中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (10): 1461-1485 DOI: 10.7536/PC230306 Previous Articles   Next Articles

• Review •

Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks

Wei Tang1, Yan Bing1, Xudong Liu1, Hongji Jiang1,2,3,*()   

  1. 1 State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
    2 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
    3 State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: iamhjjiang@njupt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21574068); Major Research Program from the State Ministry of Science and Technology,(2012CB933301); Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD); Priority Academic Program Development of Jiangsu Higher Education Institutions(YX030003); Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunication(GZR2023010056)
Richhtml ( 41 ) PDF ( 659 ) Cited
Export

EndNote

Ris

BibTeX

The optoelectronic properties of organic luminescent materials are strongly correlated with the molecular structure, the flexibility of conformational change and the intermolecular interaction. From the perspective of structure, the carbonyl group and benzene ring of benzophenone have high chemical modifiability. In this paper, the chemical synthesis methods to produce multifunctional organic luminescent materials based on benzophenone framework in recent years are systematically reviewed, including three basic strategies: multiple substitution of benzophenone, using heteroatom as bridging group, vinyl coupling and direct coupling of benzene ring as the center. A variety of multifunctional organic luminescent materials based on this framework have been developed, including fluorescence materials, hosts of precious metal phosphorescence complex, thermally activated delayed fluorescence materials, aggregation-induced emission materials and pure organic room temperature phosphorescence materials. Finally, the development prospect of multi-functional organic luminescent materials based on benzophenone framework is prospected.

Contents

1 Introduction

2 Fluorescence materials based on benzophenone framework

3 Hosts based on benzophenone framework for precious metal phosphorescence complex

4 Thermally activated delayed fluorescence materials based on benzophenone framework

5 Aggregation-induced emission materials based on benzophenone framework

6 Pure organic room temperature phosphorescence materials based on benzophenone framework

7 Conclusions and outlook

Fig.1 (a) The luminescence mechanism of organic luminescent materials. (b) Photoluminescence spectra of benzophenone in tetrahydrofuran solution at room temperature and 77 K, and photoluminescence spectrum of crystalline state at room temperature[5]
Fig.2 Chemical modification strategies for the molecular skeletons of benzophenone and their derivatives
Fig.3 Synthesis of benzophenone and polysubstituted benzophenone
Table 1 Optical physics and thermal stability parameters of benzophenone[5,7??~10]
Fig.4 Synthesis of heteroatom-bridged benzophenone
Fig.5 Synthesis of benzophenone derivatives with vinyl coupling and direct coupling of phenyl ring
Fig.6 (a) Chemical structures of 27~30. (b) Chemical structures and luminescence characteristics of 31 and 32[38,52,53]
Fig.7 (a) Chemical structure of 33. (b) Transient photocurrents in the layers of 33 at different sample voltages. Inserts show the one transient curve in linear plot. Arrows on insets indicate a transit time of holes. (c) The dependences of hole-drift mobility on the applied electric field in the amorphous layers of 33[54]
Fig.8 (a) Chemical structure of 34 and OLED luminescent picture. (b) Chemical structures of 35 and 36. (c) Images for the fluorescent colors of 36 in corresponding solution under ultraviolet light (365nm)[27,55,58,59]
Fig.9 (a) Chemical structures of 37~39. (b) The relationship between electron, hole mobility of 37 and half-wave potential E1/2. (c) Photograph of the light emitted by 38 and 39 under ultraviolet light at 365nm[24,62,63]
Fig.10 (a) Chemical structures of 40~43. (b) CIE coordinates of 42 and 43[68,69]
Fig.11 Chemical structure of 26[37]
Fig.12 (a) Chemical structures of 44 and 45. (b) EQE-luminance relationship curves of 44-based device 1 and 45-based device 2[41]
Fig.13 (a) Chemical structure of 46. (b) Blue, green and red phosphorescent OLED luminescent image based on 46[21]
Fig.14 (a) Chemical structure of 47. (b) Fluorescence and phosphorescence emission spectra of 47 in toluene at 77 K[81]
Fig.15 (a) Chemical structure of 48. (b,c) Current density and voltage characteristic curves of OLED devices A and B. (d) EQE and current density curves[83]
Fig.16 (a) Synthesis strategy of intermediate 4-bromo-9,9'-spiro-difluorene. (b) Chemical structures of 49~51[84,88,90]
Fig.17 (a) Chemical structures of 52 and 53. (b) Exciton transition routes of 52 and 53. The ratio of transient fluorescence and delayed fluorescence in the photoluminescence process of each material is shown at the bottom of the graph[104]
Fig.18 (a) Chemical structures of 54 and 55. (b) UV-vis (solid point) and photoluminescence spectra (hollow point) of 54 and 55 in dilute solution[111]
Fig.19 (a) Chemical structures of 56~58. (b) Doped device structures based on 56 and 57 and their EQE-luminance relationships[39,116]
Fig.20 (a) Chemical structure of 59. (b) EQE and luminance diagrams of devices 1 and 2[120,121]
Fig.21 Chemical structures of 60~62[35,36,122]
Fig.22 Chemical structures of 63~67[128]
Fig.23 (a) Chemical structures of 68 and 69. (b) EQE, power efficiency and current efficiency versus luminance characteristics of the OLED. (c) PL spectra, EL spectra at various operating voltages and photographs of doped OLED[132]
Fig.24 Chemical structures of 70~73[136]
Fig.25 (a) Chemical structures of 74~76. (b) The doping concentration dependence on the PLQY. (c) The doping concentration dependence on RISC rate constant (kRISC) and triplet non-radiative rate constant ( k n r T)[138]
Fig.26 (a) Chemical structures of 77 and 78. PL spectra of 77 (b) and 78 (c) in the mixtures of tetrahydrofuran and water at different volume ratios[124,151]
Fig.27 (a) Chemical structures of 79 and 80. (b) PL spectra of 79 in tetrahydrofuran and water mixtures with different water fractions. (c) Crystal of 80 under UV light at 365nm[148,153]
Fig.28 (a) Chemical structure of 81. (b) Photoluminescence spectra of 81 in CHCl3 and heptane mixtures with different heptane components (fw). (c) The relative strength (I/I0) changes with different components CHCl3 and heptane mixtures (5×10-6 M). The inset shows 81 in CHCl3 (fw=0, left) and CHCl3 and heptane mixtures (fw=90%, right) at 365nm illumination[154]
Fig.29 (a) Chemical structure of 82.; (b) Emission color of 82 solution (6 μmol/L) with different water contents in DMSO and H2O (λex=360nm )[155]
Fig.30 (a) Chemical structures of 83~87. (b) Crystal photographs of 83~87 under sunlight (top) and room temperature 365nm UV light (bottom) and non-luminous (300 K, top) and phosphorescent (77 K, bottom) photographs of 87 nitrogen degassed cyclohexane solutions (10-4 mol/L) under 365nm UV lamp irradiation[5,170,173]
Fig.31 Chemical structures of 88 and 89[174,175]
Fig.32 (a) Chemical structures of 90~97. (b) Luminescent photographs of 94~97 and corresponding RTP phosphorescent quantum yields[184,186]
Fig.33 (a) Chemical structures of 98 and 99. (b) RTP photographs of 98 and 99 exposed to 365nm UV light in trichloromethane and argon degassing trichloromethane solutions (2.0×10-5 mol/L). (c) Thin-film photographs of 98 and 99 in daylight (left) and thin-film RTP photographs in 312nm UV light (right). (d) RTP afterglow of 98 before and after 312nm UV irradiation[191]
[1]
Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51(12): 913.

