中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1625-1637 DOI: 10.7536/PC230324 Previous Articles   Next Articles

• Review •

Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for Solid-State Sodium Ion Batteries

Zhao Lanqing1, Hou Minjie1, Zhang Da1,2,3(), Zhou Yingjie1, Xie Zhipeng1, Liang Feng1,2,3()   

  1. 1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology,Kunming 650093, China
    2 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology,Kunming 650093, China
    3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: Zhang Da, Liang Feng
  • Supported by:
    National Natural Science Foundation of China(12175089); National Natural Science Foundation of China(12205127); Key Research and Development Program of Yunnan Province(202103AF140006); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202301AS070051); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202301AU070064); Yunnan Major Scientific and Technological Projects(202202AG050003)
Richhtml ( 34 ) PDF ( 375 ) Cited
Export

EndNote

Ris

BibTeX

One of the most promising candidates for large-scale energy storage applications is the solid-state sodium ion battery, which replaces conventional organic liquid electrolytes with solid electrolytes and has the advantages of high safety, high energy density, and extended cycle life. Among many solid electrolyte materials, Poly(ethylene oxide) (PEO)-based polymer solid electrolytes are considered promising solid electrolyte materials because of their high safety, easy manufacturing, low cost, high energy density, favorable electrochemical stability, and excellent solubility in sodium salts. However, the high crystallinity of the ethylene oxide (EO) chain segment results in low ionic conductivity at room temperature, which is unable to meet the requirements of practical application. To overcome the aforementioned limitations, researchers have used a variety of strategies to lessen the crystallinity of PEO-based polymer electrolyte and hence increase its ionic conductivity. Common techniques include polymer block copolymerization, blending, crosslinking, adding plasticizers, and adding inorganic fillers. In the review, the physical and chemical properties, preparation methods, and modification techniques of PEO-based polymer electrolytes are evaluated, and the most recent advancements on PEO-based polymer electrolytes are reviewed.

Contents

1 Introduction

2 PEO-based polymer solid electrolyte

2.1 Physicochemical properties of PEO

2.2 PEO polymer solid electrolyte

2.3 Ion transport mechanism

3 Preparation method of PEO-based polymer solid electrolyte

3.1 Solution casting

3.2 Hot pressing

3.3 Other methods

4 Modification strategy

4.1 Polymer block copolymerization, blending and crosslinking

4.2 Adding plasticizers

4.3 Adding inorganic fillers

5 Conclusion and outlook

Table 1 Comparison of advantages and disadvantages of common polymer matrix
Fig.1 (a) Structure diagram of PEO and PEO based CPE[16]; (b) The slow migration of Na+ in crystalline PEO[16]
Fig.2 (a) Schematic of polymer-based solid sodium ion battery[13] and (b) Polymer phase in polymer solid electrolyte[28]
Fig.3 Mechanism of sodium ion transport in PEO[28]
Fig.4 (a) Synthetic route for 21-β-CD-g-PTFEMA[49]; (b) Density functional theory (DFT) analysis of the highest occupied molecular orbital (HOMO) and probability of electron cloud density distributions for different polymer units[49]; (c) Schematic of the optimizing steps for amorphous PPC and NASICON particles incorporated into the crystalline PEO host[51]; (d) FESEM analysis at high magnification of the three-dimensional cross-linked structure SPE with Na-CMC as the skeleton[55]; (e) Specific capacity and coulombic efficiency curves of Na|SPE|Na3V2(PO4)3 battery cycled at 1 C rate[56]
Table 2 Comparison of ionic conductivity of solid electrolyte modified by polymer blending, block copolymerization and cross-linking
Table 3 Comparison of ionic conductivity of solid electrolyte modified by adding plasticizer
Fig.5 (a) DSC traces of PEO/NaPO3 and PEO/NaPO3 + 50% PEG SPE[58] ; (b) Ionic conductivity of (EC + PC) mixed plasticizer in PEO-PAM blended electrolyte system[64]; (c) Schematic representation of synthesis route for PEO/NaClO4/EC-PC SPE[65]; (d) The asymmetric PEO-SN-NaClO4|NZSP-NSO SPE with close interface contact[66]; (e) Schematic illustration of the proposed Na+ conduction pathways for the NZP-PEO and NZP-PEO@IL CPEs[69]; (f) Composition of PEO/NaClO4-Pyr13FSI SPE and schematic diagram illustrating the interaction of FSI- anion and PEO chain[70]
Fig.6 (a) Schematic diagram of preparation of PEO/PVP/NaPO3/Al2O3 CPE by solution casting technique[74]; (b) Structure diagram of Na3PS4-PEO CPE and its electrochemical performance in all solid-state batteries[86]; (c) Photograph and back scattered electron image of the PEO/NZTO CPE[87]; (d) Specific capacities of Na|PEO-NZTO|NVP all-solid-state batteries during the galvanostatic charge/discharge cycling at a rate of 0.2 C at 80℃[87]; (e) Schematic diagram of composition of PEO-NaClO4-NASICON CPE and its electrochemical performance in all solid-state batteries[88]
Table 4 Comparison of ionic conductivity based on composite polymer solid electrolyte
[1]
Huang Y X, Zhao L Z, Li L, Xie M, Wu F, Chen R J. Adv. Mater., 2019, 31(21): 1808393.

