中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1579-1594 DOI: 10.7536/PC230325 Previous Articles   Next Articles

• Review •

Segment Solubilizing Strategy in Protein Chemical Synthesis

Deng Xiangyu1,2, Zhang Baochang1, Qu Qian2()   

  1. 1 Tsinghua University Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry,Beijing 100084, China
    2 Shanghai Jiao Tong University Institute of Translational Medicine,Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: Qu Qian
  • Supported by:
    National Natural Science Foundation of China(22277073)
Richhtml ( 21 ) PDF ( 111 ) Cited
Export

EndNote

Ris

BibTeX

Proteins play critical roles in various biological processes and biomedical researches. A significant task of such biochemical studies is to obtain protein samples of high homogeneity with respect to their atomic compositions. Chemical protein synthesis offers a much more robust and effective strategy over recombinant expression technology for accessing proteins that are precisely modified or even artificially designed. However, some important proteins that can be used as drug targets (such as human interleukin-2, K+ channel protein Kir5.1, etc.) suffer from limited solubility of peptide segments during the journey of protein synthesis. Such hydrophobic peptides pose difficulty for subsequent purification, characterization, chemical ligation and other operations. The main factors for these problems may be that the peptide segments are prone to self-assemble into secondary structures through hydrophobic interactions, hydrogen bond or other interaction modes, thus reducing the solubility. Addition of solubilizing tags is recognized as one of the effective methods to overcome such obstacles. In this review, strategies of attaching solubilizing tags to the main chain, side chain and backbone of peptides are introduced. Membrane protein FCER1G, co-chaperone protein GroES and other proteins are selected as examples to describe the applications of the solubilizing tags. Moreover, the future of solubilizing tags strategy is discussed and prospected.

