中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1294-1303 DOI: 10.7536/PC230229 Previous Articles   Next Articles

• Review •

Design and Synthesis of Degradable Polyolefins

Huiping Yu1,2, Yawei Qin1, Jinyong Dong1,2()   

  1. 1 Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jydong@iccas.ac.cn
  • Supported by:
    The National Natural Science Foundations of China(51973224); The National Natural Science Foundations of China(52173013)
Richhtml ( 38 ) PDF ( 326 ) Cited
Export

EndNote

Ris

BibTeX

Polyolefin is thermoplastic universal plastic widely used in daily life. However, the overuse of polyolefin plastic and lack of degradability has led to a large amount of plastic waste, as well as growing land and marine pollution problems. The overwhelming majority of post-consumer polyolefin plastic is not recycled. Obstacles to the recycling of waste plastic include high energy consumption, low utilization rate of recycled products, low added value, and other wastes generated in the recycling process. Polyolefins degrade very slowly in the environment, and the addition of co-degraders can also cause environmental pollution. A feasible alternative is to redesign and synthesize degradable polyolefins, which can solve waste plastic problem from the source. The synthesis of degradable polyolefins has been extensively studied over the past half century. This paper summarizes the degradation mechanism of polyolefins, including oxidative degradation and co-degradation technology. Meanwhile we review four approaches to synthesizing degradable polyolefins, which cover condensation of long-chain bifunctional monomers, copolymerization with polar monomers, acyclic diene metathesis, and ring-opening polymerization. Among them, olefin metathesis polymerization has significantly expanded the types of degradable polyolefins due to the superior tolerance of the catalysts to functional groups, such as polyester, polyacetal, polycarbonate, polyphosphoester. We discuss the forward-looking synthetic approaches offered by current research and the challenges that these degradable materials face in truly replacing polyolefin materials. Finally, we propose our perspective on the opportunities and challenges in this field.

Contents

1 Introduction

2 Degradation mechanism of polyolefin

2.1 Oxidative degradation

2.2 Co-degradation technology

3 Synthesis of degradable polyolefins

3.1 Polycondensation of long chain difunctional monomers

3.2 Copolymerization with polar monomers

3.3 Acyclic diene metathesis

3.4 Ring-opening polymerization

4 Conclusion and outlook

Fig.1 Thermo-oxidative degradation mechanism of polyolefins
Fig.2 Degradation mechanism of photocatalyst in photo-oxidative degradation process
Fig.3 (a) Comparison of mechanical properties, crystallinity and O2 barrier between polyester materials with different methylene sequence lengths and LLDPE, polyadipate/butylene terephthalate (PBAT); (b) diacid chain length dependence of supercooling temperature ΔT and melting enthalpies ΔHm of polyester PE s x y with fixed x.[22] Copyright 2021, ACS.
Table 1 Summary of representative degradable polymers via ADMET
Fig.4 (a)Synthesis, functionalization and controlled degradation of high molecular weight polyesters based on iticonic acid and 10-undecenol[48]. Copyright 2014, ACS. (b) Xylose-based polyethers and polyesters via ADMET polymerization toward polyethylene-like materials[50]. Copyright 2021, ACS
Fig.5 Synthetic degradable polymers through ring-opening polymerization via various chain-growth mechanisms. (a) Radical ROP of cyclic ketene acetals and thionolactone; (b) Anionic/cationic/metal/organo-catalyzed ROP, anion catalyzed ROP mechanism is represented; (c) ROMP of cyclic olefin monomers
Fig.6 (a) ROMP of cycloacylsilane monomer with cycloctene; (b) Irradiation studies of acylsilane copolymers in the solid state and GPC traces[64]. Copyright 2021, ACS.
[1]
Zhang F, Wang F, Wei X Y, Yang Y, Xu S M, Deng D H, Wang Y Z. J. Energy Chem., 2022, 69: 369.

doi: 10.1016/j.jechem.2021.12.052
[2]
Pan J S, Ai X Q, Ma C F, Zhang G Z. Acc. Chem. Res., 2022, 55(11): 1586.

doi: 10.1021/acs.accounts.2c00187
[3]
Liu Z Y. China Plastics Industry, 2022, 50(04): 1.
(刘朝艳. 塑料工业, 2022, 50(04): 1.).
[4]
Jehanno C, Alty J W, Roosen M, De Meester S, Dove A P, Chen E Y X, Leibfarth F A, Sardon H. Nature, 2022, 603(7903): 803.