doi: 10.1002/adma.v31.21
[2]
Maurya D K, Dhanusuraman R, Guo Z H, Angaiah S. Adv. Compos. Hybrid Mater., 2022, 5(4): 2651.

doi: 10.1007/s42114-021-00412-z
[3]
Hueso K B, Armand M, Rojo T. Energy Environ. Sci., 2013, 6(3): 734.

doi: 10.1039/c3ee24086j
[4]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.

doi: 10.1016/j.joule.2018.07.028
[5]
Cui Y, Wan J Y, Ye Y S, Liu K, Chou L Y, Cui Y,. Nano Lett., 2020, 20(3): 1686.

doi: 10.1021/acs.nanolett.9b04815 pmid: 32020809
[6]
Wang E H, Wan J, Guo Y J, Zhang Q Y, He W H, Zhang C H, Chen W P, Yan H J, Xue D J, Fang T T, Wang F Y, Wen R, Xin S, Yin Y X, Guo Y G. Angew. Chem. Int. Ed., 2023, 62(4): e202216354.

doi: 10.1002/anie.v62.4
[7]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.

doi: 10.1038/s41565-019-0465-3
[8]
Hou W R, Guo X W, Shen X Y, Amine K, Yu H J, Lu J. Nano Energy, 2018, 52: 279.

doi: 10.1016/j.nanoen.2018.07.036
[9]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.

doi: 10.1039/C7EE00524E
[10]
Liu L L, Qi X G, Yin S J, Zhang Q Q, Liu X Z, Suo L M, Li H, Chen L Q, Hu Y S. ACS Energy Lett., 2019, 4(7): 1650.

doi: 10.1021/acsenergylett.9b00857
[11]
Arya A, Sharma A L. J. Phys. D: Appl. Phys., 2017, 50(44): 443002.

doi: 10.1088/1361-6463/aa8675
[12]
Goikolea E, Palomares V, Wang S J, de Larramendi I R, Guo X, Wang G X, Rojo T. Adv. Energy Mater., 2020, 10(44): 2002055.

doi: 10.1002/aenm.v10.44
[13]
Yang J F, Zhang H R, Zhou Q, Qu H T, Dong T T, Zhang M, Tang B, Zhang J J, Cui G L. ACS Appl. Mater. Interfaces, 2019, 11(19): 17109.

doi: 10.1021/acsami.9b01239
[14]
Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38): 19218.

doi: 10.1039/C5TA03471J
[15]
Gupta S, Gupta A K, Pandey B K. Polym. Bull., 2022, 79(7): 4999.