Contents

1 Introduction

2 Main chain solubilizing tags

2.1 C-terminal solubilizing tags

2.2 N-terminal solubilizing tags

3 Side chain solubilizing tags

3.1 Cysteine (Cys) side chain solubilizing tags

3.2 Lysine (Lys) side chain solubilizing tags

3.3 Asparagine (Asn) /Glutamine (Gln) side chain solubilizing tags

4 Backbone modifications as solubilizing tags

4.1 Irreversible backbone modification

4.2 Removable backbone modification

5 Conclusion and outlook

Fig.1 Reasons for poor solubility of peptide fragments[56]
Fig.2 Methods for improving the solubility of peptides[57⇓⇓⇓⇓⇓~63]
Scheme 1 C terminal thioester solubilizing tag[67]
Fig.3 Division of DGK hydrophilic peptides[67]
Fig.4 Other C-terminal solubilizing tags[70⇓~72]
Fig.5 N-terminal solubilizing tags[73,74]
Scheme 2 Base-liable N-terminal solubilizing tags[73]
Fig.6 Side chain-based solubilizing tags
Scheme 3 Cys side chain solubilizing strategy developed by Brik et al[78]
Scheme 4 Total chemical synthesis of histone H4[78]
Scheme 5 Cys side chain solubilizing strategy developed by Yoshiya et al[81]
Scheme 6 Total chemical synthesis of CP149[81]ALC
Scheme 7 Cys side chain solubilizing strategy developed by Deber et al[84]
Scheme 8 Cys side chain solubilizing strategy developed by Li et al[85]
Scheme 9 Total chemical synthesis of membrane protein FCER1G[85]
Scheme 10 Lys side chain solubilizing strategy developed by Danishefsky et al[89]
Scheme 11 Optimization of physical and chemical properties of hEPO peptide fragment[89]
Scheme 12 Lys side chain solubilizing strategy developed by Hojo et al[91]
Scheme 13 Total chemical synthesis of IL-2[91]
Scheme 14 Lys side chain solubilizing strategy developed by Kay et al[94]
Scheme 15 Total chemical synthesis of GroES[94]
Fig.7 The structure of Ddap[96]
Scheme 16 Lys side chain solubilizing strategy developed by Yoshiya et al[97]
Scheme 17 Strategy developed by Imperial et al[99]
Scheme 18 Gln side chain solubilizing strategy developed by Liu et al[100]
Scheme 19 Total chemical synthesis of LC3-Ⅱ[100]
Fig.8 Irreversible backbone modification[102]
Fig.9 Hmb and its derivatives[104,105]
Scheme 20 The RBM strategy[56,106]
Scheme 21 Total chemical synthesis of p7 ion channel[106]
[33]
Mitchell N J, Malins L R, Liu X Y, Thompson R E, Chan B, Radom L, Payne R J. J. Am. Chem. Soc., 2015, 137(44): 14011.
[34]
Tan Y, Li J S, Jin K, Liu J M, Chen Z Y, Yang J, Li X C. Angew. Chem. Int. Ed., 2020, 59(31): 12741.
[35]
Bode J W. Acc. Chem. Res., 2017, 50(9): 2104.
[36]
Pusterla I, Bode J W. Nat. Chem., 2015, 7(8): 668.
[37]
Zuo C, Zhang B C, Yan B J, Zheng J S. Org. Biomol. Chem., 2019, 17(4): 727.
[38]
Tang S, Si Y Y, Wang Z P, Mei K R, Chen X, Cheng J Y, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2015, 54(19): 5713.
[39]
Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51(41): 10347.
[40]
Pech A, Achenbach J, Jahnz M, Schülzchen S, Jarosch F, Bordusa F, Klussmann S. Nucleic Acids Res, 2017, 45(7): 3997.
[41]
Xu W L, Jiang W J, Wang J X, Yu L P, Chen J, Liu X Y, Liu L, Zhu T F. Cell Discov., 2017, 3: 17008.
[42]
Weinstock M T, Jacobsen M T, Kay M S. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(32): 11679.
[43]
Kumar K S A, Bavikar S N, Spasser L, Moyal T, Ohayon S, Brik A. Angew. Chem. Int. Ed., 2011, 50(27): 6137.
[44]
Shi W W, Shi C W, Wang T Y, Li Y L, Zhou Y K, Zhang X H, Bierer D, Zheng J S, Liu L. J. Am. Chem. Soc., 2022, 144(1): 349.
[45]
Li Y L, Heng J, Sun D M, Zhang B C, Zhang X, Zheng Y P, Shi W W, Wang T Y, Li J Y, Sun X O, Liu X Y, Zheng J S, Kobilka B K, Liu L. J. Am. Chem. Soc., 2021, 143(42): 17566.
[46]
Wang J X, Fang G M, He Y, Qu D L, Yu M, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2015, 54(7): 2194.
