中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1595-1612 DOI: 10.7536/PC230323 Previous Articles   Next Articles

• Review •

Modified Nafion Membrane in Vanadium Redox Flow Battery

Yang Haoling1, Xu Kunyu1, Zhang Qi1, Tao Liang1, Yang Zihao1(), Dong Zhaoxia1,2   

  1. 1 Unconventional Petroleum Research Institute, China University of Petroleum (Beijing),Beijing 102249, China
    2 School of Energy Resources, China University of Geosciences (Beijing),Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Yang Zihao
  • Supported by:
    National Natural Science Foundation of China(51774302); National Natural Science Foundation of China(52074320)
Richhtml ( 26 ) PDF ( 216 ) Cited
Export

EndNote

Ris

BibTeX

Vanadium redox flow battery (VRB) is the most promising large-scale energy storage system due to its flexibility, high efficiency and being pollution-free, which has attracted wide attention from researchers. The separator is a key component of VRB, which plays a role in isolating vanadium ions from cross-penetration and providing proton transmembrane transfer channels. Nafion membranes produced by DuPont are the most commonly used ion exchange membranes for VRB due to their good chemical stability and high proton conductivity. However, they have problems such as poor vanadium resistance and high cost. Therefore, the key point of current research is to control the ion exchange capacity of the Nafion membrane reasonably, improve the vanadium resistance capacity of the Nafion membrane while retaining the excellent performance of the Nafion membrane through modification methods, and reduce the cost of the Nafion membrane. In this paper, the working principle of VRB and the performance characteristics of Nafion membrane are discussed. The current trend and future direction of Nafion membrane modification methods are also discussed in detail. This is of great significance for understanding the structure-activity relationship between modified Nafion membrane structure and battery performance, and guiding the future modification and design of Nafion membrane.

