. ACS Nano, 2020, 14(11): 15616.
[88]
Dong J H, Xie Y S, Liu L X, Deng Z Z, Liu W, Zhu L Y, Wang X Q, Xu D, Zhang G H. Adv. Eng. Mater., 2022, 24(8): 2101603.
[89]
Zhang H N, Xie Y X, Song Y, Qin X H. Colloids Surf., A, 2021, 624: 126834.
[90]
Chen X, Xu Y, Liang M, Ke Q, Fang Y, Xu H, Jin X, Huang C. J. Hazard. Mater., 2018, 347: 325.
[91]
Feng Z B, Long Z W, Yu T. J. Electrost., 2016, 83: 52.
[19]
Li M M, Long Y Z. Mater. Sci. Forum, 2011, 688: 95.
[20]
Deitzel J M, Kleinmeyer J, Harris D, Beck Tan N C. Polymer, 2001, 42(1): 261.
[21]
Sun B, Long Y Z, Yu F, Li M M, Zhang H D, Li W J, Xu T X. Nanoscale, 2012, 4(6): 2134.
[22]
Bonino C A, Efimenko K, Jeong S I, Krebs M D, Alsberg E, Khan S A. Small, 2012, 8(12): 1928.
[23]
Cai S B, Xu H L, Jiang Q R, Yang Y Q. Langmuir, 2013, 29(7): 2311.
[24]
Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C. Nanoscale, 2019, 11(17): 8185.
[25]
Sun B, Long Y Z, Zhang H D, Li M M, Duvail J L, Jiang X Y, Yin H L. Prog. Polym. Sci., 2014, 39(5): 862.
[26]
Han Z Y, Cheng Z Q, Chen Y, Li B, Liang Z W, Li H F, Ma Y J, Feng X. Nanoscale, 2019, 11(13): 5942.
[27]
Mi H Y, Li H, Jing X, Zhang Q, Feng P Y, He P, Liu Y J. Sep. Purif. Technol., 2020, 241: 116700.
[28]
Vong M, Diaz Sanchez F J, Keirouz A, Nuansing W, Radacsi N. Mater. Des., 2021, 208: 109916.
[29]
Cheng X T, Liu Y T, Si Y, Yu J Y, Ding B. Nat. Commun., 2022, 13: 2637.
[30]
Szewczyk P K, Stachewicz U. Adv. Colloid Interface Sci., 2020, 286: 102315.
[31]
Mailley D, HÉbraud A, Schlatter G. Macromol. Mater. Eng., 2021, 306(7): 2100115.
[32]
Zhang R H, Gong X B, Wang S, Tian Y C, Liu Y T, Zhang S C, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(48): 58027.
[33]
Kim J I, Lee J C, Kim M J, Park C H, Kim C S. Mater. Lett., 2019, 236: 510.
[34]
Chen X, Xu Y, Liang M M, Ke Q F, Fang Y Y, Xu H, Jin X Y, Huang C. J. Hazard. Mater., 2018, 347: 325.
[35]
Zhao L, Wu H Y, Jiao W L, Yin X, Si Y, Yu J Y, Ding B. Compos. Commun., 2021, 25: 100681.
[92]
Liu Z G, Wang P K. Aerosol. Sci. Technol., 1997, 26(4): 313.
[93]
Yu Y S, Tao Y B, Wang F L, Chen X, He Y L. Sep. Purif. Technol., 2020, 251: 117318.
[94]
Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C. Nanoscale, 2019, 11(17): 8185.
[95]
Gao Y, Zhou Y S, Xiong W, Wang M M, Fan L S, Rabiee-Golgir H, Jiang L J, Hou W J, Huang X, Jiang L, Silvain J F, Lu Y F. ACS Appl. Mater. Interfaces, 2014, 6(8): 5924.
[96]
Liu S Z, Zhang Y, Fan L Y, Zhang Q, Zhou Y. Materials Reports, 2020, 34(17): 17099.
( 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 材料导报, 2020, 034(017): 17099.)
[97]
Venkatesan N, Yuvaraj P, Fathima N N. Mater. Chem. Phys., 2022, 286: 126190.
[98]
Song J N, Wang H Y, Li Z W, Long Y Z, Liu Z L, Wang H L, Li X Y, Fang M H, Li B, Wu H. Chem. Eng. J., 2018, 343: 638.