doi: 10.1063/1.98799
[2]
D’Andrade B W, Forrest S R. Adv. Mater., 2004, 16(18): 1585.

doi: 10.1002/adma.v16:18
[3]
Gopalan R, Sugumar R W. Indian J. Chem., 1978, 16 (3): 198.
[4]
Stack D E, Dawson B T, Rieke R D. J. Am. Chem. Soc., 1991, 113(12): 4672.

doi: 10.1021/ja00012a041
[5]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q A, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y
[6]
Laporte J L, Nouchi G, Rousset Y. J. Chem. Phys., 1972, 57(4): 1767.

doi: 10.1063/1.1678468
[7]
Shizu K, Kaji H. J. Phys. Chem. A, 2021, 125(40): 9000.

doi: 10.1021/acs.jpca.1c06165
[8]
Ravi S, Peters S, Varathan E, Ravi M, Arockia Selvi J. Colloids Surf. A, 2023, 661: 130919.

doi: 10.1016/j.colsurfa.2023.130919
[9]
Roppolo I, Chiappone A, Bejtka K, Celasco E, Chiodoni A, Giorgis F, Sangermano M, Porro S. Carbon, 2014, 77: 226.

doi: 10.1016/j.carbon.2014.05.025
[10]
Davydova N A, Mel’nik V I, Nelipovitch K, Baran J, Kukielski J I. Phys. Rev. B, 2002, 65(9): 094201.

doi: 10.1103/PhysRevB.65.094201
[11]
Zhao W L, Carreira E M. Org. Lett., 2006, 8(1): 99.

doi: 10.1021/ol052587y
[12]
Xie N, Liu Y, Hu R R, Leung N L C, Arseneault M, Tang B Z. ISR J. Chem., 2014, 54(7): 958.

doi: 10.1002/ijch.v54.7
[13]
Wang S Z, Xie K, Tan Z, An X Y, Zhou X J, Guo C C, Peng Z H. Chem. Commun., 2009(42): 6469.
[14]
Wu H, Zhang Z G, Liu Q F, Liu T X, Ma N N, Zhang G S. Org. Lett., 2018, 20(10): 2897.

doi: 10.1021/acs.orglett.8b00957
[15]
Zhang Z G, Gao Y A, Liu Y A, Li J J, Xie H X, Li H, Wang W. Org. Lett., 2015, 17(21): 5492.

doi: 10.1021/acs.orglett.5b02877
[16]
Liang E X, Su F, Liang Y, Wang G X, Xu W Y, Li S, Yang C X, Tang J X, Zhou N B. Chem. Commun., 2020, 56(96): 15169.

doi: 10.1039/D0CC06923J
[17]
Eisch J J, Fregene P O. Eur. J. Org. Chem., 2008, 2008(26): 4482.

doi: 10.1002/ejoc.v2008:26
[18]
Paquette L A, Chamot E, Browne A R. J. Am. Chem. Soc., 1980, 102(2): 637.

doi: 10.1021/ja00522a033
[19]
Wei Y, Samori S, Tojo S, Fujitsuka M, Lin J S, Chen C T, Majima T. J. Am. Chem. Soc., 2009, 131(19): 6698.

doi: 10.1021/ja8090005 pmid: 19385627
[20]
Li H, Zhu R Y, Shi W J, He K H, Shi Z J. Org. Lett., 2012, 14(18): 4850.

doi: 10.1021/ol302181z
[21]
Ma W X, Bin Z Y, Yang G, Liu J J, You J S. Angew. Chem. Int. Ed., 2022, 61(11): e202116681.

doi: 10.1002/anie.v61.11
[22]
Henderson L J Jr, Fronczek F R, Cherry W R. J. Am. Chem. Soc., 1984, 106(20): 5876.

doi: 10.1021/ja00332a020
[23]
Singh A K, Jang S, Kim J Y, Sharma S, Basavaraju K C, Kim M G, Kim K R, Lee J S, Lee H H, Kim D P. ACS Catal., 2015, 5(11): 6964.

doi: 10.1021/acscatal.5b01319
[24]
Poriel C, Rault-Berthelot J. Acc. Chem. Res., 2018, 51(8): 1818.

doi: 10.1021/acs.accounts.8b00210
[25]
Thirion D, Poriel C, Barrière F, MÉtivier R, Jeannin O, Rault-Berthelot J. Org. Lett., 2009, 11(21): 4794.

doi: 10.1021/ol901750x pmid: 19795887
[26]
Fix A G, Chase D T, Haley M M. Top. Curr. Chem., 2014, 349: 159.
[27]
Li Y Y, Lu H Y, Li M, Li X J, Chen C F. J. Org. Chem., 2014, 79(5): 2139.