[47]
Wu H X, Wei T Y, Ngai W L, Zhou H Y, Li X C. J. Am. Chem. Soc., 2022, 144(32): 14748.
[48]
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Angew. Chem. Int. Ed., 2021, 60(25): 13900.
[49]
Zhou X M, Zuo C, Li W Q, Shi W W, Zhou X W, Wang H F, Chen S M, Du J F, Chen G Y, Zhai W J, Zhao W S, Wu Y H, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2020, 59(35): 15114.
[50]
Zuo C, Tang S, Zheng J S. J. Pept. Sci., 2015, 21: 540.
[51]
Shen F, Huang Y C, Tang S, Chen Y X, Liu L. Isr. J. Chem., 2011, 51(8/9): 940.
[52]
Venkatakrishnan A J, Deupi X, Lebon G, Tate C G, Schertler G F, Babu M M. Nature, 2013, 494(7436): 185.
[53]
Gouaux E, MacKinnon R. Science, 2005, 310(5753): 1461.
[54]
Bill R M, Henderson P J F, Iwata S, Kunji E R S, Michel H, Neutze R, Newstead S, Poolman B, Tate C G, Vogel H. Nat. Biotechnol., 2011, 29(4): 335.
[55]
Yıldırım M A, Goh K I, Cusick M E, Barabási A L, Vidal M. Nat. Biotechnol., 2007, 25(10): 1119.
[56]
Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136(9): 3695.
[57]
Rohrbacher F, Zwicky A, Bode J W. Chem. Sci., 2017, 8(5): 4051.
[58]
Shen F, Tang S, Liu L. Sci. China Chem., 2011, 54(1): 110.
[59]
Valiyaveetil F I, MacKinnon R, Muir T W. J. Am. Chem. Soc., 2002, 124(31): 9113.
[60]
Tailhades J, Patil N A, Hossain M A, Wade J D. J. Pept. Sci., 2015, 21(3): 139.
[61]
Liu F, Luo E Y, Flora D B, Mezo A R. Angew. Chem. Int. Ed., 2014, 53(15): 3983.
[62]
Sohma Y, Chiyomori Y, Kimura M, Fukao F, Taniguchi A, Hayashi Y, Kimura T, Kiso Y. Bioorg. Med. Chem., 2005, 13(22): 6167.
[63]
Zhang B C, Li Y L, Shi W W, Wang T Y, Zhang F, Liu L. Chem. Res. Chin. Univ., 2020, 36(5): 733.
[64]
Chang H N, Liu B Y, Qi Y K, Zhou Y, Chen Y P, Pan K M, Li W W, Zhou X M, Ma W W, Fu C Y, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2015, 54(40): 11760.
[65]
Lahiri S, Brehs M, Olschewski D, Becker C F W. Angew. Chem. Int. Ed., 2011, 50(17): 3988.
[66]
Bianchi E, Ingenito R, Simon R J, Pessi A. J. Am. Chem. Soc., 1999, 121(33): 7698.
[67]
Johnson E C B, Kent S B H. Tetrahedron Lett., 2007, 48(10): 1795.
[68]
Loomis C R, Walsh J P, Bell R M. J. Biol. Chem., 1985, 260(7): 4091.
[69]
Sohma Y, Pentelute B, Whittaker J, Hua Q X, Whittaker L, Weiss M, Kent S B H. Angew. Chem. Int. Ed., 2008, 47(6): 1102.
[70]
Johnson E C B, Malito E, Shen Y Q, Rich D, Tang W J, Kent S B H. J. Am. Chem. Soc., 2007, 129(37): 11480.
[71]
Paradís-Bas M, Tulla-Puche J, Albericio F. Org. Lett., 2015, 17(2): 294.
[72]
Harris P W R, Brimble M A. Biopolymers, 2010, 94(4): 542.
[73]
Englebretsen D R, Robillard G T. Tetrahedron, 1999, 55(21): 6623.
[74]
Bello C, Farbiarz K, Möller J F, Becker C F W, Schwientek T. Chem. Sci., 2014, 5(4): 1634.
[75]
Englebretsen D R, Choma C T, Robillard G T. Tetrahedron Lett., 1998, 39(27): 4929.
[76]
Englebretsen D R, Choma C T, Robillard G T. Tetrahedron Lett., 1998, 39(27): 2417.
[77]
Englebretsen D R, Alewood P F. Tetrahedron Lett., 1996, 37(46): 8431.
[78]
Maity S K, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Org. Lett., 2016, 18(12): 3026.
[79]
McGinty R K, Tan S. Chem. Rev., 2015, 115(6): 2255.
[80]
Li J B, Li Y Y, He Q Q, Li Y M, Li H T, Liu L. Org. Biomol. Chem., 2014, 12(29): 5435.
[81]
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Angew. Chem. Int. Ed., 2018, 57(8): 2105.
[82]
Birnbaum F, Nassal M. J. Virol., 1990, 64(7): 3319.
[83]
Tsuda S, Masuda S, Yoshiya T. ChemBioChem, 2019, 20(16): 2063.
[84]
Pomroy N C, Deber C M. Tetrahedron, 1999, 275(2): 224.
[85]
Liu J M, Wei T Y, Tan Y, Liu H, Li X C. Chem. Sci., 2022, 13(5): 1367.
[86]
Cao W, Rosen D B, Ito T, Bover L, Bao M S, Watanabe G, Yao Z B, Zhang L, Lanier L L, Liu Y J. J. Exp. Med., 2006, 203(6): 1399.