Contents

1 Introduction

2 Principle of VRB

3 Performance evaluation of VRB

4 Functional modification method of Nafion membrane

4.1 In situ sol-gel method

4.2 Functional material blending

4.3 Spin-coating method

4.4 Deposition method

4.5 Polymer grafting

4.6 Construction of sandwich structure

5 Conclusion and prospect

Fig.1 VRB diagram
Table 1 The important performance of the membrane and the evaluation method of charge and discharge test of vanadium battery
Fig.2 Chemical structure of Nafion
Table 2 Performance summary of Nafion membranes commonly used in commercial applications
Fig.3 The energy efficiency of commercial Nafion membrane at different current densities[34,36~39]
Fig.4 Schematic diagram of Nafion membrane modification method
Fig.5 (a) The thickness and water absorption of Nafion membrane modified by in-situ-gel method, (b) The ion exchange capacity and proton conductivity of Nafion membrane modified by in-situ-gel method, (c) The energy efficiency of Nafion membrane modified by in-situ-gel method at different current densities[43~51]
Fig.6 (a) The thickness and water absorption of Nafion membrane modified by SiO2 solution casting, (b) The proton conductivity and vanadium ion permeability of Nafion membrane modified by SiO2 solution casting, (c) The energy efficiency of Nafion membrane modified by SiO2 solution casting at different current densities[52~56]
Fig.7 ( a ) The thickness and water absorption of Nafion membranes modified by TiO2 and zirconia solution casting, ( b ) The area resistance, proton conductivity and ion exchange capacity of Nafion membranes modified by TiO2 and zirconia solution casting, ( c ) The vanadium ion permeability and ion selectivity of Nafion membranes modified by TiO2 and zirconia solution casting, ( d ) The energy efficiency of Nafion membranes modified by TiO2 and zirconia solution casting at different current densities[59~64]
Fig.8 (a) The thickness and water absorption of Nafion membrane modified by GO solution casting. (b) The proton conductivity and ion exchange capacity of Nafion membrane modified by GO solution casting. (c) The vanadium ion permeability and ion selectivity of Nafion membrane modified by GO solution casting. (d) The energy efficiency of Nafion membrane modified by GO solution casting at different current densities[65~71]
Fig.9 (a) The thickness and water absorption of Nafion membrane modified by MOFs solution casting, (b) The proton conductivity and ion exchange capacity of Nafion membrane modified by MOFs solution casting, (c) The vanadium ion permeability and ion selectivity of Nafion membrane modified by MOFs solution casting, (d) The energy efficiency of Nafion membrane modified by MOFs solution casting at different current densities[72~74]
Fig.10 (a) The thickness and water absorption of Nafion membrane modified by polymer solution casting, (b) The proton conductivity and ion exchange capacity of Nafion membrane modified by polymer solution casting, (c) The vanadium ion permeability and ion selectivity of Nafion membrane modified by polymer solution casting, (d) The energy efficiency of Nafion membrane modified by polymer solution casting at different current densities[75~88]
