中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (10): 1486-1491 DOI: 10.7536/PC230222 Previous Articles   Next Articles

• Review •

Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules

Chubin Zhao1,2, Hailin Wang1,2,*()   

  1. 1 Hangzhou Institute for Advance Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
    2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: hlwang@rcees.ac.cn
  • Supported by:
    National Natural Science Foundation of China(21927807); National Natural Science Foundation of China(22021003)
Richhtml ( 24 ) PDF ( 264 ) Cited
Export

EndNote

Ris

BibTeX

The liquid-liquid phase separation of biological macromolecules is widely observed in various biological systems, and has become an emerging research focus of life science in recent years. Biological macromolecules are continuously enriched through multivalent interaction. When the molecular concentration reaches the dissolution threshold in solution, they will be precipitated from solution in the form of liquid-liquid phase separation. It is closely related to many important biological processes in cells (such as the formation of membraneless organelles). With the deepening of research on phase separation, its research methods are also developing and improving. Based on the principle and characteristics of phase separation, this paper introduces some commonly used research methods of phase separation. It provides the method basis for the subsequent phase separation research and promotes the further development of phase separation techniques and methods.

Contents

1 Principle and characteristics of liquid-liquid separation

2 Imaging technique for liquid-liquid phase separation

2.1 Optical microimaging

2.2 Single-molecule fluorescence imaging

2.3 Fluorescence correlation spectroscopy

3 Theoretical prediction for liquid-liquid separation

3.1 Phase separation prediction and modeling

3.2 Databases of phase separation related proteins

4 Conclusion and outlook

[1]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017, 18(5): 285.

doi: 10.1038/nrm.2017.7
[2]
Gao Y F, Li P L. Chinese Journal of Cell Biology, 2019, 41(2): 185.
(郜一飞, 李丕龙. 中国细胞生物学学报, 2019, 41(2): 185.).
[3]
Li P L, Banjade S, Cheng H C, Kim S, Chen B Y, Guo L, Llaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T, Rosen M K. Nature, 2012, 483(7389): 336.

doi: 10.1038/nature10879
[4]
Strom A R, Emelyanov A V, Mir M, Fyodorov D V, Darzacq X, Karpen G H. Nature, 2017, 547(7662): 241.

doi: 10.1038/nature22989
[5]
Wu M, Xu G, Han C, Luan P F, Xing Y H, Nan F, Yang L Z, Huang Y K, Yang Z H, Shan L, Yang L, Liu J Q, Chen L L. Science, 2021, 373(6554): 547.

doi: 10.1126/science.abf6582
[6]
Larson A G, Elnatan D, Keenen M M, Trnka M J, Johnston J B, Burlingame A L, Agard D A, Redding S, Narlikar G J. Nature, 2017, 547(7662): 236.

doi: 10.1038/nature22822
[7]
Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A. Nature, 2019, 572(7770): 543.

doi: 10.1038/s41586-019-1464-0
[8]
Su X L, Ditlev J A, Hui E F, Xing W M, Banjade S, Okrut J, King D S, Taunton J, Rosen M K, Vale R D. Science, 2016, 352(6285): 595.

doi: 10.1126/science.aad9964
[9]
Du M J, Chen Z J. Science, 2018, 361(6403): 704.

doi: 10.1126/science.aat1022
[10]
Banjade S, Rosen M K. eLife, 2014, 3: e04123.

doi: 10.7554/eLife.04123
[11]
Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X J, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A. Cell, 2018, 174(3): 688.

doi: S0092-8674(18)30731-1 pmid: 29961577
[12]
Alberti S, Gladfelter A, Mittag T. Cell, 2019, 176(3): 419.

doi: S0092-8674(18)31649-0 pmid: 30682370
[13]
Iserman C, Desroches Altamirano C, Jegers C, Friedrich U, Zarin T, Fritsch A W, Mittasch M, Domingues A, Hersemann L, Jahnel M, Richter D, Guenther U P, Hentze M W, Moses A M, Hyman A A, Kramer G, Kreysing M, Franzmann T M, Alberti S. Cell, 2020, 181(4): 818.

doi: 10.1016/j.cell.2020.04.009
[14]
Jain A, Vale R D. Nature, 2017, 546(7657): 243.

doi: 10.1038/nature22386
[15]
Peng A, Weber S C. Non Coding RNA, 2019, 5(4): 50.

doi: 10.3390/ncrna5040050
[16]
Cohen T J, Guo J L, Hurtado D E, Kwong L K, Mills I P, Trojanowski J Q, Lee V M Y. Nat. Commun., 2011, 2: 252.

doi: 10.1038/ncomms1255 pmid: 21427723
[17]
Alberti S, Dormann D. Annu. Rev. Genet., 2019, 53: 171.

doi: 10.1146/annurev-genet-112618-043527 pmid: 31430179
[18]
Ávila J, Lim F, Moreno F, Belmonte C, Cuello A C. Mol. Neurobiol., 2002, 25(3): 213.

doi: 10.1385/MN:25:3
[19]
Dong X W, Bera S, Qiao Q, Tang Y M, Lao Z H, Luo Y, Gazit E, Wei G H. J. Phys. Chem. Lett., 2021, 12(10): 2576.