doi: 10.1038/s41586-021-04350-0
[5]
Gong J, Chen X C, Tang T. Prog. Polym. Sci., 2019, 94: 1.

doi: 10.1016/j.progpolymsci.2019.04.001
[6]
Liu X H, Xu S M, Zhang F, Wang X L, Wang Y Z. Acta Polym. Sin., 2022, 9: 1005.
(刘雪辉, 徐世美, 张帆, 汪秀丽, 王玉忠. 高分子学报, 2022, 9: 1005.).
[7]
Coates G W, Getzler Y D Y L. Nat. Rev. Mater., 2020, 5(7): 501.

doi: 10.1038/s41578-020-0190-4
[8]
Williams P T, Williams E A. Energy Fuels, 1999, 13(1): 188.

doi: 10.1021/ef980163x
[9]
Luo X, Zhan J H, Zhang S C. Energy Environmental Protection, 2023, 37(1): 194.
(骆希, 詹佳慧, 张士成. 能源环境保护, 2023, 37(1): 194.).
[10]
Bhaskar T, Murai K, Matsui T, Brebu M A, Uddin M A, Muto A, Sakata Y, Murata K. J. Anal. Appl. Pyrolysis, 2003, 70(2): 369.

doi: 10.1016/S0165-2370(02)00183-3
[11]
Mo Y, Zhao L, Wang Z H, Chen C L, Tan G Y A, Wang J Y. Waste Manag., 2014, 34(4): 763.

doi: 10.1016/j.wasman.2014.01.005
[12]
Pifer A, Sen A. Angew. Chem. Int. Ed., 1998, 37(23): 3306.

doi: 10.1002/(SICI)1521-3773(19981217)37:23【-逻*辑*与-】lt;3306::AID-ANIE3306【-逻*辑*与-】gt;3.0.CO;2-B pmid: 29711403
[13]
Hoff A, Jacobsson S. J. Appl. Polym. Sci., 1982, 27(7): 2539.

doi: 10.1002/app.1982.070270723
[14]
Bren M, Janezic D, Bren U. J. Phys. Chem. A., 2007, 112(2): 166.

doi: 10.1021/jp709766c
[15]
Bäckström E, Odelius K, Hakkarainen M. Ind. Eng. Chem. Res., 2017, 56(50): 14814.

doi: 10.1021/acs.iecr.7b04091
[16]
Andler R, Tiso T, Blank L, Andreeßen C, Zampolli J, D’Afonseca V, Guajardo C, Díaz-Barrera A. Rev. Environ. Sci. Bio/technology, 2022, 21(4): 829.

doi: 10.1007/s11157-022-09631-2
[17]
Tofa T S, Laxman Kunjali K, Paul S, Dutta J. Environ. Chem. Lett., 2019, 17(3): 1341.

doi: 10.1007/s10311-019-00859-z
[18]
Gong T. Fine Specialty Chem., 2014, 22(6): 11.
(宫涛. 精细与专用化学品, 2014, 22(6): 11.).
[19]
Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong K H. Prog. Polym. Sci., 2011, 36(8): 1015.

doi: 10.1016/j.progpolymsci.2010.12.002
[20]
Stempfle F, Ortmann P, Mecking S. Chem. Rev., 2016, 116(7): 4597.

doi: 10.1021/acs.chemrev.5b00705 pmid: 27023340
[21]
Häußler M, Eck M, Rothauer D, Mecking S. Nature, 2021, 590(7846): 423.

doi: 10.1038/s41586-020-03149-9
[22]
Zhou L Z, Qin P K, Wu L B, Li B G, Dubois P. ACS Sustain. Chem. Eng., 2021, 9(51): 17362.

doi: 10.1021/acssuschemeng.1c06752
[23]
Huang Q G, Wang F, Yu H C, Nan F, Wang Q C. CN201710933085.2, 2017.
[24]
Pemba A G, Flores J A, Miller S A. Green Chem., 2013, 15(2): 325.

doi: 10.1039/c2gc36588j
[25]
Ortmann P, Heckler I, Mecking S. Green Chem., 2014, 16(4): 1816.

doi: 10.1039/c3gc42592d
[26]
Zhang X S, Zuo X B, Ortmann P, Mecking S, Alamo R G. Macromolecules, 2019, 52(13): 4934.

doi: 10.1021/acs.macromol.9b00922
[27]
Busch H, Schiebel E, Sickinger A, Mecking S. Macromolecules, 2017, 50(20): 7901.