doi: 10.1007/s00289-021-03724-8
[16]
Lu Y, Li L, Zhang Q, Cai Y C, Ni Y X, Chen J. Chem. Sci., 2022, 13(12): 3416.

doi: 10.1039/D1SC06745A
[17]
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm F R, Frey H. Chem. Rev., 2016, 116(4): 2170.

doi: 10.1021/acs.chemrev.5b00441 pmid: 26713458
[18]
Wintersgill M C, Fontanella J J, Pak Y S, Greenbaum S G, Al-Mudaris A, Chadwick A V. Polymer, 1989, 30(6): 1123.

doi: 10.1016/0032-3861(89)90091-8
[19]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.

doi: 10.1039/C6MH00218H
[20]
Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14(11): 589.
[21]
Zhou Q, Ma J, Dong S M, Li X F, Cui G L. Adv. Mater., 2019, 31(50): 1902029.

doi: 10.1002/adma.v31.50
[22]
Genier F S, Hosein I D. Macromolecules, 2021, 54(18): 8553.

doi: 10.1021/acs.macromol.1c01028
[23]
Arya A, Sharma A L. J. Phys.: Condens. Matter, 2018, 30(16): 165402.
[24]
Lailun Ni’mah Y, Cheng M Y, Cheng J H, Rick J, Hwang B J. J. Power Sources, 2015, 278: 375.

doi: 10.1016/j.jpowsour.2014.11.047
[25]
Arya A, Sharma A L. J. Solid State Electrochem., 2018, 22(9): 2725.

doi: 10.1007/s10008-018-3965-4
[26]
Ma Y P, Doeff M M, Visco S J, De Jonghe L C. J. Electrochem. Soc., 1993, 140(10): 2726.

doi: 10.1149/1.2220900
[27]
Boschin A, Johansson P. Electrochim. Acta, 2015, 175: 124.

doi: 10.1016/j.electacta.2015.03.228
[28]
Li Z Y, Li Z, Fu J L, Guo X. Rare Metals, 2023, 42(1): 1.

doi: 10.1007/s12598-022-02132-9
[29]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.

doi: 10.1002/aenm.v8.17
[30]
Chen X B, Vereecken P M. Adv. Mater. Interfaces, 2019, 6(1): 1800899.

doi: 10.1002/admi.v6.1
[31]
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. Chem. Soc. Rev., 2020, 49(23): 8790.

doi: 10.1039/d0cs00305k pmid: 33107869
[32]
West K, Zachau-Christiansen B, Jacobsen T, Hiort-Lorenzen E, Skaarup S. Brit. Poly. J., 1988, 20(3): 243.

doi: 10.1002/pi.v20:3
[33]
Niu W, Chen L, Liu Y C, Fan L Z. Chem. Eng. J., 2020, 384: 123233.

doi: 10.1016/j.cej.2019.123233
[34]
Guo J H, Feng F, Zhao S Q, Wang R, Yang M, Shi Z H, Ren Y F, Ma Z F, Chen S L, Liu T X. Small, 2023, 19(16): 2206740.

doi: 10.1002/smll.v19.16
[35]
Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C. J. Energy Storage, 2019, 26: 100947.

doi: 10.1016/j.est.2019.100947
[36]
Chandra A, Chandra A, Thakur K. Arab. J. Chem., 2016, 9(3): 400.

doi: 10.1016/j.arabjc.2013.07.014
[37]
Gray F, MacCallum J, Vincent C. Solid State Ionics, 1986, 18/19: 282.

doi: 10.1016/0167-2738(86)90127-X
[38]
Appetecchi G B, Croce F, Hassoun J, Scrosati B, Salomon M, Cassel F. J. Power Sources, 2003, 114(1): 105.

doi: 10.1016/S0378-7753(02)00543-8
[39]
Pandey G, Hashmi S, Agrawal R. Solid State Ionics, 2008, 179(15/16): 543.