Fig.11 (a) Proton conductivity, vanadium ion permeability and ion selectivity of Nafion membrane modified by deposition method, (b) Energy efficiency of Nafion membrane modified by deposition method at different current densities[91~100]
Table 3 Summary of research status of membrane preparation by layer-by-layer method
Fig.12 (a) Thickness and water absorption of Nafion membranes modified by polymer grafting and construction of sandwich structure ; (b) Proton conductivity and ion exchange capacity of Nafion membranes modified by polymer grafting and construction of sandwich structure ; (c) Vanadium ion permeability and ion selectivity of Nafion membranes modified by polymer grafting and construction of sandwich structure ; (d) Energy efficiency of Nafion membranes modified by polymer grafting and construction of sandwich structure at different current densities[101~112]
[1]
He Q, Chen Z B, Niu X Y, Han X R, Kang T, Chen J Y, Ma Y W, Zhao J. Nano Res., 2023, 16(7): 9195.
[2]
Páez T, Zhang F F,Muñoz M Á Lubian L, Xi S B, Sanz R, Wang Q, Palma J, Ventosa E. Adv. Energy Mater., 2022, 12(1): 2102866.
[3]
Ra N, Ghosh A, Bhattacharjee A. Energy Convers. Manag., 2023, 281: 116851.
[4]
Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. J. Power Sources, 2015, 300: 438.
[5]
Gong K, Xu F, Grunewald J B, Ma X Y, Zhao Y, Gu S, Yan Y S. ACS Energy Lett., 2016, 1(1): 89.
[6]
Pan M G, Shao M H, Jin Z. SmartMat, 2023, 4(4): e1198.
[7]
Wang C X, Yu B, Liu Y Z, Wang H Z, Zhang Z W, Xie C X, Li X F, Zhang H M, Jin Z. Energy Storage Mater., 2021, 36: 417.
[8]
Pan M G, Gao L Z, Liang J C, Zhang P B, Lu S Y, Lu Y, Ma J, Jin Z. Adv. Energy Mater., 2022, 12(13): 2103478.
[9]
Pan M G, Lu Y, Lu S Y, Yu B, Wei J, Liu Y Z, Jin Z. ACS Appl. Mater. Interfaces, 2021, 13(37): 44174.
[10]
Nan M J, Qiao L, Liu Y Q, Zhang H M, Ma X K. J. Power Sources, 2022, 522: 230995.
[11]
Yan W, Wang C X, Tian J Q, Zhu G Y, Ma L B, Wang Y R, Chen R P, Hu Y, Wang L, Chen T, Ma J, Jin Z. Nat. Commun., 2019, 10: 2513.
[12]
Liu Y Z, Wen G H, Liang J C, Bao S S, Wei J, Wang H Z, Zhang P B, Zhu M F, Jia Q Q, Ma J, Zheng L M, Jin Z. ACS Energy Lett., 2023, 8(1): 387.
[13]
Skyllas-Kazacos M, Rychcik M, Robins R G, Fane A G, Green M A. J. Electrochem. Soc., 1986, 133(5): 1057.
[14]
Chen W S, Chen Y A, Lee C H, Chen Y J. Materials, 2022, 15(11): 3749.
[15]
Huang Z B, Mu A L, Wu L X, Yang B, Qian Y, Wang J H. ACS Sustain. Chem. Eng., 2022, 10(24): 7786.
[16]
Schwenzer B, Zhang J L, Kim S, Li L Y, Liu J, Yang Z G. ChemSusChem, 2011, 4(10): 1388.
[17]
Hwang G J, Kim S W,In D M, Lee D Y, Ryu C H. J. Ind. Eng. Chem., 2018, 60: 360.
[18]
Shi Y, Eze C K, Xiong B Y, He W D, Zhang H, Lim T M, Ukil A, Zhao J Y. Appl. Energy, 2019, 238: 202.
[19]
Düerkop D, Widdecke H, Kunz U, Schilde C, Schmiemann A. Chem. Ingenieur Tech., 2021, 93(9): 1445.
[20]
Mara Ikhsan M, Abbas S, Do X H, Choi S Y, Azizi K, Hjuler H A, Jang J H, Ha H Y, Henkensmeier D. Chem. Eng. J., 2022, 435: 134902.
[21]
Minke C, Turek T. J. Power Sources, 2015, 286: 247.
[22]
Ye R J, Henkensmeier D, Yoon S J, Huang Z F. J. Electrochem. Energy Convers. Storage, 2018, 15(1): 010801.