doi: 10.1021/acs.macromol.7b01368
[28]
Kocen A L, Cui S L, Lin T W, LaPointe A M, Coates G W. J. Am. Chem. Soc., 2022, 144(28): 12613.

doi: 10.1021/jacs.2c04499
[29]
Brubaker M M, Coffman D D, Hoehn H H. J. Am. Chem. Soc., 1952, 74(6): 1509.

doi: 10.1021/ja01126a047
[30]
Sommazzi A, Garbassi F. Prog. Polym. Sci., 1997, 22(8): 1547.

doi: 10.1016/S0079-6700(97)00009-9
[31]
Drent E, Budzelaar P H M. Chem. Rev., 1996, 96(2): 663.

pmid: 11848769
[32]
Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R I. Chem. Commun., 2002(9): 964.
[33]
Newsham D K, Borkar S, Sen A, Conner D M, Goodall B L. Organometallics, 2007, 26(15): 3636.

doi: 10.1021/om700523m
[34]
Baur M, Lin F, Morgen T O, Odenwald L, Mecking S. Science, 2021, 374(6567): 604.

doi: 10.1126/science.abi8183
[35]
Tang S, Seidel F W, Nozaki K. Angew. Chem. Int. Ed., 2021, 60(51): 26506.

doi: 10.1002/anie.v60.51
[36]
Schrock R R, Murdzek J S, Bazan G C, Robbins J, DiMare M, O'Regan M. J. Am. Chem. Soc., 1990, 112(10): 3875.

doi: 10.1021/ja00166a023
[37]
Schrock R R, Feldman J, Cannizzo L F, Grubbs R H. Macromolecules, 1987, 20(5): 1169.

doi: 10.1021/ma00171a053
[38]
Bielawski C W, Grubbs R H. Prog. Polym. Sci., 2007, 32(1): 1.

doi: 10.1016/j.progpolymsci.2006.08.006
[39]
Scholl M, Ding S, Lee C W, Grubbs R H. Org. Lett., 1999, 1(6): 953.

pmid: 10823227
[40]
Schwab P, Grubbs R H, Ziller J W. J. Am. Chem. Soc., 1996, 118(1): 100.

doi: 10.1021/ja952676d
[41]
Schwab P, France M B, Ziller J W, Grubbs R H. Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2039.

doi: 10.1002/anie.v34:18
[42]
Atallah P, Wagener K B, Schulz M D. Macromolecules, 2013, 46(12): 4735.

doi: 10.1021/ma400067b
[43]
Schulz M D, Wagener K B. Macromol. Chem. Phys., 2014, 215(20): 1936.

doi: 10.1002/macp.v215.20
[44]
Shearouse W C, Lillie L M, Reineke T M, Tolman W B. ACS Macro Lett., 2015, 4(3): 284.

doi: 10.1021/acsmacrolett.5b00099
[45]
Tee H T, Lieberwirth I, Wurm F R. Macromolecules, 2019, 52(3): 1166.

doi: 10.1021/acs.macromol.8b02474
[46]
Mutlu H, Barner-Kowollik C. Polym. Chem., 2016, 7(12): 2272.

doi: 10.1039/C5PY01937K
[47]
Vert M. Biomacromolecules, 2005, 6(2): 538.

doi: 10.1021/bm0494702
[48]
Lv A, Li Z L, Du F S, Li Z C. Macromolecules, 2014, 47(22): 7707.

doi: 10.1021/ma5020066
[49]
Lv A, Cui Y, Du F S, Li Z C. Macromolecules, 2016, 49(22): 8449.

doi: 10.1021/acs.macromol.6b01325
[50]
Piccini M, Lightfoot J, Dominguez B C, Buchard A. ACS Appl. Polym. Mater., 2021, 3(11): 5870.

doi: 10.1021/acsapm.1c01095
[51]
Parkhurst R R, Balog S, Weder C, Simon Y C. RSC Adv., 2014, 4(96): 53967.

doi: 10.1039/C4RA08788G
[52]
Haider T P, Suraeva O, Lieberwirth I, Paneth P, Wurm F R. Chem. Sci., 2021, 12(48): 16054.

doi: 10.1039/D1SC05509G
[53]
Geiselhart C M, Xue W W, Barner-Kowollik C, Mutlu H. Macromolecules, 2021, 54(4): 1775.

doi: 10.1021/acs.macromol.1c00010
[54]
Cameron D J A, Shaver M P. Chem. Soc. Rev., 2011, 40(3): 1761.

doi: 10.1039/c0cs00091d pmid: 21082079
[55]
Delplace V, Nicolas J. Nat. Chem., 2015, 7(10): 771.