doi: 10.1016/j.ssi.2008.04.006
[40]
Wang J, Wang Z Z, Ni J F, Li L. Energy Storage Materials, 2022, 45: 704.

doi: 10.1016/j.ensm.2021.12.022
[41]
Zheng S M, Li D M, Li W B, Chen J, Rao X F, Wang N, Qi J, Wang B, Luo S J, Zhao Y. ACS Appl. Energy Mater., 2022, 5(3): 3587.

doi: 10.1021/acsaem.1c04076
[42]
Freitag K M, Walke P, Nilges T, Kirchhain H, Spranger R J, van Wüllen L. J. Power Sources, 2018, 378: 610.

doi: 10.1016/j.jpowsour.2017.12.083
[43]
Liu D L, Wang S M, Gao Z H, Xu L F, Xia S B, Guo H. Energy Storage Science and Technology, 2021, 10(3): 931.
( 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 储能科学与技术, 2021, 10(3): 931.)
[44]
Lin W T, Zheng X W, Ma S, Ji K M, Wang C Y, Chen M M. ACS Appl. Mater. Interfaces, 2023, 15(6): 8128.

doi: 10.1021/acsami.2c20884
[45]
Yao Y, Wei Z Y, Wang H Y, Huang H J, Jiang Y, Wu X J, Yao X Y, Wu Z S, Yu Y. Adv. Energy Mater., 2020, 10(12): 2070055.

doi: 10.1002/aenm.v10.12
[46]
Song S F, Kotobuki M, Zheng F, Xu C H, Savilov S V, Hu N, Lu L, Wang Y, Dong Z, Li W. J. Mater. Chem. A, 2017, 5(14): 6424.

doi: 10.1039/C6TA11165C
[47]
Ngai K S, Ramesh S, Ramesh K, Juan J C. Ionics, 2016, 22(8): 1259.

doi: 10.1007/s11581-016-1756-4
[48]
Chandra A. Chinese J. Polym. Sci., 2013, 31(11): 1538.

doi: 10.1007/s10118-013-1347-z
[49]
Su Y, Rong X H, Gao A, Liu Y, Li J W, Mao M L, Qi X G, Chai G L, Zhang Q H, Suo L M, Gu L, Li H, Huang X J, Chen L Q, Liu B Y, Hu Y S. Nat. Commun., 2022, 13: 4181.

doi: 10.1038/s41467-022-31792-5
[50]
Ganta K K, Jeedi V R, Katrapally V K, Yalla M, Emmadi L N. J. Inorg. Organomet. Polym. Mater., 2021, 31(8): 3430.

doi: 10.1007/s10904-021-01947-w
[51]
Matios E, Wang H, Luo J M, Zhang Y W, Wang C L, Lu X, Hu X F, Xu Y, Li W Y. J. Mater. Chem. A, 2021, 9(34): 18632.

doi: 10.1039/D1TA05490B
[52]
Chen Y, Shi Y, Liang Y L, Dong H, Hao F, Wang A, Zhu Y X, Cui X L, Yao Y. ACS Appl. Energy Mater., 2019, 2(3): 1608.

doi: 10.1021/acsaem.8b02188
[53]
Wang X E, Zhang C, Sawczyk M, Sun J, Yuan Q H, Chen F F, Mendes T C, Howlett P C, Fu C K, Wang Y Q, Tan X, Searles D J, Král P, Hawker C J, Whittaker A K, Forsyth M. Nat. Mater., 2022, 21(9): 1057.

doi: 10.1038/s41563-022-01296-0
[54]
Xiao Z L, Zhou B H, Wang J R, Zuo C, He D, Xie X L, Xue Z G. J. Membr. Sci., 2019, 576: 182.

doi: 10.1016/j.memsci.2019.01.051
[55]
Colò F, Bella F, Nair J R, Destro M, Gerbaldi C. Electrochim. Acta, 2015, 174: 185.

