中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 968-982 DOI: 10.7536/PC230224 Previous Articles   Next Articles

• Review •

Condensate Matter Chemistry of Subcritical or Supercritical Reactions

Yuan Zhang1, Beining Zheng2, Xiaofeng Wu1, Keke Huang1, Shouhua Feng1()   

  1. 1 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,Changchun 130012, China
    2 College of Physics, Jilin University,Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: shfeng@jlu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(21831003); The National Natural Science Foundation of China(22090044); The Jilin Province Science and Technology Development Plan(20200802003GH)
Richhtml ( 10 ) PDF ( 196 ) Cited
Export

EndNote

Ris

BibTeX

Through chemical reactions, definite and complex atomic and molecular condensed matter is formed. The multi-dimensional composite and synergy of the interactions between atoms and molecules expand the structure pattern of matter, and the properties of the system change dramatically, showing some characteristics of condensed matter chemistry. Under certain conditions or under supercritical disproportionation reaction, manganese metal ions are aggregated into complex modulated structures in the form of three oxidation states. In this paper, from the perspective of condensed matter chemistry, the formation of atomic-scale pn junction solids under subcritical hydrothermal conditions, quantum IV properties and electric field induced superflow phenomenon are introduced in detail, and chemical reaction driven condensed matter transition is discussed. This paper also introduces the basic properties of condensed fluid and chemical reactions involving gas molecules at all levels of condensed scale, including chemical bond repair reaction, hydrothermal reaction, artificial rainfall, tumor regression, as well as the mechanism and potential applications of condensed matter chemical reactions under supercritical conditions.

Contents

1 Introduction

2 Concept and properties of supercritical fluid

2.1 Area of supercritical fluid on phase diagram

2.2 Critical phenomena in state transition

2.3 Properties of supercritical water

2.4 Properties of supercritical CO2

2.5 Properties of supercritical alcohol system

3 Solid formation under subcritical/supercritical conditions

3.1 Hydrothermal disproportionation under subcritical condition

3.2 Triple valence state and modulation structure of Mn

3.3 Atomic-scale pn junction and quantum IV effect

4 Application of supercritical fluid reaction

4.1 Chemical reaction

4.2 Industrial production

4.3 Environmental protection

4.4 C1 transformation and origin of life

4.5 Supercritical gases in astrophysics and planetary science

5 Future application direction of subcritical/supercritical system

5.1 Bose-Einstein condensation

5.2 Biocondensed matter-amino acid polymer and protein

5.3 Cancer treatment and tumor regression

5.4 Conclusion and prospect

Fig.1 Condensed matter science includes the design of materials that power new technologies and the exploration of fundamental disciplines[1] (The graph represents Fermi polarons condensed in a two-dimensional, spin-imbalanced Fermi gas)
Fig.2 KPZ physics in the phase dynamics of a 1D polariton condensate[2]
Fig.3 Schematic illustration of the synthesis of the Si/Fe3O4/C composites by the supercritical fluid-assisted ball-milling method[4]
Table 1 Density, viscosity and diffusivity range of gas, supercritical fluid and liquid
Fig.4 Schematic free enthalpy diagram illustrates the superheating conditions. The undulated arrow represents the slow metastability release of the superheated state by vitrification[9]
Fig.5 Artificial rainfall process[11]
Fig.6 The presence of Mn5+ has been confirmed by (a) Mn K-edge XANES spectroscopy, (b) near-infrared absorption spectra, (c) laser-induced emission and (d) X-ray photoelectron spectroscopy of LCKMO single crystal
Fig.7 TEM images and SAED patterns of a triple superlattice structure of a crystal in the [001] direction
Fig.8 Ⅳ curve of La1-x-yCaxKyMnO3 perovskite single crystal
Fig.9 Oscillation period of the intermolecular stretching mode, tosci plotted against the continuous H-bond lifetime, τ H B [21]
Fig.10 Centimeter-level CuO wafers prepared in ultra-alkaline hydrothermal condition
Fig.11 Preparation of aerogel[23]
Fig.12 Solubility of Caffeine in Supercritical C O 2 [30]
Fig.13 A process model for catalytic supercritical interesterification considering degradation reactions at high temperatures[38]
Fig.14 Proposed Mechanism of Phenol Formation[45]
Fig.15 Schematic representation of the interiors of Jupiter, Saturn, Uranus, and Neptune[47]
Fig.16 Two electrons with opposite spins are paired by the interaction of exciton and electrons
Fig.17 The design of indocyanine green-encapsulated silk fibroin nanoparticles using supercritical fluid technology which exhibits excellent photothermal stability and high PTT efficiency[66]
[1]
Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M, Köhl M. Nature, 2012, 485: 619.