doi: 10.1021/jo4028616
[28]
Kaiser R P, Nečas D, Cadart T, Gyepes R, Císařová I, Mosinger J, Pospíšil L, Kotora M. Angew. Chem. Int. Ed., 2019, 58(48): 17169.

doi: 10.1002/anie.v58.48
[29]
Sharma R, Thomas M B, Misra R, D'Souza F. Angew. Chem. Int. Ed., 2019, 58(13): 4350.

doi: 10.1002/anie.201814388 pmid: 30710495
[30]
Kamino B A, Mills B, Reali C, Gretton M J, Brook M A, Bender T P. J. Org. Chem., 2012, 77(4): 1663.

doi: 10.1021/jo2020906 pmid: 22220839
[31]
Liu F, Xie L H, Tang C, Liang J, Chen Q Q, Peng B, Wei W, Cao Y, Huang W. Org. Lett., 2009, 11(17): 3850.

doi: 10.1021/ol900978x
[32]
Maciejczyk M, Ivaturi A, Robertson N. J. Mater. Chem. A, 2016, 4(13): 4855.

doi: 10.1039/C6TA00110F
[33]
Bhanuchandra M, Yorimitsu H, Osuka A. Org. Lett., 2016, 18(3): 384.

doi: 10.1021/acs.orglett.5b03384 pmid: 26744785
[34]
Liu H, Liu Z W, Li G G, Huang H N, Zhou C J, Wang Z M, Yang C L. Angew. Chem. Int. Ed., 2021, 60(22): 12376.

doi: 10.1002/anie.v60.22
[35]
Fan X C, Wang K, Zheng C J, Dai G L, Shi Y Z, Li Y Q, Yu J A, Ou X M, Zhang X H. J. Mater. Chem. C, 2019, 7(29): 8923.

doi: 10.1039/C9TC02032B
[36]
Wu L, Wang K, Wang C, Fan X C, Shi Y Z, Zhang X A, Zhang S L, Ye J, Zheng C J, Li Y Q, Yu J A, Ou X M, Zhang X H. Chem. Sci., 2021, 12(4): 1495.

doi: 10.1039/D0SC05631F
[37]
Jiang H J, Sun J A. New J. Chem., 2013, 37(10): 3161.

doi: 10.1039/c3nj00635b
[38]
Shen Y, Tang X H, Xu Y W, Liu H C, Zhang S T, Yang B, Ma Y G. Chin. Chem. Lett., 2019, 30(11): 1947.

doi: 10.1016/j.cclet.2019.07.059
[39]
Chen J K, Zeng J J, Zhu X Y, Guo J J, Zhao Z J, Tang B Z. CCS Chem., 2021, 3(12): 230.

doi: 10.31635/ccschem.020.202000504
[40]
Wang L J, Nan G J, Yang X D, Peng Q A, Li Q K, Shuai Z G. Chem. Soc. Rev., 2010, 39(2): 423.

doi: 10.1039/B816406C
[41]
Neogi I, Darshan V, Linet A, Anjalikrishna P K, Sebastian A, Mohanty G, Morimoto A, Suresh C H, Yagi S, Posner Y D, Grynszpan F, Unni N. Synth. Met., 2022, 291: 117185.

doi: 10.1016/j.synthmet.2022.117185
[42]
Wu K C, Ku P J, Lin C S, Shih H T, Wu F I, Huang M J, Lin J J, Chen I C, Cheng C H. Adv. Funct. Mater., 2008, 18(1): 67.

doi: 10.1002/adfm.v18:1
[43]
Cho I, Kim S H, Kim J H, Park S, Park S Y. J. Mater. Chem., 2012, 22(1): 123.

doi: 10.1039/C1JM14482K
[44]
Schmidbauer S, Hohenleutner A, König B. Adv. Mater., 2013, 25(15): 2114.

doi: 10.1002/adma.v25.15
[45]
So F, Kondakov D. Adv. Mater., 2010, 22(34): 3762.

doi: 10.1002/adma.v22:34
[46]
Lin N, Qiao J A, Duan L A, Wang L D, Qiu Y. J. Phys. Chem. C, 2014, 118(14): 7569.

doi: 10.1021/jp412614k
[47]
Grimsdale A C, Leok Chan K, Martin R E, Jokisz P G, Holmes A B. Chem. Rev., 2009, 109(3): 897.

doi: 10.1021/cr000013v pmid: 19228015
[48]
Pogantsch A, Wenzl F P, List E J W, Leising G, Grimsdale A C, Müllen K. Adv. Mater., 2002, 14(15): 1061.

doi: 10.1002/1521-4095(20020805)14:15【-逻*辑*与-】lt;1061::AID-ADMA1061【-逻*辑*与-】gt;3.0.CO;2-6
[49]
Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger A J. Adv. Funct. Mater., 2003, 13(1): 25.

doi: 10.1002/adfm.v13:1
[50]
Scherf U, List E J W. Adv. Mater., 2002, 14(7): 477.

doi: 10.1002/(ISSN)1521-4095
[51]
Zojer E, Pogantsch A, Hennebicq E, Beljonne D, BrÉdas J L, Scandiucci de Freitas P, Scherf U, List E J W. J. Chem. Phys., 2002, 117(14): 6794.

doi: 10.1063/1.1507106
[52]
Zhou X Y, Hui T Q, Han Y Y, Huang X T, Jiang X N, Liu C, Yan J. J. Mol. Struct., 2021, 1234: 130185.

doi: 10.1016/j.molstruc.2021.130185
[53]
Chen L, Chen K Z, Yao R J, Zeng R P, Lin Y C, Jian R K, Bai W B. Mater. Chem. Phys., 2022, 285: 126083.

doi: 10.1016/j.matchemphys.2022.126083
[54]
Rakstys K, Saliba M, Gao P, Gratia P, Kamarauskas E, Paek S, Jankauskas V, Nazeeruddin M K. Angew. Chem. Int. Ed., 2016, 55(26): 7464.

doi: 10.1002/anie.v55.26
[55]
Wei Y, Chen C T. J. Am. Chem. Soc., 2007, 129(24): 7478.

pmid: 17523643
[56]
Chen C T, Wei Y, Lin J S, Moturu M V R K, Chao W S, Tao Y T, Chien C H. J. Am. Chem. Soc., 2006, 128(34): 10992.