doi: 10.1038/nchem.2343 pmid: 26391076
[56]
Cassidy H G. J. Am. Chem. Soc., 1949, 71(2): 402.

doi: 10.1021/ja01170a009
[57]
Zeng T Y, Xia L, Zhang Z, Hong C Y, You Y Z. Polym. Chem., 2021, 12(2): 165.

doi: 10.1039/D0PY00200C
[58]
Abel B A, Snyder R L, Coates G W. Science, 2021, 373(6556): 783.

doi: 10.1126/science.abh0626
[59]
Huang J, OlsÉn P, Svensson Grape E, Inge A K, Odelius K. Macromolecules, 2022, 55(2): 608.

doi: 10.1021/acs.macromol.1c02225
[60]
Myers D, Witt T, Cyriac A, Bown M, Mecking S, Williams C K. Polym. Chem., 2017, 8(37): 5780.

doi: 10.1039/C7PY00985B
[61]
Shieh P, Zhang W X, Husted K E L, Kristufek S L, Xiong B Y, Lundberg D J, Lem J, Veysset D, Sun Y C, Nelson K A, Plata D L, Johnson J A. Nature, 2020, 583(7817): 542.

doi: 10.1038/s41586-020-2495-2
[62]
Liang Y F, Sun H, Cao W, Thompson M P, Gianneschi N C. ACS Macro Lett., 2020, 9(10): 1417.

doi: 10.1021/acsmacrolett.0c00401
[63]
Haider T, Shyshov O, Suraeva O, Lieberwirth I, von Delius M, Wurm F R. Macromolecules, 2019, 52(6): 2411.

doi: 10.1021/acs.macromol.9b00180
[64]
Huang B R, Wei M F, Vargo E, Qian Y W, Xu T, Dean Toste F. J. Am. Chem. Soc., 2021, 143(43): 17920.

doi: 10.1021/jacs.1c06836
[65]
Si G F, Tan C, Chen M, Chen C L. Angew. Chem. Int. Ed., 2022, 61(29): e202203796.

doi: 10.1002/anie.v61.29
[1] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[2] Yongjie Zhang, Mingshuai Fan, Xiaopei Li, Huayi Li, Shuwei Wang, Wenqin Zhu. Silicon-Containing Functionalized Polyolefin: Synthesis and Application [J]. Progress in Chemistry, 2020, 32(1): 84-92.
[3] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[4] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[5] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[6] Han Gao, Jun Xu, Xin Hu, Ning Zhu, Kai Guo. Synthesis of Poly(Ester Amide) [J]. Progress in Chemistry, 2018, 30(11): 1634-1645.
[7] Zhaodong Wang, Chuncheng Li*, Yaonan Xiao, Bo Zhang, Zhaodong Wang. Biodegradable Anti-Fouling Materials [J]. Progress in Chemistry, 2017, 29(8): 824-832.
[8] Zhang Yongjie, Li Huayi, Qu Minjie, Feng Na, Yang Wei, Zhang Chong. Well-Defined Polyolefin Graft Copolymers: Syntheses, Structures, and Properties [J]. Progress in Chemistry, 2016, 28(11): 1634-1647.
[9] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[10] Zhang Yongjie, Li Huayi, Dong Jin-Yong, Hu Youliang. Polyolefin Covalently Grafted Nanomaterials and Polyolefin Nanocomposites Derived Thereof [J]. Progress in Chemistry, 2015, 27(1): 47-58.
[11] Rong Lei, Ning Yingnan, Gao Jinping, Mao Guoliang, Ma Zhi. Functionalization of Polyolefin Based on Polyhomologation of Ylide [J]. Progress in Chemistry, 2014, 26(08): 1369-1377.
[12] Qi Meizhou, Fu Zhisheng, Fan Zhiqiang. Immobilization of Metallocene Catalysts [J]. Progress in Chemistry, 2014, 26(05): 737-748.
[13] Zhang Yongjie, Li Huayi, Dong Jinyong, Hu Youliang. Synthesis and Applications of Chain End Functionalized Polyolefins [J]. Progress in Chemistry, 2014, 26(01): 110-124.
[14] Zhao Qiaoling, Ma Zhi*. Application of Atomic Force Microscope to Polyolefin Research [J]. Progress in Chemistry, 2012, (10): 2011-2018.
[15] Xu Rong, Chen Chunxia. Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Organocatalyst [J]. Progress in Chemistry, 2012, 24(08): 1519-1525.