中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1674-1685 DOI: 10.7536/PC230401 Previous Articles   Next Articles

• Review •

Preparation of Double Network Hydrogels and their Mechanical Modification

Li Liqing1,2, Zhong Xiumin1, Zhang Lixu1, Liu Kunming1(), Wang Quanbing3, Ma Jie4,5   

  1. 1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,Ganzhou 341000, China
    2 Jiangxi Ganzhou Key Laboratory of Applied Electrochemistry,Ganzhou 341000, China
    3 Jiangxi Tongyi Polymer Material Technology Co. Ltd,Ganzhou 341000, China
    4 MOE Key Laboratory of Yangtze River Water Environment, Tongji University,Shanghai 200092, China
    5 Shanghai Institute of Pollution Control and Ecological Security,Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: Liu Kunming, Ma Jie
  • Supported by:
    Key Project of Natural Science Foundation of Jiangxi Province, Research on Targeted Molecular Design Law and Structure-Activity Relationship of Ionic Rare Earth Extractants(20224ACB203010); project of High Level and High Skilled Leading Talent Training of Jiangxi Province(2022); Jiangxi Provincial Natural Science Foundation(20212BAB203013); Science and Technology Project Founded by the Education Department of Jiangxi Province(GJJ22008207)
Richhtml ( 40 ) PDF ( 371 ) Cited
Export

EndNote

Ris

BibTeX

Double Network Hydrogels are polymer materials composed of two interpenetrating or semi-penetrating three-dimensional networks, and their unique contrast interpenetrating network structure and adjustable network crosslinking method overcome the obstacles in mechanical properties of single-network hydrogels, and are widely used in tissue engineering, intelligent sensors, ion adsorption and other fields with their good mechanical, anti-swelling, self-healing and other mechanical properties. However, the existing technologies suffer from numerous synthesis steps, complicated preparation conditions and the use of toxic and harmful chemical cross-linking, which limit the mass production of double network hydrogels for applications. Therefore, in recent years, the modification of double network hydrogels has received more and more attention, and researchers have carried out a series of structural modification studies mainly around how to improve the mechanical properties of double network hydrogels, aiming to broaden their application in various fields. In this paper, the types of double network hydrogels are reviewed, and the preparation methods, structures and unique properties of different hydrogels are introduced in detail. The research on modification to improve mechanical properties, anti-swelling performance and self-healing properties is analyzed, aiming to break through the current limitations of double network hydrogels and provide ideas and directions for their future development.