pmid: 16925394
[57]
Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17(3): 285.

doi: 10.1002/adma.v17:3
[58]
Wang J L, Yan J, Tang Z M, Xiao Q, Ma Y G, Pei J A. J. Am. Chem. Soc., 2008, 130(30): 9952.

doi: 10.1021/ja803109r
[59]
Wang J L, Tang Z M, Xiao Q, Zhou Q F, Ma Y G, Pei J A. Org. Lett., 2008, 10(1): 17.

doi: 10.1021/ol702467u
[60]
Tang M L, Bao Z N. Chem. Mater., 2011, 23(3): 446.

doi: 10.1021/cm102182x
[61]
Babudri F, Farinola G M, Naso F, Ragni R. Chem. Commun., 2007(10): 1003.
[62]
Li Z F, Jiao B, Wu Z X, Liu P, Ma L, Lei X L, Wang D D, Zhou G J, Hu H M, Hou X. J. Mater. Chem. C, 2013, 1(11): 2183.

doi: 10.1039/c3tc00466j
[63]
Thirion D, Poriel C, Barrière F, MÉtivier R, Jeannin O, Rault-Berthelot J. Org. Lett., 2009, 11(21): 4794.

doi: 10.1021/ol901750x pmid: 19795887
[64]
Xie L H, Liu F, Tang C, Hou X Y, Hua Y R, Fan Q L, Huang W. Org. Lett., 2006, 8(13): 2787.

doi: 10.1021/ol060871z
[65]
Sun M L, Xu R C, Xie L H, Wei Y, Huang W. Chin. J. Chem., 2015, 33(8): 815.

doi: 10.1002/cjoc.v33.8
[66]
Cao H T, Wan J, Li B, Zhang H, Xie L H, Sun C, Feng Q Y, Yu W J, Huang W. Dyes Pigm., 2021, 185: 108894.

doi: 10.1016/j.dyepig.2020.108894
[67]
Liang X Z, Wang K X, Zhang R Q, Li K, Lu X Q, Guo K P, Wang H A, Miao Y Q, Xu H X, Wang Z Q. Dyes Pigm., 2017, 139: 764.

doi: 10.1016/j.dyepig.2017.01.012
[68]
Li Y Y, Li Y M, Zhao Y L, Yu T Z, Su W M, Wang R D, Ma H L, Qian L. Synth. Met., 2021, 277: 116771.

doi: 10.1016/j.synthmet.2021.116771
[69]
Li Y C, Wang Z H, Li X L, Xie G Z, Chen D C, Wang Y F, Lo C C, A L E, Peng J B, Cao Y, Su S J. Chem. Mater., 2015, 27(3): 1100.

doi: 10.1021/cm504441v
[70]
Zou S J, Shen Y, Xie F M, Chen J D, Li Y Q, Tang J X. Mater. Chem. Front., 2020, 4(3): 788.

doi: 10.1039/C9QM00716D
[71]
Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151.

doi: 10.1038/25954
[72]
Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R. Nature, 2006, 440(7086): 908.

doi: 10.1038/nature04645
[73]
Chandra V K, Chandra B P. Org. Electron., 2012, 13(2): 329.

doi: 10.1016/j.orgel.2011.11.003
[74]
Tao Y T, Yang C L, Qin J G. Chem. Soc. Rev., 2011, 40(5): 2943.

doi: 10.1039/c0cs00160k
[75]
Jhulki S, Seth S, Ghosh A, Chow T J, Moorthy J N. ACS Appl. Mater. Interfaces, 2016, 8(2): 1527.

doi: 10.1021/acsami.5b11232
[76]
Zhang Y, Li Z, Li C, Wang Y. Front. Chem., 2019, 7: 302.

doi: 10.3389/fchem.2019.00302
[77]
Ramachandran K, Vijayakumar P, Raja A, Mohankumar V, Vinitha G, Senthil Pandian M, Ramasamy P. J. Mater. Sci., 2018, 29(10): 8571.
[78]
Matsushima T, Adachi C. J. Appl. Phys., 2008, 103(3): 034501.

doi: 10.1063/1.2836972
[79]
Klenkler R A, Aziz H, Tran A, Popovic Z D, Xu G. Org. Electron., 2008, 9(3): 285.

doi: 10.1016/j.orgel.2007.11.004
[80]
Lee J H, Wu C I, Liu S W, Huang C A, Chang Y. Appl. Phys. Lett., 2005, 86(10): 103506.

doi: 10.1063/1.1879093
[81]
Vezzu D A K, Deaton J C, Shayeghi M, Li Y M, Huo S Q. Org. Lett., 2009, 11(19): 4310.

doi: 10.1021/ol901584g
[82]
Wu C C, Liu T L, Hung W Y, Lin Y T, Wong K T, Chen R T, Chen Y M, Chien Y Y. J. Am. Chem. Soc., 2003, 125(13): 3710.

doi: 10.1021/ja029630m
[83]
Wong K T, Chen Y M, Lin Y T, Su H C, Wu C C. Org. Lett., 2005, 7(24): 5361.

doi: 10.1021/ol051977h
[84]
Jiang Z Q, Yao H Q, Zhang Z Q, Yang C L, Liu Z Y, Tao Y T, Qin J G, Ma D G. Org. Lett., 2009, 11(12): 2607.

doi: 10.1021/ol9008816
[85]
Jiang W F, Wang H L, Wang A G, Li Z Q. Synth. Commun., 2008, 38(12): 1888.

doi: 10.1080/00397910801997439
[86]
Sun M L, Yue S Z, Lin J R, Ou C J, Qian Y, Zhang Y, Li Y, Wei Q, Zhao Y, Xie L H, Huang W. Synth. Met., 2014, 195: 321.

doi: 10.1016/j.synthmet.2014.06.022
[87]
Qian Y, Xie G H, Chen S F, Liu Z D, Ni Y R, Zhou X H, Xie L H, Liang J, Zhao Y Z, Yi M H, Zhao Y, Wei W, Huang W. Org. Electron., 2012, 13(11): 2741.

doi: 10.1016/j.orgel.2012.07.047
[88]
Zhao J E, Xie G H, Yin C R, Xie L H, Han C M, Chen R F, Xu H, Yi M D, Deng Z P, Chen S F, Zhao Y, Liu S Y, Huang W. Chem. Mater., 2011, 23(24): 5331.