doi: 10.1038/nature11151
[2]
Fontaine Q, Squizzato D, Baboux F, Amelio I, Lemaître A, Morassi M. Nature, 2022, 608(7924): 687.

doi: 10.1038/s41586-022-05001-8
[3]
Kazan A. Microfluid. Nanofluidics, 2022, 26(9): 68.

doi: 10.1007/s10404-022-02574-8
[4]
Hu L Y, Lu Z H, Chen F, Zhang J, Xia Y, Zhang W K, Gan Y P, He X P, Song W L, Huang H. Energy Fuels, 2023, 37(11): 8042.

doi: 10.1021/acs.energyfuels.3c01074
[5]
Counsell J F, Everett D H. Nature, 1960, 188(4750): 576.

doi: 10.1038/188576a0
[6]
Girard E, Tassaing T, Marty J D, Destarac M. Chem. Rev., 2016, 116(7): 4125.

doi: 10.1021/acs.chemrev.5b00420
[7]
Cockrell C, Brazhkin V V, Trachenko K. Phys. Rep., 2021, 941: 1.

doi: 10.1016/j.physrep.2021.10.002
[8]
Yu L, Hao B L, Chen X S. Miracles on the Edge: Phase Transitions and Critical Phenomena(4th Ed), Beijing: Science Press, 2016.
( 于渌, 郝柏林, 陈晓松. 边缘奇迹:相变与临界现象, 北京: 科学出版社, 2016.).
[9]
Willart J F, HÉdoux A, Guinet Y, Danède F, Paccou L, Capet F, Descamps M. J. Phys. Chem. B, 2006, 110(23): 11040.

doi: 10.1021/jp061784r
[10]
[2023-02-01]https://baike.baidu.com/item/人工降水/382136.
[11]
Blazina T, Läderach A, Jones G D, Sodemann H, Wernli H, Kirchner J W, Winkel L H E. Environ. Sci. Technol., 2017, 51(1): 108.

doi: 10.1021/acs.est.6b03063 pmid: 27959548
[12]
Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987.
[13]
Duan J S, Shim Y, Kim H J. J. Chem. Phys., 2006, 124(20): 204504.

doi: 10.1063/1.2194012
[14]
Johnston K P, Harrison K L, Clarke M J, Howdle S M, Heitz M P, Bright F V, Carlier C, Randolph T W. Science, 1996, 271(5249): 624.

doi: 10.1126/science.271.5249.624
[15]
Qi Y H, Xu Q, Wang Y, Yan B, Ren Y M, Chen Z M. ACS Nano, 2016, 10(2): 2903.

doi: 10.1021/acsnano.6b00001
[16]
Kawamoto H, Ryoritani M, Saka S. J. Anal. Appl. Pyrolysis, 2008, 81(1): 88.

doi: 10.1016/j.jaap.2007.09.006
[17]
Reiter J, Strittmatter H, Wiemann L O, Schieder D, Sieber V. Green Chem., 2013, 15(5): 1373.

doi: 10.1039/c3gc40295a
[18]
Teong S P, Lim J, Zhang Y G. ChemSusChem, 2017, 10(16): 3198.

doi: 10.1002/cssc.201701153 pmid: 28730737
[19]
Chara O, McCarthy A N, Grigera J R. Phys. Lett. A, 2011, 375(3): 572.