doi: 10.1016/j.electacta.2015.05.178
[56]
Hou M J, Zi J, Zhao L Q, Zhou Y J, Li F P, Xie Z P, Zhang D, Yang B, Liang F. Mater. Chem. Front., 2023, 7(10): 2027.

doi: 10.1039/D3QM00054K
[57]
Kelly I, Owen J R, Steele B C H. J. Electroanal. Chem. Interfacial Electrochem., 1984, 168(1/2): 467.

doi: 10.1016/0368-1874(84)87116-6
[58]
Bhide A, Hariharan K. Eur. Polym. J., 2007, 43(10): 4253.

doi: 10.1016/j.eurpolymj.2007.07.038
[59]
Chandrasekaran R, Selladurai S. J. Solid State Electrochem., 2001, 5(5): 355.

doi: 10.1007/s100080000156
[60]
Nan C W, Fan L Z, Lin Y H, Cai Q. Phys. Rev. Lett., 2003, 91(26): 266104.

doi: 10.1103/PhysRevLett.91.266104
[61]
Pitawala H M J C, Dissanayake M A K L, Seneviratne V A. Solid State Ionics., 2007, 178(13/14): 885.

doi: 10.1016/j.ssi.2007.04.008
[62]
Pitawala H M J C, Dissanayake M A K L, Seneviratne V A, Mellander B E, Albinson I. J. Solid State Electr., 2008, 12(7/8): 783.

doi: 10.1007/s10008-008-0505-7
[63]
Fan L Z, Dang Z M, Nan C W, Li M. Electrochim. Acta, 2002, 48(2): 205.

doi: 10.1016/S0013-4686(02)00603-5
[64]
Dave G, Maheshwaran C, Kanchan D. AIP Publishing LLC, 2019, 2115(1): 030234.
[65]
Menisha M, Senavirathna S L N, Vignarooban K, Iqbal N, Pitawala H M J C, Kannan A M. Solid State Ionics, 2021, 371: 115755.

doi: 10.1016/j.ssi.2021.115755
[66]
Wang H, Sun Y J, Liu Q, Mei Z Y, Yang L, Duan L Y, Guo H. J. Energy Chem., 2022, 74: 18.

doi: 10.1016/j.jechem.2022.07.010
[67]
Ye Y S, Rick J, Hwang B J. J. Mater. Chem. A, 2013, 1(8): 2719.

doi: 10.1039/C2TA00126H
[68]
Sun H, Zhu G Z, Xu X T, Liao M, Li Y Y, Angell M, Gu M, Zhu Y M, Hung W H, Li J C, Kuang Y, Meng Y T, Lin M C, Peng H S, Dai H J. Nat. Commun., 2019, 10: 3302.

doi: 10.1038/s41467-019-11102-2
[69]
Shen L, Deng S G, Jiang R R, Liu G Z, Yang J, Yao X Y. Energy Storage Mater., 2022, 46: 175.
[70]
Chen G H, Bai Y, Gao Y S, Wang Z H, Zhang K, Ni Q, Wu F, Xu H J, Wu C. ACS Appl. Mater. Interfaces, 2019, 11(46): 43252.

doi: 10.1021/acsami.9b16294
[71]
Boschin A, Johansson P. Electrochim. Acta, 2016, 211: 1006.

doi: 10.1016/j.electacta.2016.06.119
[72]
Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q. Chem. Rev., 2020, 120(9): 4169.

doi: 10.1021/acs.chemrev.9b00760
[73]
Feng J N, Wang L, Chen Y J, Wang P Y, Zhang H R, He X M. Nano Converg., 2021, 8(1): 1.

doi: 10.1186/s40580-020-00251-6
[74]
Shenbagavalli S, Muthuvinayagam M, Jayanthi S, Revathy M S. J. Mater. Sci. Mater. Electron., 2021, 32(8): 9998.