doi: 10.1021/cm201654c
[89]
Son H S, Lee J Y. Org. Electron., 2011, 12(6): 1025.

doi: 10.1016/j.orgel.2011.03.015
[90]
Chi L C, Hung W Y, Chiu H C, Wong K T. Chem. Commun., 2009,(26): 3892.
[91]
Moon C K, Suzuki K, Shizu K, Adachi C, Kaji H, Kim J J. Adv. Mater., 2017, 29(17): 1606448.

doi: 10.1002/adma.v29.17
[92]
Zhan L S, Chen Z X, Gong S L, Xiang Y P, Ni F, Zeng X, Xie G H, Yang C L. Angew. Chem. Int. Ed., 2019, 58(49): 17651.

doi: 10.1002/anie.v58.49
[93]
Xie F M, Zhou J X, Li Y Q, Tang J X. J. Mater. Chem. C, 2020, 8(28): 9476.

doi: 10.1039/D0TC02252G
[94]
Pan K C, Li S W, Ho Y Y, Shiu Y J, Tsai W L, Jiao M, Lee W K, Wu C C, Chung C L, Chatterjee T, Li Y S, Wong K T, Hu H C, Chen C C, Lee M T. Adv. Funct. Mater., 2016, 26(42): 7560.

doi: 10.1002/adfm.v26.42
[95]
Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H. Nat. Photonics, 2018, 12(4): 235.

doi: 10.1038/s41566-018-0112-9
[96]
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv. Mater., 2016, 28(32): 6976.

doi: 10.1002/adma.v28.32
[97]
Zhang Y L, Ran Q, Wang Q, Liu Y, Hänisch C, Reineke S, Fan J, Liao L S. Adv. Mater., 2019, 31(42): 1902368.

doi: 10.1002/adma.v31.42
[98]
Li J, Nakagawa T, MacDonald J, Zhang Q S, Nomura H, Miyazaki H, Adachi C. Adv. Mater., 2013, 25(24): 3319.

doi: 10.1002/adma.v25.24
[99]
Li C, Liang J, Liang B, Li Z, Cheng Z, Yang G, Wang Y. Adv. Opt. Mater., 2019, 7 (10): 1801667.

doi: 10.1002/adom.v7.10
[100]
Aizawa N, Tsou C J, Park I S, Yasuda T. Polym. J., 2017, 49(1): 197.

doi: 10.1038/pj.2016.82
[101]
Chen Z X, Ni F, Wu Z B, Hou Y C, Zhong C, Huang M L, Xie G H, Ma D G, Yang C L. J. Phys. Chem. Lett., 2019, 10(11): 2669.

doi: 10.1021/acs.jpclett.9b00937
[102]
Zhao H B, Wang Z H, Cai X Y, Liu K K, He Z Z, Liu X, Cao Y, Su S J. Mater. Chem. Front., 2017, 1(10): 2039.

doi: 10.1039/C7QM00195A
[103]
Wang F F, Cao X D, Mei L, Zhang X W, Hu J, Tao Y T. Chin. J. Chem., 2018, 36(3): 241.

doi: 10.1002/cjoc.v36.3
[104]
Kreiza G, Banevičius D, Jovaišaite J, Maleckaite K, Gudeika D, Volyniuk D, Gražulevičius J V, Juršenas S, Kazlauskas K. J. Mater. Chem. C, 2019, 7(37): 11522.

doi: 10.1039/C9TC02408E
[105]
Lee S Y, Yasuda T, Yang Y S, Zhang Q S, Adachi C. Angew. Chem. Int. Ed., 2014, 53(25): 6402.

doi: 10.1002/anie.v53.25
[106]
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv. Mater., 2016, 28(21): 4019.

doi: 10.1002/adma.v28.21
[107]
Data P, Pander P, Okazaki M, Takeda Y, Minakata S, Monkman A P. Angew. Chem., 2016, 128(19): 5833.

doi: 10.1002/ange.v128.19
[108]
Li C L, Duan R H, Liang B Y, Han G C, Wang S P, Ye K Q, Liu Y, Yi Y P, Wang Y. Angew. Chem. Int. Ed., 2017, 56(38): 11525.

doi: 10.1002/anie.v56.38
[109]
Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125(42): 12971.

pmid: 14558846
[110]
Cai X Y, Li X L, Xie G Z, He Z Z, Gao K, Liu K K, Chen D C, Cao Y, Su S J. Chem. Sci., 2016, 7(7): 4264.

doi: 10.1039/C6SC00542J
[111]
Gan L, Li X L, Cai X Y, Liu K K, Li W, Su S J. Beilstein J. Org. Chem., 2018, 14: 672.

doi: 10.3762/bjoc.14.55
[112]
Lee J, Aizawa N, Numata M, Adachi C, Yasuda T. Adv. Mater., 2017, 29(4): 1604856.

doi: 10.1002/adma.v29.4
[113]
Shaikh A M, Sharma B K, Kamble R M. J. Chem. Sci., 2015, 127(9): 1571.

doi: 10.1007/s12039-015-0904-0
[114]
Wang C G, Zhang Z L, Wang Y E. J. Mater. Chem. C, 2016, 4(42): 9918.

doi: 10.1039/C6TC03621J
[115]
Pander P, Swist A, Motyka R, Soloducho J, Dias F B, Data P. J. Mater. Chem. C, 2018, 6(20): 5434.

doi: 10.1039/C8TC00175H
[116]
Siddiqui Q T, Awasthi A A, Bhui P, Muneer M, Chandrakumar K R S, Bose S, Agarwal N. J. Phys. Chem. C, 2019, 123(2): 1003.

doi: 10.1021/acs.jpcc.8b08357
[117]
Xue M M, Huang C C, Yuan Y, Cui L S, Li Y X, Wang B, Jiang Z Q, Fung M K, Liao L S. ACS Appl. Mater. Interfaces, 2016, 8(31): 20230.

doi: 10.1021/acsami.6b05064
[118]
Sicard L, Quinton C, Peltier J D, Tondelier D, Geffroy B, Biapo U, MÉtivier R, Jeannin O, Rault-Berthelot J, Poriel C. Chem. A Eur. J., 2017, 23(32): 7719.