doi: 10.1016/j.physleta.2010.11.061
[20]
Larrea JimÉnez J, Crone S P G, Fogh E, Zayed M E, Lortz R, Pomjakushina E, Conder K, Läuchli A M, Weber L, Wessel S, Honecker A, Normand B, Rüegg C, Corboz P, Rønnow H M, Mila F. Nature, 2021, 592(7854): 370.

doi: 10.1038/s41586-021-03411-8
[21]
Schienbein P, Marx D. Angew. Chem. Int. Ed., 2020, 59(42): 18578.

doi: 10.1002/anie.v59.42
[22]
Zhang Y, Yuan L, Zhong X, Huang K K, Feng S H. Inorg. Chem., 2018, 57(6): 2957.

doi: 10.1021/acs.inorgchem.7b03095 pmid: 29513528
[23]
Huang C G, Cheng X, Chen B Y, Wang J W, Dai Y, Yue S T, Huang H. Nano Lett., 2022, 22(23): 9290.

doi: 10.1021/acs.nanolett.2c02768
[24]
Li L, Dai T J, Liu K, Chang K C, Zhang R, Lin X N, Liu H J, Lai Y C, Kuo T P. Nanoscale, 2021, 13(33): 14035.

doi: 10.1039/D1NR03356E
[25]
Wang X F, Chang K C, Zhang Z W, Liu Q, Li L, Ma S H, Zhang M. Carbon, 2021, 173: 97.

doi: 10.1016/j.carbon.2020.10.084
[26]
Li L, Chang K C, Lin X N, Zhang R, Lou J H. Adv. Electron. Mater., 2019, 5(12): 1900580.

doi: 10.1002/aelm.v5.12
[27]
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311(5760): 484.

doi: 10.1126/science.1114736 pmid: 16439654
[28]
Palmer M V, Ting S S T. Food Chem., 1995, 52(4): 345.

doi: 10.1016/0308-8146(95)93280-5
[29]
Kazlas P T, Novak R D, Robey R J. 1994. US5288511-A.
[30]
Reddy V, Saharay M. J. Phys. Chem. B, 2019, 123(45): 9685.

doi: 10.1021/acs.jpcb.9b08351
[31]
Danan H N, Esposito P. Ther. Deliv., 2014, 5(2): 205.

doi: 10.4155/tde.13.146 pmid: 24483197
[32]
Tabernero A, Martín del Valle E M, Galán M A. Chem. Eng. Process. Process. Intensif., 2012, 60: 9.

doi: 10.1016/j.cep.2012.06.004
[33]
Chattopadhyay P, Gupta R B. Ind. Eng. Chem. Res., 2001, 40(16): 3530.

doi: 10.1021/ie010040r
[34]
Hua M F, Hua X F. Nano Micro Lett., 2014, 6(1): 20.

doi: 10.1007/BF03353764
[35]
Sun W, Zheng L, Wang Y Q, Jia W H, Guo W Z, Liu Z R, Ding X, Wu L, Fang T. J. CO2 Util., 2022, 58: 101912.
[36]
Lu D G, Peng C H. Atomic Energy Science and Technology, 2009, 43: 743.
( 陆道纲, 彭常宏. 原子能科学技术, 2009, 43: 743.).

doi: 10.7538/yzk.2009.43.08.0743
[37]
Schulenberg T, Starflinger J. Nucl. Eng. Technol., 2007, 39(4): 249.

doi: 10.5516/NET.2007.39.4.249
[38]
Brondani L N, Simões S S, Celante D, Castilhos F. Ind. Eng. Chem. Res., 2019, 58(2): 816.

doi: 10.1021/acs.iecr.8b04715
[39]
Cao C Q, Zhang Y, Li L H, Wei W W, Wang G Y, Bian C. Int. J. Hydrog. Energy, 2019, 44(30): 15737.

doi: 10.1016/j.ijhydene.2018.10.006
[40]
Qian L L, Wang S Z, Ren M M, Wang S. Chem. Eng. J., 2019, 366: 223.

doi: 10.1016/j.cej.2019.02.046
[41]
Top S, Akgün M, Kıpçak E, Bilgili M S. Water Res., 2020, 185: 116279.