[99]
Tai M H, Tan B Y L, Juay J, Sun D D, Leckie J O. Chem. Eur. J., 2015, 21(14): 5395.
[100]
Mi H Y, Li H, Jing X, Zhang Q, Feng P Y, He P, Liu Y J. Sep. Purif. Technol., 2020, 241: 116700.
[101]
Bian Y, Liu K., Ran Y. Nat. Commun., 2022, 13: 7163.
[102]
Tropp J, Ihde M H, Williams A K, White N J, Eedugurala N, Bell N C, Azoulay J D, Bonizzoni M. Chem. Sci., 2019, 10(44): 10247.
[103]
Yang H Z, Ma C, Wei S J, Zhou Z L, Tian Z K. Adv. Text. Technol., 2023, 31(2): 256.
( 杨海贞, 马闯, 魏肃桀, 周泽林, 田征坤. 现代纺织技术, 2023, 31(2): 256.)
[104]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.
[105]
Wu X D, Han Y Y, Zhang X X, Zhou Z H, Lu C H. Adv. Funct. Mater., 2016, 26(34): 6246.
[106]
Han J W, Kim B, Li J, Meyyappan M. Appl. Phys. Lett., 2013, 102(5): 051903.
[107]
Yang G, Luo H J, Ding Y P, Yang J W, Li Y F, Ma C Q, Yan J, Zhuang X P. ACS Appl. Mater. Interfaces, 2023, 15(5): 7380.
[108]
Si Y, Yu J Y, Tang X M, Ge J L, Ding B. Nat. Commun., 2014, 5: 5802.
[109]
Zhang M, Wang Y, Zhang Y Y, Song J, Si Y, Yan J H, Ma C L, Liu Y T, Yu J Y, Ding B. Angew. Chem. Int. Ed., 2020, 59(51): 23252.
[110]
Xu T, Li X F, Liang Z P, Amar V S, Huang R Z, Shende R V, Fong H. Adv. Fiber Mater., 2020, 2(2): 74.
[1] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[2] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[3] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[4] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[5] Zhao Jun, Huang Renliang, Qi Wei, Wang Yuefei, Su Rongxin, He Zhimin. Self-Assembly of Diphenylalanine Based Peptides:Molecular Design, Structural Control and Applications [J]. Progress in Chemistry, 2014, 26(09): 1445-1459.
[6] Yang Zhenglong, Xu Xiaoli, Zhao Yuxin. Synthesis of Organic/Inorganic Hybrid Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2014, 26(06): 996-1004.
[7] Sun Mengmeng, He Yong, Yang Wantai, Yin Meizhen. Synthesis and Bio-Application of Poly(Ethylene Phosphate) [J]. Progress in Chemistry, 2013, 25(12): 2093-2102.
[8] Zhang Jinchao*, Hu Yi*, Yu Siwang, Gao Yuxi, Zhang Haisong. The Study of Biological Inorganic Chemistry Problemsin Translational Medicine [J]. Progress in Chemistry, 2013, 25(04): 469-478.
[9] Guo Feng, Zhu Guiru, Gao Congjie. Organic-Inorganic Hybrid Mesoporous Silicas and Their Applications in Environmental Protection [J]. Progress in Chemistry, 2011, 23(6): 1237-1250.
[10] . Progress on the Study of the Application of Nanomaterials in Tissue Engineering [J]. Progress in Chemistry, 2010, 22(11): 2232-2237.
[11] Yao Xiang Tuo Xinlin Wang Xiaogong. Preparing Biodegradable Polyurethane Porous Scaffold for Tissue Engineering Application [J]. Progress in Chemistry, 2009, 21(0708): 1546-1552.
[12] Wei Hongliang,Wang Liancai,Zhang Aiying,Zhu Kaiqiang,Feng Zengguo**. Preparation and Applications of Injectable Hydrogels [J]. Progress in Chemistry, 2004, 16(06): 1008-.
[13] Cui Junfeng,Yin Yuji,He Shulan,Yao Kangde**. Biodegradable Polymeric Scaffolds for Bone Tissue Engineering [J]. Progress in Chemistry, 2004, 16(02): 299-.
[14] Zhang Guodong,Yang Jiyuan,Feng Xinde,Gu Zhongwei. Progress in Study of Polylactides [J]. Progress in Chemistry, 2000, 12(01): 89-.