doi: 10.1002/chem.v23.32
[119]
Nakagawa T, Ku S Y, Wong K T, Adachi C. Chem. Commun., 2012, 48(77): 9580.

doi: 10.1039/c2cc31468a
[120]
Liang J J, Li Y, Yuan Y, Li S H, Zhu X D, Barlow S, Fung M K, Jiang Z Q, Marder S R, Liao L S. Mater. Chem. Front., 2018, 2(5): 917.

doi: 10.1039/C7QM00605E
[121]
Chen X K, Tsuchiya Y, Ishikawa Y, Zhong C, Adachi C, BrÉdas J L. Adv. Mater., 2017, 29(46): 1702767.

doi: 10.1002/adma.v29.46
[122]
Yi R H, Liu G Y, Luo Y T, Wang W Y, Tsai H Y, Lin C H, Shen H L, Chang C H, Lu C W. Chem. A Eur. J., 2021, 27(51): 12998.

doi: 10.1002/chem.v27.51
[123]
Gan S F, Luo W W, He B R, Chen L, Nie H, Hu R R, Qin A J, Zhao Z J, Tang B Z. J. Mater. Chem. C, 2016, 4(17): 3705.

doi: 10.1039/C5TC03588K
[124]
Xie Z L, Chen C J, Xu S D, Li J, Zhang Y, Liu S W, Xu J R, Chi Z G. Angew. Chem. Int. Ed., 2015, 54(24): 7181.

doi: 10.1002/anie.v54.24
[125]
Xu S D, Liu T T, Mu Y X, Wang Y F, Chi Z G, Lo C C, Liu S W, Zhang Y, Lien A L, Xu J R. Angew. Chem. Int. Ed., 2015, 54(3): 874.

doi: 10.1002/anie.v54.3
[126]
Xue Q, Xie G. Adv. Opt. Mater., 2021, 9 (14): 2002204.

doi: 10.1002/adom.v9.14
[127]
Wong M Y, Zysman C E. Adv. Mater., 2017, 29 (22): 1605444.

doi: 10.1002/adma.v29.22
[128]
Song Y J, Tian M X, Yu R Y, He L. ACS Appl. Mater. Interfaces, 2021, 13(50): 60269.

doi: 10.1021/acsami.1c17707
[129]
Hall D, Suresh S M, dos Santos P L, Duda E, Bagnich S, Pershin A, Rajamalli P, Cordes D B, Slawin A M Z, Beljonne D, Köhler A, Samuel I D W, Olivier Y, Zysman-Colman E. Adv. Optical Mater., 2020, 8(2): 1901627.

doi: 10.1002/adom.v8.2
[130]
Huang X L, Zou J H, Liu J Z, Jin G, Li J B, Yao S L, Peng J B, Cao Y, Zhu X H. Org. Electron., 2018, 58: 139.

doi: 10.1016/j.orgel.2018.04.012
[131]
Cho Y J, Taylor S, Aziz H. ACS Appl. Mater. Interfaces, 2017, 9(46): 40564.

doi: 10.1021/acsami.7b15190
[132]
Jing Y Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2021, 413: 127418.

doi: 10.1016/j.cej.2020.127418
[133]
Sarala L, Ramesh B Y, Peddaboodi G, Elanthamilan E, Bella A, Sundar M S, Parameswar K I, Princy M J. J. Photoch. Photobio. A, 2018, 365: 232.

doi: 10.1016/j.jphotochem.2018.08.009
[134]
Jiang T C, Liu Y C, Ren Z J, Yan S K. Polym. Chem., 2020, 11(9): 1555.

doi: 10.1039/D0PY00096E
[135]
Wei Q, Fei N N, Islam A, Lei T, Hong L, Peng R X, Fan X, Chen L, Gao P Q, Ge Z Y. Adv. Opt. Mater., 2018, 6(20): 1800512.

doi: 10.1002/adom.v6.20
[136]
Philipps K, Ie Y, van der Zee B, Png R Q, Ho P K H, Chua L L, del Pino Rosendo E, Ramanan C, Wetzelaer G J A H, Blom P W M, Michels J J. Adv. Sci., 2022, 9(19): 2200056.

doi: 10.1002/advs.v9.19
[137]
Ban X X, Zhou T, Cao Q P, Zhang K Z, Tong Z W, Xu H, Zhu A Y, Jiang W. J. Mater. Chem. C, 2022, 10(40): 15114.

doi: 10.1039/D2TC02641D
[138]
Li X, Yan L B, Liu S, Wang S M, Rao J C, Zhao L, Tian H K, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2023, 62(19): e202300529.
[139]
Rao J C, Yang L Q, Li X, Zhao L, Wang S M, Tian H K, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2021, 60(17): 9635.

doi: 10.1002/anie.v60.17
[140]
Gandioso A, Bresolí-Obach R, Nin-Hill A, Bosch M, Palau M, Galindo A, Contreras S, Rovira A, Rovira C, Nonell S, Marchán V. J. Org. Chem., 2018, 83(3): 1185.

doi: 10.1021/acs.joc.7b02660 pmid: 29283264
[141]
Zhang Y B, Xia S A, Fang M X, Mazi W F, Zeng Y B, Johnston T, Pap A, Luck R L, Liu H Y. Chem. Commun., 2018, 54(55): 7625.

doi: 10.1039/C8CC03520B
[142]
Matsumoto S, Fuchi Y, Usui K, Hirai G, Karasawa S. J. Org. Chem., 2019, 84(11): 6612.