doi: 10.1016/j.watres.2020.116279
[42]
Zhang X, Li L F, Du Z F, Hao X L, Cao L, Luan Z D, Wang B, Xi S C, Lian C, Yan J, Sun W D. Sci. Bull., 2020, 65(11): 958.

doi: 10.1016/j.scib.2020.03.023 pmid: 36747429
[43]
Alargov D K, Deguchi S, Tsujii K, Horikoshi K. Orig. Life Evol. Biosphere, 2002, 32(1): 1.

doi: 10.1023/A:1013906319253
[44]
Holm N G, Charlou J L. Earth Planet. Sci. Lett., 2001, 191(1/2): 1.

doi: 10.1016/S0012-821X(01)00397-1
[45]
Tian G, Yuan H M, Mu Y, He C, Feng S H. Org. Lett., 2007, 9(10): 2019.

pmid: 17444651
[46]
Stern J C, Sutter B, Freissinet C, Navarro-Gonzalez R, McKay C P, Archer P D, et al. Proc. Natl Acad. Sci. U. S. A., 2015, 112(14): 4245.

doi: 10.1073/pnas.1420932112
[47]
Guillot T. Science, 1999, 286(5437): 72.

pmid: 10506563
[48]
Guillot T. Planet. Space Sci., 1999, 47(10-11): 1183.

doi: 10.1016/S0032-0633(99)00043-4
[49]
Brazhkin V V, Fomin Y D, Lyapin A G, Ryzhov V N, Trachenko K. Phys. Rev. E, 2012, 85(3): 031203.

doi: 10.1103/PhysRevE.85.031203
[50]
Bolmatov D, Brazhkin V V, Trachenko K. Nat. Commun., 2013, 4: 2331.

doi: 10.1038/ncomms3331 pmid: 23949085
[51]
Cannon K M, Parman S W, Mustard J F. Nature, 2017, 552(7683): 88.

doi: 10.1038/nature24657
[52]
Elkins-Tanton L T. Earth Planet. Sci. Lett., 2008, 271(1/4): 181.

doi: 10.1016/j.epsl.2008.03.062
[53]
Lammer H, Chassefière E, Karatekin Ö, Morschhauser A, Niles P B, Mousis O, Odert P, Möstl U V, Breuer D, Dehant V, Grott M, Gröller H, Hauber E, Binh San Pham L. Space Sci. Rev., 2013, 174(1-4): 113.

doi: 10.1007/s11214-012-9943-8
[54]
Trachenko K, Brazhkin V V, Bolmatov D. Phys. Rev. E, 2014, 89(3): 032126.

doi: 10.1103/PhysRevE.89.032126
[55]
Allender D, Bray J, Bardeen J. Phys. Rev. B, 1973, 7(3): 1020.

doi: 10.1103/PhysRevB.7.1020
[56]
Zhao Z X, Han R S, Han R Q, Liu F S. Chinese Science Bulletin, 1979, 15: 686.
( 赵忠贤, 韩汝珊, 韩汝琦, 刘福绥. 科学通报, 1979, 15: 686.).
[57]
Feng S H, Yuan H M, Shi Z, Chen Y, Wang Y W, Huang K K, Hou C M, Li J X, Pang G S, Hou Y. J. Mater. Sci., 2008, 43(7): 2131.

doi: 10.1007/s10853-007-1988-9
[58]
Buča B, Jaksch D. Phys. Rev. Lett., 2019, 123(26): 260401.

doi: 10.1103/PhysRevLett.123.260401
[59]
Dogra N, Landini M, Kroeger K, Hruby L, Donner T, Esslinger T. Science, 2019, 366(6472): 1496.

doi: 10.1126/science.aaw4465
[60]
Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, Blatt R. Nature, 2011, 470(7335): 486.

doi: 10.1038/nature09801
[61]
Beige A, Braun D, Tregenna B, Knight P L. Phys. Rev. Lett., 2000, 85(8): 1762.

pmid: 10970608
[62]
Barontini G, Hohmann L, Haas F, Estève J, Reichel J. Science, 2015, 349(6254): 1317.