[23]
Wei Z B, Zhao J Y, Xiong B Y. Appl. Energy, 2014, 135: 1.
[24]
Chieng S C, Kazacos M, Skyllas-Kazacos M. J. Power Sources, 1992, 39(1): 11.
[25]
He S S, Frank C W. J. Mater. Chem. A, 2014, 2(39): 16489.
[26]
Li Z H, Dai W J, Yu L H, Liu L, Xi J Y, Qiu X P, Chen L Q. ACS Appl. Mater. Interfaces, 2014, 6(21): 18885.
[27]
Skyllas-Kazacos M, Menictas C, Kazacos M. J. Electrochem. Soc., 1996, 143(4): L86.
[28]
Vafiadis H, Skyllas-Kazacos M. J. Membr. Sci., 2006, 279(1/2): 394.
[29]
Chen S W, Hara R, Chen K C, Zhang X, Endo N, Higa M, Okamoto K I, Wang L J. J. Mater. Chem. A, 2013, 1(28): 8178.
[30]
Teng X G, Dai J C, Bi F Y, Jiang X M, Song Y Q, Yin G P. Solid State Ion., 2015, 280: 30.
[31]
Mohammadi T, Skyllas-Kazacos M. J. Power Sources, 1995, 56(1): 91.
[32]
Lei Y, Zhang B W, Zhang Z H, Bai B F, Zhao T S. Appl. Energy, 2018, 215: 591.
[33]
Park Y, Kim D. J. Membr. Sci., 2018, 566: 1.
[34]
Jiang B, Wu L T, Yu L H, Qiu X P, Xi J Y. J. Membr. Sci., 2016, 510: 18.
[35]
Qin C C, Wang D, Liu Y M, Yang P K, Xie T, Huang L, Zou H Y, Li G W, Wu Y P. Nat. Commun., 2021, 12: 7184.
[36]
Slade S, Campbell S A, Ralph T R, Walsh F C. J. Electrochem. Soc., 2002, 149(12): A1556.
[37]
Reed D, Thomsen E, Wang W, Nie Z M, Li B, Wei X L, Koeppel B, Sprenkle V. J. Power Sources, 2015, 285: 425.
[38]
Teng X G, Dai J C, Su J, Zhu Y M, Liu H P, Song Z G. J. Power Sources, 2013, 240: 131.
[39]
Jeong S, Kim L H, Kwon Y, Kim S. Korean J. Chem. Eng., 2014, 31(11): 2081.
[40]
Oh K, Moazzam M, Gwak G, Ju H. Electrochim. Acta, 2019, 297: 101.
[41]
Kim D K, Yoon S J, Kim S. Int. J. Heat Mass Transf., 2020, 148: 119040.
[42]
Balwani A, Faraone A, Davis E M. Macromolecules, 2019, 52(5): 2120.
[43]
Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q. Acta Chim. Sinica, 2009, 67(6): 471.
[44]
Xi J Y, Wu Z H, Qiu X P, Chen L Q. J. Power Sources, 2007, 166(2): 531.
[45]
Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q. J. Power Sources, 2009, 189(2): 1240.
[46]
Drillkens J, Schulte D, Sauer D U.Batteries and Energy Technology (General) - 217th ECS Meeting, 2010, 167.
[47]
Huang S L, Yu H F, Lin Y S. J. Chem., 2017, 2017.
[48]
Teng X G, Lei J, Gu X C, Dai J C, Zhu Y M, Li F Q. Ionics, 2012, 18(5): 513.
[49]
Kondratenko M S, Karpushkin E A, Gvozdik N A, Gallyamov M O, Stevenson K J, Sergeyev V G. J. Power Sources, 2017, 340: 32.
[50]
Lin C H, Yang M C, Wei H J. J. Power Sources, 2015, 282: 562.
[51]
Domhoff A, Martin T B, Silva M S, Saberi M, Creager S, Davis E M. Macromolecules, 2021, 54(1): 440.
[52]
Trogadas P, Pinot E, Fuller T F. Electrochem. Solid-State Lett., 2012, 15(1): A5.
[53]
Domhoff A, Wang X T, Silva M S, Creager S, Martin T B, Davis E M. Soft Matter, 2022, 18(17): 3342.
[54]
Jansto A, Davis E M. ACS Appl. Mater. Interfaces, 2018, 10(42): 36385.
[55]
Yang S H, Yang D S, Yoon S J, So S, Hong S K, Yu D M, Hong Y T. Energy Fuels, 2020, 34(6): 7631.
[56]
Yang X B, Zhao L, Goh K, Sui X L, Meng L H, Wang Z B. J. Energy Chem., 2020, 41: 177.
[57]
Sun C Y, Zlotorowicz A, Nawn G, Negro E, Bertasi F, Pagot G, Vezzù K, Pace G, Guarnieri M, Di Noto V. Solid State Ion., 2018, 319: 110.
[58]