doi: 10.1007/s10854-021-05658-3
[75]
Chandra A, Chandra A, Thakur K. Indian J. Pure Appl. Phys., 2013, 51(1): 44.
[76]
Jia S F, Ohno S, Wang J, Hasegawa G, Akamatsu H, Hayashi K. ACS Appl. Energy Mater., 2023, 6(1): 317.

doi: 10.1021/acsaem.2c03022
[77]
Lalère F, Leriche J B, Courty M, Boulineau S, Viallet V, Masquelier C, Seznec V. J. Power Sources, 2014, 247: 975.

doi: 10.1016/j.jpowsour.2013.09.051
[78]
Zhao K, Liu Y, Zhang S M, He S Y, Zhang N, Yang J H, Zhan Z L. Electrochem. Commun., 2016, 69: 59.

doi: 10.1016/j.elecom.2016.06.003
[79]
Yao Y W, Liu Z H, Wang X X, Chen J J, Wang X T, Wang D J, Mao Z Y. J. Mater. Sci., 2021, 56(16): 9951.

doi: 10.1007/s10853-021-05885-3
[80]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.

doi: 10.1021/acsami.1c07601
[81]
Forsyth M, MacFarlane D R, Best A, Adebahr J, Jacobsson P, Hill A J. Solid State Ionics, 2002, 147(3/4): 203.

doi: 10.1016/S0167-2738(02)00017-6
[82]
Jayathilaka P A R D, Dissanayake M A K L, Albinsson I, Mellander B E. Electrochim. Acta, 2002, 47(20): 3257.

doi: 10.1016/S0013-4686(02)00243-8
[83]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology, 2020, 31(13): 132003.

doi: 10.1088/1361-6528/ab5be7
[84]
Bublil S, Peta G, Alon-Yehezkel H, Elias Y, Golodnitsky D, Fayena-Greenstein M, Aurbach D. J. Electrochem. Soc., 2022, 169(2): 020504.

doi: 10.1149/1945-7111/ac4bf6
[85]
Peta G, Bublil S, Alon-Yehezkel H, Breuer O, Elias Y, Shpigel N, Fayena-Greenstein M, Golodnitsky D, Aurbach D. J. Electrochem. Soc., 2021, 168(11): 110553.

doi: 10.1149/1945-7111/ac330d
[86]
Xu X Y, Li Y Y, Cheng J, Hou G M, Nie X K, Ai Q, Dai L N, Feng J K, Ci L J. J. Energy Chem., 2020, 41: 73.

doi: 10.1016/j.jechem.2019.05.003
[87]
Wu J F, Yu Z Y, Wang Q, Guo X. Energy Storage Mater., 2020, 24: 467.
[88]
Yu X W, Xue L G, Goodenough J B, Manthiram A. ACS Mater. Lett., 2019, 1(1): 132.
[1] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[2] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[3] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[4] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[5] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[6] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[7] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[8] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[9] Li Dan, Liu Yurong, Lin Baoping, Sun Ying, Yang Hong, Zhang Xueqin. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2015, 27(4): 404-415.
[10] Yao Qiuhong, Lin Liping, Zhao Tingting, Chen Xi. Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots [J]. Progress in Chemistry, 2015, 27(11): 1523-1530.
[11] Zhang Weihong, Huang Yi, Tian Wei. Polymer-Based Hollow Microspheres:Preparation Methods and Applications [J]. Progress in Chemistry, 2013, 25(11): 1951-1961.
[12] Wang Jiaojiao, Feng Miao, Zhan Hongbing*. Advances in Preparation of Graphene Quantum Dots [J]. Progress in Chemistry, 2013, 25(01): 86-94.
[13] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[14] Tang Jingjing, Di Feng, Xu Xiao, Xiao Yinghong, Che Jianfei. Transparent Conductive Graphene Films [J]. Progress in Chemistry, 2012, 24(04): 501-511.
[15] Li Gang, Li Xiaohong, Zhang Zhijun. Preparation Methods of Copper Nanomaterials [J]. Progress in Chemistry, 2011, 23(8): 1644-1656.