Contents

1 Introduction

2 Types and preparation methods of double network hydrogels

2.1 Study on the preparation of organic-organic double network hydrogels

2.2 Study on the preparation of organic-inorganic double network hydrogels

3 Research on improving the performance of double network hydrogels

3.1 Improving mechanical properties

3.2 Improving anti-swelling properties

3.3 Improving self-healing properties

4 Conclusion and outlook

Fig.1 Classical two-step polymerization method to prepare chemically linked DN hydrogels[11]. Copyright 2015, Journal of Materials Chemistry B
Fig.2 Schematic illustration of preparation of PVA/PAA gel[20]. Copyright 2015, Journal of Hazardous Materials
Fig.3 Preparation of κ-car/PAM DN hydrogels using a one-pot method[23]. Copyright 2016, American Chemical Society
Fig.4 Schematic illustration of (a) κ-car/SA beads synthesis, and (b) κ-car/SA double network structure[24]. Copyright 2019, Chemosphere
Fig.5 Schematic diagrams of the self-assembly of HAp into the BC network and the preparation process of the BC-GEL/HAp DN hydrogel[34]. Copyright 2017, Materials Science and Engineering C
Table 1 Preparation methods and properties of various double network hydrogels
Category Double Network hydrogels Preparation method Performance ref
Organic-organic double network hydrogels PVA/PAM-co-PAA Two-steps methods of copolymerization and freezing/thawing High strength and toughness(1230±90 kPa和1250±50 kJ / m3), fast self-recovery 19
PVA/PAA Two-step method After 5 adsorption-desorption cycles, the removal rate remained nearly 100% 20
κ-car/SA Calcium-hardening method The maximum adsorption capacity for CIP reaches 220 mg/g 24
κ-car/PNAGA One-pot method The hydrogel, cut in half, was annealed at 90℃ for 3 hours and subsequently healed and withstood bending and stretching by hand 25
Organic-inorganic double network hydrogels GO/PAA Two step synthesis After the press is compressed, the press is removed and the press can also be restored to its original shape 30
Alginate/RGO Hydrothermal reduction method After 10 cycles, the adsorption capacities of Cr2 O 7 2 -and Cu2+on the GAD were maintained at 48.23 and 92.12 mg·g-1, respectively 28
GO/SA Soaking method After 18 adsorption-desorption cycles, the adsorption capacity of GAD hydrogel for Mn (II) remained unchanged at 11.2 mg/g 31
PAM/SAC Solution polymerization method Tensile properties (stress and strain are 12 MPa and 2500%, respectively) and compressive strength (stress and strain are 65 MPa and 80%, respectively) 32
Silica particles/PDMAAm One-pot method The DN ion gels with an 80 wt% IL content show more than 28 MPa of compressive fracture stress 33
BC-GEL / HAp Soaking method Has a higher modulus of elasticity (0.27 MPa) and fracture (0.28 MPa) 34
Fig.6 Preparation of thermoresponsive and recoverable Agar/PAM DN gels[41]. Copyright 2013, Advanced Materials
Fig.7 The synthesis procedures and mechanism of the TM-SiO2/PAM/PAA nanocomposite double network hydrogels[43]. Copyright 2022, Journal of Molecular Liquids
Fig.8 Schematic of crosslinking mechanism of graphene oxide(GO)reinforced double network(DN)hydrogel[44]. Copyright 2018, Polymers
Fig.9 Schematic diagram representation of the preparation of the PAM/SA-Fe hydrogel and a possible network structure of the PAM/SA-Fe hydrogel[63]. Copyright 2020, Colloids and Surfaces
Fig.10 Synthesis and Network Structure of Agar/PAM Physical DN gels[64]. Copyright 2018, Polymer Testing
Table 2 Mechanical properties of various double network hydrogels
Improve mechanical properties Double Network hydrogels Performance ref
Improved mechanical
properties
agar/PAM Able to withstand high levels of compression and stretching 41
curdlan/PAM Tensile rupture strength of 0.81 MPa, tensile stress of 25.3 MPa 42
TM-SiO2/ PAM/PAA Both tensile and compressive strength have increased, and the network structure is more stable 43
GO/SA/PVA The breaking strength increased from 0.11 MPa of pure SA/PVA to 0.24 MPa 44