Sun C Y, Negro E, Nale A, Pagot G, Vezzù K, Zawodzinski T A, Meda L, Gambaro C, Di Noto V. Electrochim. Acta, 2021, 378: 138133.
[59]
Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q. J. Membr. Sci., 2009, 341(1/2): 149.
[60]
Wang N F, Peng S, Lu D, Liu S Q, Liu Y N, Huang K L. J. Solid State Electrochem., 2012, 16(4): 1577.
[61]
Ye J Y, Zhao X L, Ma Y L, Su J, Xiang C J, Zhao K Q, Ding M, Jia C K, Sun L D. Adv. Energy Mater., 2020, 10(22): 1904041.
[62]
Aziz M A, Shanmugam S. J. Power Sources, 2017, 337: 36.
[63]
Aziz M A, Han D B, Shanmugam S. ACS Sustain. Chem. Eng., 2021, 9(33): 11041.
[64]
Hossain S I, Aziz M A, Shanmugam S. ACS Sustain. Chem. Eng., 2020, 8(4): 1998.
[65]
Park S C, Lee T H, Moon G H, Kim B S, Roh J M, Cho Y H, Kim H W, Jang J, Park H B, Kang Y S. ACS Appl. Energy Mater., 2019, 2(7): 4590.
[66]
Bukola S, Li Z D, Zack J, Antunes C, Korzeniewski C, Teeter G, Blackburn J, Pivovar B. J. Energy Chem., 2021, 59: 419.
[67]
Wu C X, Lu S F, Zhang J, Xiang Y. Phys. Chem. Chem. Phys., 2018, 20(11): 7694.
[68]
Lee K J, Chu Y H. Vacuum, 2014, 107: 269.
[69]
Yu L H, Lin F, Xu L, Xi J Y. RSC Adv., 2016, 6(5): 3756.
[70]
Kim B G, Han T H, Cho C G. J. Nanosci. Nanotechnol., 2014, 14(12): 9073.
[71]
Cui Y, Hu Y, Wang Y C, Wang Y, Peng J, Li J Q, Zhai M L. Radiat. Phys. Chem., 2022, 195: 110081.
[72]
Yang X B, Zhao L, Goh K, Sui X L, Meng L H, Wang Z B. ChemistrySelect, 2019, 4(15): 4633.
[73]
Zhang D Z, Xin L, Xia Y S, Dai L H, Qu K, Huang K, Fan Y Q, Xu Z. J. Membr. Sci., 2021, 624: 119047.
[74]
Choi H J, Youn C, Kim S C, Jeong D, Lim S N, Chang D R, Bae J W, Park J. Micropor. Mesopor. Mater., 2022, 341: 112054.
[75]
Schwenzer B, Kim S, Vijayakumar M, Yang Z G, Liu J. J. Membr. Sci., 2011, 372(1/2): 11.
[76]
Jung M, Lee W, Nambi Krishnan N, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D. Appl. Surf. Sci., 2018, 450: 301.
[77]
Ahn S M, Jeong H Y, Jang J K, Lee J Y, So S, Kim Y J, Hong Y T, Kim T H. RSC Adv., 2018, 8(45): 25304.
[78]
Zhao Y Y, Zhang D H, Zhao L N, Wang S L, Liu J G, Yan C W. Electrochim. Acta, 2021, 394: 139144.
[79]
Kim H G, Kim R, Kim S, Choi C, Kim B, Guim H, Kim H T. J. Ind. Eng. Chem., 2018, 60: 401.
[80]
Yang X B, Zhao L, Sui X L, Meng L H, Wang Z B. J. Colloid Interface Sci., 2019, 542: 177.
[81]
Palanisamy G, Sadhasivam T, Park W S, Bae S T, Roh S H, Jung H Y. ACS Sustain. Chem. Eng., 2020, 8(4): 2040.
[82]
Ye J Y, Yuan D, Ding M, Long Y, Long T, Sun L D, Jia C K. J. Power Sources, 2021, 482: 229023.
[83]
Mai Z S, Zhang H M, Li X F, Xiao S H, Zhang H Z. J. Power Sources, 2011, 196(13): 5737.
[84]
Yang X Q, Zhu H J, Jiang F J, Zhou X J. J. Power Sources, 2020, 473: 228586.
[85]
Lin H L, Leon Yu T, Huang L N, Chen L C, Shen K S, Jung G B. J. Power Sources, 2005, 150: 11.
[86]
Zhang F X, Zhang H M, Ren J X, Qu C. J. Mater. Chem., 2010, 20(37): 8139.
[87]
Wei W P, Zhang H M, Li X F, Mai Z S, Zhang H Z. J. Power Sources, 2012, 208: 421.
[88]
Li J C, Liu J, Xu W J, Long J, Huang W H, He Z, Liu S Q, Zhang Y P. Membranes, 2021, 11(12): 946.
[89]
Su L, Zhang D S, Peng S S, Wu X M, Luo Y L, He G H. Int. J. Hydrog. Energy, 2017, 42(34): 21806.
[90]