doi: 10.1021/acs.joc.9b00023 pmid: 31094191
[143]
He P B, Xu H, An Z F, Cai Z Y, Cai Z X, Chao H, Chen B, Chen M, Chen Y, Chi Z G, Dai S T, Ding D, Dong Y P, Gao Z Y, Guan W J, He Z K, Hu J J, Hu R, Hu Y X, Huang Q Y, Kang M M, Li D X, Li J S, Li S Z, Li W L, Li Z, Liu X L, Liu H Y, Liu P Y, Lou X D, Lu C, Ma D G, Ou H L, Ouyang J, Peng Q, Qian J, Qin A J, Qu J M, Shi J B, Shuai Z G, Sun L H, Tian R, Tian W J, Tong B, Wang H L, Wang D, Wang H, Wan T, Wang X, Wang Y C, Wu S Z, Xia F, Xie Y J, Xion K, Xu B, Yan D P, Yang H B, Yang Q Z, Yang Z Y, Yuan L Z, Yuan W Z, Zang S Q, Zeng F, Zeng J J, Zeng Z, Zhang G Q, Zhang X Y, Zhang X P, Zhang Y, Zhang Y F, Zhang Z J, Zhao J, Zhao Z, Zhao Z H, Zhao Z J, Tang B Z. Prog. Chem., 2022, 34 (1): 1.
[144]
Leung N L C, Xie N, Yuan W Z, Liu Y, Wu Q Y, Peng Q, Miao Q, Lam J W Y, Tang B Z. Chem. A Eur. J., 2014, 20(47): 15349.

doi: 10.1002/chem.v20.47
[145]
Hong Y N, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 40(11): 5361.

doi: 10.1039/c1cs15113d
[146]
Pei Y, Xie J X, Cui D X, Liu S N, Li G F, Zhu D X, Su Z M. Dalton Trans., 2020, 49(37): 13066.

doi: 10.1039/d0dt02526g pmid: 32926051
[147]
Saccone M, Riebe S, Stelzer J, Wölper C, Daniliuc C G, Voskuhl J, Giese M. CrystEngComm, 2019, 21(19): 3097.

doi: 10.1039/c9ce00444k
[148]
Miao X R, Cai Z K, Zou H Q, Li J X, Zhang S Y, Ying L, Deng W L. J. Mater. Chem. C, 2022, 10(21): 8390.

doi: 10.1039/D2TC00712F
[149]
Hong Y N, Lam J W Y, Tang B Z. Chem. Commun., 2009(29): 4332.
[150]
Liu J Z, Lam J W Y, Tang B Z. J. Inorg. Organomet. Polym. Mater., 2009, 19(3): 249.

doi: 10.1007/s10904-009-9282-8
[151]
Guo H X, Song X Y, Wang X H, Liu Y W, Redshaw C, Feng X. ChemistrySelect, 2022, 7(29): e202202208.
[152]
Zhao Z J, Lam J W Y, Tang B Z. J. Mater. Chem., 2012, 22(45): 23726.

doi: 10.1039/c2jm31949g
[153]
Huang J, Chen P Y, Yang X, Tang R L, Wang L, Qin J, Li Z. Sci. China Chem., 2013, 56(9): 1213.

doi: 10.1007/s11426-013-4925-6
[154]
Duan Y L, Ju C G, Yang G, Fron E, Coutino-Gonzalez E, Semin S, Fan C C, Balok R S, Cremers J, Tinnemans P, Feng Y Q, Li Y L, Hofkens J, Rowan A E, Rasing T, Xu J L. Adv. Funct. Mater., 2016, 26(48): 8968.

doi: 10.1002/adfm.v26.48
[155]
Wang L Y, Xiong W, Tang H, Cao D R. J. Mater. Chem. C, 2019, 7(29): 9102.

doi: 10.1039/C9TC02129A
[156]
Hoshino S, Suzuki H. Appl. Phys. Lett., 1996, 69(2): 224.

doi: 10.1063/1.117379
[157]
Xiong Q X, Xu C, Jiao N M, Ma X, Zhang Y Q, Zhang S J. Chin. Chem. Lett., 2019, 30(7): 1387.

doi: 10.1016/j.cclet.2019.04.010
[158]
Wang D S, Wang X, Xu C, Ma X. Sci. China Chem., 2019, 62(4): 430.

doi: 10.1007/s11426-018-9383-2
[159]
Xu S, Chen R F, Zheng C, Huang W. Adv. Mater., 2016, 28(45): 9920.

doi: 10.1002/adma.v28.45
[160]
Hirata S. Adv. Opt. Mater., 2017, 5 (17): 1700116.

doi: 10.1002/adom.v5.17
[161]
Qu G J, Zhang Y P, Ma X. Chin. Chem. Lett., 2019, 30(10): 1809.

doi: 10.1016/j.cclet.2019.07.042
[162]
Reineke S, Baldo M A. Sci. Rep., 2014, 4: 3797.

doi: 10.1038/srep03797
[163]
Liu Y, Zhan G, Liu Z W, Bian Z Q, Huang C H. Chin. Chem. Lett., 2016, 27(8): 1231.

doi: 10.1016/j.cclet.2016.06.029
[164]
Kalyanasundaram K, Grieser F, Thomas J K. Chem. Phys. Lett., 1977, 51(3): 501.

doi: 10.1016/0009-2614(77)85410-9
[165]
Alam P, Leung N L C, Liu J K, Cheung T S, Zhang X P, He Z K, Kwok R T K, Lam J W Y, Sung H H Y, Williams I D, Chan C C S, Wong K S, Peng Q, Tang B Z. Adv. Mater., 2020, 32(22): 2001026.

doi: 10.1002/adma.v32.22
[166]
Cai S Z, Shi H F, Tian D, Ma H L, Cheng Z C, Wu Q, Gu M X, Huang L, An Z F, Peng Q, Huang W. Adv. Funct. Mater., 2018, 28(9): 1870060.

doi: 10.1002/adfm.v28.9
[167]
Narushima K, Kiyota Y, Mori T, Hirata S, Vacha M. Adv. Mater., 2019, 31(10): 1807268.

doi: 10.1002/adma.v31.10
[168]
Yang J E, Zhen X, Wang B, Gao X M, Ren Z C, Wang J Q, Xie Y J, Li J R, Peng Q A, Pu K Y, Li Z. Nat. Commun., 2018, 9: 840.

doi: 10.1038/s41467-018-03236-6 pmid: 29483501
[169]
Kearns D R, Case W A. J. Am. Chem. Soc., 1966, 88(22): 5087.

doi: 10.1021/ja00974a008
[170]
Shimizu M, Shigitani R, Nakatani M, Kuwabara K, Miyake Y, Tajima K, Sakai H, Hasobe T. J. Phys. Chem. C, 2016, 120(21): 11631.