Improved anti-swelling
performance
PVA/P(AM-co-AA)/CS Strong electrostatic interactions reduce the swelling rate of hydrogels 53
SA/CS/Zn2+ The swelling rate of the hydrogel decreases with increasing zinc content 54
GO/ CA/PAM Smaller dissolution changes in visual model plots 55
PAA/P (AM-co-AA sodium salts) Remarkable swelling characteristics (an SR of 1200% ± 20% and an unusually high compressive modulus of 10.12 ± 0.31 MPa) 56
SSH Compression modulus increases by 15.6% ± 4.5% at a 25% swelling rate 57
BCD-AMPS/PAM Reactive strand extensions of up to 40% lead to hydrogels that stretch 40% to 50% further and exhibit tear energies that are twice as large. 58
Improve self-healing
performance
Alginate/ polyacrylamide After standing at 80℃ for 1 day, the recovery relative to the initial value was 74% 62
PAM/SA-Fe The breaking strength and toughness recovered 103.85% and 75.54%, respectively, within 1 min 63
Agar / PAM After standing for 2 min at room temperature without external stimuli, toughness recovers approximately 83% 64
ST/ PAA/ AMPS The damage at the cutting interface will slowly but steadily self-repair to its initial state 65
[1]
Xu S C, Tang N, Bai X J, Liu Y F, Yang W J. Modern Chemical Industry, 2021, 41(6): 37.
( 许世超, 唐楠, 白学健, 刘宇凡, 杨伟静. 现代化工, 2021, 41(6):37.)
[2]
Chen X Y, Ji N, Li F, Qin Y, Wang Y F, Xiong L, Sun Q J. Foods, 2022, 11(9): 1315.
[3]
Li Z L, Lin Z Q. Aggregate, 2021, 2(2): e21.
[4]
Huang X X, Li J C, Luo J, Gao Q, Mao A, Li J Z. Mater. Today Commun., 2021, 29: 102757.
[5]
Li T, Zhang X H, Xia B H, Ma P M, Chen M Q, Du M L, Wang Y, Dong W F. New J. Chem., 2020, 44(38): 16569.
[6]
Liang J, Shan G R, Pan P J. Soft Matter, 2017, 13(22): 4148.
[7]
Li K Y, Liu Y, Ge Y Q, Cao H Y, Zhuang S J, Yang X T, Zhao Y Y, Gu X L. J. Mater. Chem. C, 2023, 11(5): 1908.
[8]
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217(9): 1017.
[9]
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2019, 183: 121837.
[10]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14): 1155.
[11]
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3(18): 3654.
[12]
Yang Y Y, Wang X, Wu D C. Acta Chimica Sinica, 2021, 79(1): 1.
( 杨艳宇, 王星, 吴德成. 化学学报, 2021, 79(1):1.)
[13]
Li L Q, Wu P W, Yu F, Ma J. J. Mater. Chem. A, 2022, 10(17): 9215.
[14]
Yu F, Yang P Y, Yang Z Q, Zhang X C, Ma J. Chem. Eng. J., 2021, 426: 131900.
[15]
Yang J, Li Y, Zhu L, Qin G, Chen Q. J. Polym. Sci. B Polym. Phys., 2018, 56(19): 1351.
[16]
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141: 105918.
[17]
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192: 122319.
[18]
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206: 289.
[19]
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8(36): 24030.
[20]
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300: 153.
[21]
Li L Q, Wu P W, Ma J. Progress in Chemistry, 2021, 33(6): 1010.
( 李立清, 吴盼旺, 马杰. 化学进展, 2021, 33(6):1010.)
[22]
Li L, Ni R, Shao Y, Mao S R. Carbohydr. Polym., 2014, 103: 1.
[23]
Liu S J, Li L. ACS Appl. Mater. Interfaces, 2016, 8(43): 29749.
[24]
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237: 124417.
[25]
Guo Y, He M M, Peng Y, Zhang Q, Yan L K, Zan X J. J. Mater. Sci., 2020, 55(21): 9109.
[26]
Milovanovic M, Isselbaecher N, Brandt V, Tiller J C. Chem. Mater., 2021, 33(21): 8312.
[27]
Ma J, Xiong Y C, Dai X H, Yu F. Chem. Eng. J., 2020, 380: 122387.
[28]
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4(28): 10885.
[29]
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106: 120.
[30]
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5(13): 6034.
[31]
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8: 10717.
[32]
Chu Y Y, Song X F, Zhao H X. J. Appl. Polym. Sci., 2019, 136(35): 47905.
[33]
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29(47): 1704118.
[34]
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng. C, 2017, 78: 130.
[35]
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1(25): 7433.
[36]
Yang D Y. Chem. Mater., 2022, 34(5): 1987.