doi: 10.1126/science.aaa0754 pmid: 26383948
[63]
Vollbrecht K G H, Muschik C A, Cirac J I. Phys. Rev. Lett., 2011, 107(12): 120502.

doi: 10.1103/PhysRevLett.107.120502
[64]
Muñoz J M, Wang X, Hewitt T, Kowalczyk A U, Sawant R, Barontini G. Phys. Rev. Lett., 2020, 125(2): 020403.

doi: 10.1103/PhysRevLett.125.020403
[65]
Gouveia B, Kim Y, Shaevitz J W, Petry S, Stone H A, Brangwynne C P. Nature, 2022, 609(7926): 255.

doi: 10.1038/s41586-022-05138-6
[66]
Chen B Q, Kankala R K, He G Y, Yang D Y, Li G P, Wang P, Wang S B, Zhang Y S, Chen A Z. ACS Biomater. Sci. Eng., 2018, 4(10): 3487.

doi: 10.1021/acsbiomaterials.8b00705
[67]
Boija A, Klein I A, Young R A. Cancer Cell, 2021, 39(2): 174.

doi: 10.1016/j.ccell.2020.12.003 pmid: 33417833
[1] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[2] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[3] Weng Xilun, Bao Zongbi, Luo Fei, Su Baogen, Yang Yiwen, Ren Qilong. Progress in Preparation and Applications of Cellulose Derivatives-Based Chiral Stationary Phase [J]. Progress in Chemistry, 2014, 26(0203): 415-423.
[4] Ni Min, Xu Qinqin, Xu Gang, Wang Enjun, Yin Jianzhong. Applications of Supercritical Fluid Transport Technology in Preparation of Controlled-Release Drug Delivery Systems [J]. Progress in Chemistry, 2011, 23(8): 1611-1617.
[5] Zhu Liyang, Wen Mingfen, Duan Wuhua, Xu Jingming, Zhu Yongjun. Application of Supercritical Fluid Extraction in Reprocessing of Spent Nuclear Fuel [J]. Progress in Chemistry, 2011, 23(7): 1308-1315.
[6] Qi Chaorong Jiang Huanfeng. Organic Reactions in Supercritical Carbon Dioxide [J]. Progress in Chemistry, 2010, 22(07): 1274-1285.
[7] . Research Progress of the in Situ Reaction Techniques used in Supercritical (Sub-critical) Water [J]. Progress in Chemistry, 2010, 22(06): 1212-1220.
[8] . Applications of Supercritical Methanol in Chemical Reactions [J]. Progress in Chemistry, 2010, 22(05): 796-802.
[9] Wei Junjie Su Baogen Xing Huabin Zhang Hai Yang Qiwei Ren Qilong. Progress in Supercritical CO2 Microemulsions with Hydrocarbon Surfactants [J]. Progress in Chemistry, 2009, 21(6): 1141-1148.
[10] Yin Jianzhong Zhou Dan Wang Aiqin. Thermodynamic Properties and Applications of Supercritical Carbon Dioxide Microemulsions/Reverse Micelles [J]. Progress in Chemistry, 2009, 21(12): 2505-2514.
[11] Chen Keping Liang Liyun Tan Bien. CO2-Philc Hydrocarbon Polymers and Their Applications [J]. Progress in Chemistry, 2009, 21(10): 2199-2204.
[12] Zhang Huaiping Chen Mingcai. Polymerization in Surpercritical Carbon Dioxide [J]. Progress in Chemistry, 2009, 21(09): 1869-1879.
[13] Shi Jingya Wu Peiyi. Application of FTIR Spectroscopy in Polymereric Systems under Supercritical CO2 Processing [J]. Progress in Chemistry, 2009, 21(05): 1023-1033.
[14] . Supercritical Fluids Deposition Techniques for the Formation of Nanocomposites [J]. Progress in Chemistry, 2009, 21(04): 606-614.
[15] Yan Bo1,2 Wei Chaohai2**. Hydrogen Production from Organic Compounds by Supercritical Water Gasification [J]. Progress in Chemistry, 2008, 20(10): 1553-1561.