Zhang D S, Wang Q, Peng S S, Yan X M, Wu X M, He G H. J. Membr. Sci., 2019, 587.
[91]
Cecchetti M, Allen Ebaugh T, Yu H R, Bonville L, Gambaro C, Meda L, Maric R, Casalegno A, Zago M. J. Electrochem. Soc., 2020, 167(13): 130535.
[92]
Su J, Ye J Y, Qin Z Y, Sun L D. Coatings, 2022, 12(3): 378.
[93]
Zeng J, Jiang C P, Wang Y H, Chen J W, Zhu S F, Zhao B J, Wang R L. Electrochem. Commun., 2008, 10(3): 372.
[94]
Decher G, Hong J D, Schmitt J. Thin Solid Films, 1992, 210/211: 831.
[95]
Yoo H Y, Heo A, Cho C G. J. Nanosci. Nanotechnol., 2016, 16(10): 10515.
[96]
Xi J Y, Wu Z H, Teng X G, Zhao Y T, Chen L Q, Qiu X P. J. Mater. Chem., 2008, 18(11): 1232.
[97]
Lu S F, Wu C X, Liang D W, Tan Q L, Xiang Y. RSC Adv., 2014, 4(47): 24831.
[98]
grosse Austing J, Nunes Kirchner C, Komsiyska L, Wittstock G. J. Membr. Sci., 2016, 510: 259.
[99]
Zhang L S, Ling L, Xiao M, Han D M, Wang S J, Meng Y Z. J. Power Sources, 2017, 352: 111.
[100]
Sha’rani S S, Abouzari-Lotf E, Nasef M M, Ahmad A, Ting T M, Ali R R. J. Power Sources, 2019, 413: 182.
[101]
Nibel O, Schmidt T J, Gubler L. J. Electrochem. Soc., 2016, 163(13): A2563.
[102]
Yang M C, Lin C H, Kuo J T, Wei H J. J. Electroanal. Chem., 2017, 807: 88.
[103]
Peng K J, Wang K H, Hsu K Y, Liu Y L. ACS Macro Lett., 2015, 4(2): 197.
[104]
Peng K J, Lai J Y, Liu Y L. RSC Adv., 2017, 7(59): 37255.
[105]
Dai J C, Dong Y C, Yu C, Liu Y X, Teng X G. J. Membr. Sci., 2018, 554: 324.
[106]
Dai J C, Ding T L, Dong Y C, Teng X G. Ionics, 2021, 27(5): 2127.
[107]
An H L, Zhang R, Li W H, Li P, Qian H D, Yang H. ACS Appl. Mater. Interfaces, 2022, 14(6): 7845.
[108]
Luo Q, Zhang H, Chen J, You D, Sun C, Zhang Y. J. Membr. Sci., 2008, 325(2): 553.
[109]
Jia C K, Liu J G, Yan C W. J. Power Sources, 2012, 203: 190.
[110]
Yu L H, Lin F, Xu L, Xi J Y. RSC Adv., 2017, 7(50): 31164.
[111]
Kim S, Yuk S, Kim H G, Choi C, Kim R, Lee J Y, Hong Y T, Kim H T. J. Mater. Chem. A, 2017, 5(33): 17279.
[112]
Liu J M, Yu L W, Cai X K, Khan U, Cai Z Y, Xi J Y, Liu B L, Kang F Y. ACS Nano, 2019, 13(2): 2094.
[1] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[2] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[3] Qingbai Chen, Yu Liu, Jinli Zhao, Pengfei Li, Jianyou Wang. Emerging Ion Exchange Membrane Process-Based Zero Liquid Discharge Technology for Saline Wastewater [J]. Progress in Chemistry, 2019, 31(12): 1669-1680.
[4] Li Pengzhang, Wang Yuebo. Enrichment Methods of Phosphopeptides in Proteomics [J]. Progress in Chemistry, 2012, (9): 1785-1793.
[5] Xiao Junqiang, Hao Xiaogang. Research Progress of Electrochemically Switched Ion Exchange [J]. Progress in Chemistry, 2010, 22(12): 2420-2427.
[6] . Preparation and Applications of Hybrid Ion Exchange Membranes [J]. Progress in Chemistry, 2010, 22(10): 2003-2013.
[7] . Application of Ion Exchange Chromatography for Pharmaceutical Plasmid Analysis [J]. Progress in Chemistry, 2010, 22(0203): 482-488.
[8] Liu Zhen Wu Qingyin Song Xiaoli Ma Sai. Solid High-Proton Conductors Based on Heteropoly Acids [J]. Progress in Chemistry, 2009, 21(05): 982-989.
[9] Yaping Zhang Tongwen Xu . Development of the Membrane Potential Across Charged Membranes [J]. Progress in Chemistry, 2006, 18(12): 1592-1598.