[87]
Agouridas V, El Mahdi O, Cargoët M, Melnyk O. Bioorg. Med. Chem., 2017, 25(18): 4938.
[88]
H􀱼iberg-Nielsen R, Westh P, Arleth L. Biophys. J., 2009, 96(1): 153.
[89]
Tan Z P, Shang S Y, Danishefsky S J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(11): 4297.
[1]
Kulkarni S S, Sayers J, Premdjee B, Payne R J. Nat. Rev. Chem., 2018, 2(4): 0122.
[2]
Lin H N, Caroll K S. Chem. Rev., 2018, 118(3): 887.
[3]
Ai H S, Sun M S, Liu A J, Sun Z X, Liu T T, Cao L, Liang L J, Qu Q, Li Z C, Deng Z H, Tong Z B, Chu G C, Tian X L, Deng H T, Zhao S W, Li J B, Lou Z Y, Liu L. Nat. Chem. Biol., 2022, 18(9): 972.
[4]
Yu Y Y, Zheng Q Y, Erramilli S K, Pan M, Park S, Xie Y, Li J X, Fei J Y, Kossiakoff A A, Liu L, Zhao M L. Nat. Chem. Biol., 2021, 17(8): 896.
[5]
Pan M, Zheng Q Y, Wang T, Liang L J, Mao J X, Zuo C, Ding R C, Ai H S, Xie Y, Si D, Yu Y Y, Liu L, Zhao M L. Nature, 2021, 600(7888): 334.
[6]
Liang L J, Chu G C, Qu Q, Zuo C, Mao J X, Zheng Q Y, Chen J N, Meng X B, Jing Y, Deng H T, Li Y M, Liu L. Angew. Chem. Int. Ed., 2021, 60(31): 17171.
[7]
Pan M, Zheng Q Y, Ding S, Zhang L J, Qu Q, Wang T, Hong D N, Ren Y J, Liang L J, Chen C L, Mei Z Q, Liu L. Angew. Chem. Int. Ed., 2019, 58(9): 2627.
[8]
Zuo C, Shi W W, Chen X X, Glatz M, Riedl B, Flamme I, Pook E, Wang J W, Fang G M, Bierer D, Liu L. Sci. China Chem., 2019, 62(10): 1371.
[9]
Muttenthaler M, King G F, Adams D J, Alewood P F. Nat. Rev. Drug Discov., 2021, 20(4): 309.
[10]
Christou G A, Katsiki N, Blundell J, Fruhbeck G, Kiortsis D N. Obes. Rev., 2019, 20(6): 805.
[11]
Bassotti G, Usai-Satta P, Bellini M. Expert Opin. Pharmacother., 2018, 19(11): 1261.
[12]
Scheen A J. Expert. Opin. Biol. Ther., 2017, 17: 485.
[13]
Hamano N, Komaba H, Fukagawa M. Expert Opin. Pharmacother., 2017, 18(5): 529.
[14]
Chang R, Chen J L, Zhang G Y, Li Y, Duan H Z, Luo S Z, Chen Y X. J. Am. Chem. Soc., 2022, 144(27): 12147.
[15]
Sun J, Xiao L L, Li B, Zhao K L, Wang Z L, Zhou Y, Ma C, Li J J, Zhang H J, Herrmann A, Liu K. Angew. Chem. Int. Ed., 2021, 60(44): 23687.
[16]
Ma C, Dong J J, Viviani M, Tulini I, Pontillo N, Maity S, Zhou Y, Roos W H, Liu K, Herrmann A, Portale G. Sci. Adv., 2020, 6(29): eabc0810.
[17]
Li J J, Li B, Sun J, Ma C, Wan S K, Li Y X, Göstl R, Herrmann A, Liu K, Zhang H J. Adv. Mater., 2020, 32(17): 2000964.
[18]
Wu D D, Sinha N, Lee J, Sutherland B P, Halaszynski N I, Tian Y, Caplan J, Zhang H V, Saven J G, Kloxin C J, Pochan D J. Nature, 2019, 574(7780): 658.
[19]
Conibear A C, Watson E E, Payne R J, Becker C F W. Chem. Soc. Rev., 2018, 47(24): 9046.
[20]
Gao S, Pan M, Zheng Y, Huang Y C, Zheng Q Y, Sun D M, Lu L N, Tan X D, Tan X L, Lan H, Wang J X, Wang T, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(43): 14497.
[21]
Pan M, Gao S, Zheng Y, Tan X D, Lan H, Tan X L, Sun D M, Lu L N, Wang T, Zheng Q Y, Huang Y C, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(23): 7429.
[22]
Wang Z M, Xu W L, Liu L, Zhu T F. Nat. Chem., 2016, 8(7): 698.
[23]
Sun H, Brik A. Acc. Chem. Res., 2019, 52(12): 3361.
[24]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.
[25]
Hartrampf N, Saebi A, Poskus M, Gates Z P, Callahan A J, Cowfer A E, Hanna S, Antilla S, Schissel C K, Quartararo A J, Ye X, Mijalis A J, Simon M D, Loas A, Liu S, Jessen C, Nielsen T E, Pentelute B L. Science, 2020, 368(6494): 980.
[26]
Sato K, Farquhar C E, Rodriguez J, Pentelute B L. J. Am. Chem. Soc., 2023, 145(24): 12992.
[27]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.
[28]
Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53(8): 2198.
[29]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.
[30]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.