[37]
Ning X J, Huang J N, Yimuhan A, Yuan N N, Chen C, Lin D H. Int. J. Mol. Sci., 2022, 23(24): 15757.
[38]
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromol., 2019, 2: 629.
[39]
Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju X J, Wang W, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2017, 9(18): 15758.
[40]
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22(21): 4426.
[41]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25(30): 4171.
[42]
Ye L N, Lv Q, Sun X Y, Liang Y Z, Fang P W, Yuan X Y, Li M, Zhang X Z, Shang X F, Liang H Y. Soft Matter, 2020, 16(7): 1840.
[43]
Xu P, Shang Z J, Yao M L, Ke Z Y, Li X X, Liu P D. J. Mol. Liq., 2022, 368: 120611.
[44]
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10(8): 835.
[45]
Wu S J, Yuan C Y, Tang J X, Tang L. J. Xiangtan Univ. Nat. Sci. Ed., 2022, 44(1): 31.
( 伍绍吉, 袁尘瑜, 汤建新, 汤力. 湘潭大学学报(自然科学学报), 2022, 44(1): 31.)
[46]
Louf J F, Lu N B, O’Connell M G, Cho H J, Datta S S. Sci. Adv., 2021, 7(7): eabd2711.
[47]
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343(6173): 873.
[48]
Li H F, Wang H B, Zhang D F, Xu Z Y, Liu W G. Polymer, 2018, 153: 193.
[49]
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25(16): 3357.
[50]
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4(84): 44600.
[51]
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137(24): 48805.
[52]
Bi S C, Pang J H, Huang L, Sun M J, Cheng X J, Chen X G. Int. J. Biol. Macromol., 2020, 146: 99.
[53]
Liu Y, Xia M, Wu L L, Pan S X, Zhang Y H, He B Q, He P X. Ind. Eng. Chem. Res., 2019, 58(47): 21649.
[54]
Shi C, Yang F M, Hu L, Wang H B, Wang Y X, Wang Z C, Pan S H, Chen J D. Mater. Lett., 2022, 316: 132048.
[55]
Wang J L, Su S H, Qiu J J. New J. Chem., 2017, 41(10): 3781.
[56]
Kim J R, Woo S H, Son Y L, Kim J R, Kasi R M, Kim S C. Macromolecules, 2021, 54(5): 2439.
[57]
Wu F, Pang Y, Liu J Y. Nat. Commun., 2020, 11: 4502.
[58]
Wang Z, Zheng X J, Ouchi T, Kouznetsova T B, Beech H K, Av-Ron S, Matsuda T, Bowser B H, Wang S, Johnson J A, Kalow J A, Olsen B D, Gong J P, Rubinstein M, Craig S L. Science, 2021, 374(6564): 193.
[59]
Mi Z Y, Chen X Y, Yao X L, Xu K, Liu H B, Li N, Liu N. Mod. Food Sci. Technol., 2022, 38(1): 398.
( 糜志远, 陈晓雨, 姚晓琳, 徐凯, 刘华兵, 李娜, 刘宁. 现代食品科技, 2022, 38(1): 398.)
[60]
Zhang H T, Wu X J, Qin Z H, Sun X, Zhang H, Yu Q Y, Yao M M, He S S, Dong X R, Yao F L, Li J J. Cellulose, 2020, 27(17): 9975.
[61]
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124: 109474.
[62]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489(7414): 133.
[63]
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 589: 124402.
[64]
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69: 167.
[65]
Shang X Q, Wang Q L, Li J H, Zhang G J, Zhang J G, Liu P, Wang L M. Carbohydr. Polym., 2021, 257: 117626.
[1] Hao Zhang, Yanhui Wu. Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation [J]. Progress in Chemistry, 2023, 35(8): 1154-1167.
[2] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[3] Qingping Li, Tao Li, Chenchen Shao, Wei Liu. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(7): 1053-1064.
[4] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[7] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[8] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[9] Zhao Lanqing, Hou Minjie, Zhang Da, Zhou Yingjie, Xie Zhipeng, Liang Feng. Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for Solid-State Sodium Ion Batteries [J]. Progress in Chemistry, 2023, 35(11): 1625-1637.
[10] Yanxiao Chi, Yuxuan Yang, Kunlun Yang, Xianrong Meng, Wei Xu, Hengfeng Miao. Application of Pyrite and Its Modified Composite in Water Pollution Treatment [J]. Progress in Chemistry, 2023, 35(10): 1544-1558.
[11] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[12] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[13] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[14] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[15] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.