doi: 10.1021/acs.jpcc.6b03276
[171]
Li J E, Jiang Y B, Cheng J A, Zhang Y L, Su H M, Lam J W Y, Sung H H Y, Wong K S, Kwok H S, Tang B Z. Phys. Chem. Chem. Phys., 2015, 17(2): 1134.

doi: 10.1039/C4CP04052J
[172]
Gong Y Y, Zhao L F, Peng Q A, Fan D, Yuan W Z, Zhang Y M, Tang B Z. Chem. Sci., 2015, 6(8): 4438.

doi: 10.1039/C5SC00253B
[173]
Zhao W J, He Z K, Lam J Y, Peng Q A, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang ben zhong. Chem, 2016, 1(4): 592.

doi: 10.1016/j.chempr.2016.08.010
[174]
Liu Y, Deng C M, Tang L, Qin A J, Hu R R, Sun J Z, Tang B Z. J. Am. Chem. Soc., 2011, 133(4): 660.

doi: 10.1021/ja107086y pmid: 21171593
[175]
Tian R, Xu S M, Xu Q, Lu C. Sci. Adv., 2020, 6(21): eaaz6107.
[176]
Cai S Z, Ma H L, Shi H F, Wang H, Wang X A, Xiao L X, Ye W P, Huang K W, Cao X D, Gan N, Ma C Q, Gu M X, Song L L, Xu H, Tao Y T, Zhang C F, Yao W, An Z F, Huang W. Nat. Commun., 2019, 10: 4247.

doi: 10.1038/s41467-019-11749-x
[177]
Hirata S, Totani K, Zhang J X, Yamashita T, Kaji H, Marder S R, Watanabe T, Adachi C. Adv. Funct. Mater., 2013, 23(27): 3386.

doi: 10.1002/adfm.v23.27
[178]
Liu B, Deng X R, Xie Z X, Cheng Z Y, Yang P P, Lin J. Adv. Mater., 2017, 29(36): 1604878.

doi: 10.1002/adma.v29.36
[179]
Zhang T T, Wang X, An Z F, Fang Z W, Zhang Y M, Yuan W Z. ChemPhysChem, 2018, 19(18): 2389.

doi: 10.1002/cphc.v19.18
[180]
Mao Z, Yang Z, Fan Z G, Ubba E, Li W L, Li Y, Zhao J A, Yang Z Y, Aldred M P, Chi Z G. Chem. Sci., 2019, 10(1): 179.

doi: 10.1039/C8SC03019G
[181]
Yang J E, Ren Z C, Chen B, Fang M M, Zhao Z J, Tang B Z, Peng Q A, Li Z. J. Mater. Chem. C, 2017, 5(36): 9242.

doi: 10.1039/C7TC03656F
[182]
Gu M X, Shi H F, Ling K, Lv A Q, Huang K W, Singh M, Wang H, Gu L, Yao W, An Z F, Ma H L, Huang W. Research, 2020, 2020: 8183450.
[183]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.

doi: 10.1038/nmat4259
[184]
Hamzehpoor E, Ruchlin C, Tao Y Z, Ramos-Sanchez J E, Titi H M, Cosa G, Perepichka D F. J. Phys. Chem. Lett., 2021, 12(27): 6431.

doi: 10.1021/acs.jpclett.1c01552 pmid: 34236197
[185]
Wu X G, Huang C Y, Chen D G, Liu D H, Wu C C, Chou K J, Zhang B, Wang Y F, Liu Y, Li E Y, Zhu W G, Chou P T. Nat. Commun., 2020, 11: 2145.

doi: 10.1038/s41467-020-15976-5
[186]
Wen Y T, Liu H C, Zhang S T, Gao Y, Yan Y, Yang B. J. Mater. Chem. C, 2019, 7(40): 12502.

doi: 10.1039/C9TC04580E
[187]
Ono T, Kimura K, Ihara M, Yamanaka Y, Sasaki M, Mori H, Hisaeda Y. Chem. A Eur. J., 2021, 27(37): 9535.

doi: 10.1002/chem.v27.37
[188]
Turro N J, Lru K C, Chow M F, Lee P. Photochem. Photobiol., 1978, 27(5): 523.

doi: 10.1111/php.1978.27.issue-5
[189]
Su Q, Gan L L, Yang X M. Appl. Surf. Sci., 2021, 566: 150726.

doi: 10.1016/j.apsusc.2021.150726
[190]
Liang Y C, Gou S S, Liu K K, Wu W J, Guo C Z, Lu S Y, Zang J H, Wu X Y, Lou Q, Dong L, Gao Y F, Shan C X. Nano Today, 2020, 34: 100900.

doi: 10.1016/j.nantod.2020.100900
[191]
Zhang X F, Zhang B B, Luo J, Guo S, Wei C, Gong Y Y. Front. Chem., 2022, 9: 810458.

doi: 10.3389/fchem.2021.810458
[192]
Kaspar C, Ravoo B J, van der Wiel W G, Wegner S V, Pernice W H P. Nature, 2021, 594(7863): 345.

doi: 10.1038/s41586-021-03453-y
[193]
Fedik N, Zubatyuk R, Kulichenko M, Lubbers N, Smith J S, Nebgen B, Messerly R, Li Y W, Boldyrev A I, Barros K, Isayev O, Tretiak S. Nat. Rev. Chem., 2022, 6(9): 653.

doi: 10.1038/s41570-022-00416-3
[1] Hui Tang, Hairong Li, Xiaochun Liu, Yahui Zhang, Zhouyu Wang, Xiaoqi Yu. NIR-Ⅱ Aggregation-Induced Emission for PDT-PTT Dual-Mode Synergistic Therapy [J]. Progress in Chemistry, 2023, 35(9): 1399-1414.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Chubin Zhao, Hailin Wang. Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules [J]. Progress in Chemistry, 2023, 35(10): 1486-1491.
[4] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[5] Yibin Zhi, Lan Yu, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Arylsilanes Host Materials and Their Application in Phosphorescent Organic Light Emitting Diodes [J]. Progress in Chemistry, 2022, 34(5): 1109-1123.
[6] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[7] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[8] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[9] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[10] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[11] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[12] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[13] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[14] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[15] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.