[31]
Liu H, Li X C. Acc. Chem. Res., 2018, 51(7): 1643.
[32]
Zhang Y F, Xu C, Lam H Y, Lee C L, Li X C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(17): 6657.
[90]
Thevis M, Schanzer W. Mini Rev. Med. Chem., 2007, 7(5): 533.
[91]
Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H. Angew. Chem. Int. Ed., 2015, 54(28): 8226.
[92]
Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J. Nature, 1983, 302(5906): 305.
[93]
Chhabra S R, Hothi B, Evans D J, White P D, Bycroft B W, Chan W C. Tetrahedron Lett., 1998, 39(12): 1603.
[94]
Jacobsen M T, Petersen M E, Ye X, Galibert M, Lorimer G H, Aucagne V, Kay M S. J. Am. Chem. Soc., 2016, 138(36): 11775.
[95]
Ellis R J, Hemmingsen S M. Trends Biochem. Sci., 1989, 14(8): 339.
[96]
Fulcher J M, Petersen M E, Giesler R J, Cruz Z S, Eckert D M, Francis J N, Kawamoto E M, Jacobsen M T, Kay M S. Org. Biomol. Chem., 2019, 17(48): 10237.
[97]
Tsuda S, Nishio H, Yoshiya T. Chem. Commun., 2018, 54(64): 8861.
[98]
Aggeli A, Bell M, Boden N, Keen J N, Knowles P F, McLeish T C B, Pitkeathly M, Radford S E. Nature, 1997, 386(6622): 259.
[99]
Bosques C J, Imperiali B. J. Am. Chem. Soc., 2003, 125(25): 7530.
[100]
Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52(18): 4858.
[101]
Tanida I, Ueno T, Kominami E. Methods Mol. Biol., 2008, 445: 77.
[102]
Johnson E C B, Kent S B H. J. Am. Chem. Soc., 2006, 128(22): 7140.
[103]
Li J B, Tang S, Zheng J S, Tian C L, Liu L. Acc. Chem. Res., 2017, 50(5): 1143.
[104]
Johnson T, Quibell M, Owen D, Sheppard R C. J. Chem. Soc., Chem. Commun., 1993(4): 369.
[105]
Weygand F, Steglich W, Bjarnason J, Akhtar R, Khan N M. Tetrahedron Lett., 1966, 7(29): 3483.
[106]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.
[107]
Sakai A, St Claire M, Faulk K, Govindarajan S, Emerson S U, Purcell R H, Bukh J. Proc. Natl. Acad. Sci. U. S. A., 2003, 100(20): 11646.
[108]
Gan S W, Surya W, Vararattanavech A, Torres J. PLoS One, 2014, 9(1): e78494.
[109]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.
[110]
Zhang B C, Deng Q, Zuo C, Yan B J, Zuo C, Cao X X, Zhu T F, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2019, 58(35): 12231.
[111]
Chemuru S, Kodali R, Wetzel R. Pept. Sci., 2014, 102(2): 206.
[112]
Zhang B C, Zheng Y P, Chu G C, Deng X Y, Wang T Y, Shi W W, Zhou Y K, Tang S, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2023, 62(33): e202306270.
[113]
Ollivier N, SÉnÉchal M, Desmet R, Snella B, Agouridas V, Melnyk O. Nat. Commun., 2022, 13: 6667.
[114]
Chisholm T S, Kulkarni S S, Hossain K R, Cornelius F, Clarke R J, Payne R J. J. Am. Chem. Soc., 2020, 142(2): 1090.
[115]
Jin S J, Brea R J, Rudd A K, Moon S P, Pratt M R, Devaraj N K. Nat. Commun., 2020, 11: 2793.
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[5] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[6] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[7] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[10] Axin Liang, Bo Tang, Liquan Sun, Xin Zhang, Huipeng Hou, Aiqin Luo. New Materials for the Separation and Enrichment of N-Glycopeptides/Glycoproteins [J]. Progress in Chemistry, 2019, 31(7): 996-1006.
[11] Hao Zhang, Jing Liu, Kun Cui, Tao Jiang, Zhi Ma. Synthesis and Application of Guanidine-Based Antibacterial Polymers [J]. Progress in Chemistry, 2019, 31(5): 681-689.
[12] Lingchuang Bai, Jing Zhao, Yakai Feng. Multifunctional Gene Delivery Systems to Promote the Proliferation of Endothelial Cells [J]. Progress in Chemistry, 2019, 31(2/3): 300-310.
[13] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[14] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[15] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.