doi: 10.1021/acs.jpclett.1c00208
[20]
Alberti S, Saha S, Woodruff J B, Franzmann T M, Wang J, Hyman A A. J. Mol. Biol., 2018, 430(23): 4806.

doi: S0022-2836(18)30667-3 pmid: 29944854
[21]
Babinchak W M, Surewicz W K. J. Mol. Biol., 2020, 432(7): 1910.

doi: S0022-2836(20)30225-4 pmid: 32169484
[22]
Zhang X X. Optical Instruments, 2015, 37(6): 550.
(张祥翔. 光学仪器, 2015, 37(6): 550.).
[23]
Guan Y J, Ma X C. J. Sun Yat Sen Univ. Med. Sci., 2022, 43(3): 504.
(关苑君, 马显才. 中山大学学报(医学科学版), 2022, 43(3): 504.).
[24]
Kanaan N M, Hamel C, Grabinski T, Combs B. Nat. Commun., 2020, 11: 2809.

doi: 10.1038/s41467-020-16580-3
[25]
Fu Y, Zhuang X W. Nat. Chem. Biol., 2020, 16(9): 955.

doi: 10.1038/s41589-020-0524-y
[26]
Babinchak W M, Surewicz W K. Bio-Protoc., 2020, 10(2): e3489.
[27]
Shin Y, Brangwynne C P. Science, 2017, 357(6357): eaaf4382.
[28]
GuillÉn-Boixet J, Kopach A, Holehouse A S, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina I R E A, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruß M, Richter D, Zhang X J, Chang Y T, Guck J, Honigmann A, Mahamid J, Hyman A A, Pappu R V, Alberti S, Franzmann T M. Cell, 2020, 181(2): 346.

doi: 10.1016/j.cell.2020.03.049
[29]
Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(13): 6264.

doi: 10.1073/pnas.93.13.6264
[30]
Förster T. Ann. Phys., 1948, 437(1/2): 55.

doi: 10.1002/andp.v437:1/2
[31]
Mitrea D M, Cika J A, Guy C S, Ban D, Banerjee P R, Stanley C B, Nourse A, Deniz A A, Kriwacki R W. eLife, 2016, 5: e13571.

doi: 10.7554/eLife.13571
[32]
Wen J T, Hong L, Krainer G, Yao Q Q, Knowles T P J, Wu S, Perrett S. J. Am. Chem. Soc., 2021, 143(33): 13056.

doi: 10.1021/jacs.1c03078
[33]
Mitrea D M, Cika J A, Stanley C B, Nourse A, Onuchic P L, Banerjee P R, Phillips A H, Park C G, Deniz A A, Kriwacki R W. Nat. Commun., 2018, 9: 842.

doi: 10.1038/s41467-018-03255-3 pmid: 29483575
[34]
Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29.

pmid: 4818131
[35]
Ghosh A, Enderlein J. Curr. Opin. Struct. Biol., 2021, 70: 123.

doi: 10.1016/j.sbi.2021.06.018
[36]
Chiantia S, Ries J, Schwille P. Biochim. Biophys. Acta BBA Biomembr., 2009, 1788(1): 225.
[37]
He H T, Marguet D. Annu. Rev. Phys. Chem., 2011, 62: 417.

doi: 10.1146/physchem.2011.62.issue-1
[38]
Wang Z L, Zhang H Z, Jian L, Ding B, Huang K Y, Zhang W L, Xiao Q, Huang S H. Biophys. Rep., 2022, 8(2): 100.

doi: 10.52601/bpr.2022.210047
[39]
Bracha D, Walls M T, Wei M T, Zhu L, Kurian M, Avalos J L, Toettcher J E, Brangwynne C P. Cell, 2018, 175(6): 1467.

doi: S0092-8674(18)31404-1 pmid: 30500534
[40]
Shakya A, King J T. Biophys. J., 2018, 115(10): 1840.

doi: 10.1016/j.bpj.2018.09.022
[41]
Loman A, Dertinger T, Koberling F, Enderlein J. Chem. Phys. Lett., 2008, 459(1/6): 18.

doi: 10.1016/j.cplett.2008.05.018
[42]
Peng S J, Li W P, Yao Y R, Xing W J, Li P L, Chen C L. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(44): 27124.

doi: 10.1073/pnas.2008447117
[43]
Best R B. Curr. Opin. Struct. Biol., 2017, 42: 147.

doi: 10.1016/j.sbi.2017.01.006
[44]
Whitford P C, Noel J K, Gosavi S, Schug A, Sanbonmatsu K Y, Onuchic J N. Proteins Struct. Funct. Bioinform., 2009, 75(2): 430.

doi: 10.1002/prot.v75:2
[45]
Zhang P C, Fang W Y, Bao L, Kang W B. Acta Phys. Sin., 2020, 69(13): 278.
(张鹏程, 方文玉, 鲍磊, 康文斌. 物理学报, 2020, 69(13): 278.).
[46]
Ruff K M, Harmon T S, Pappu R V. J. Chem. Phys., 2015, 143(24): 243123.

doi: 10.1063/1.4935066
[47]
Feric M, Vaidya N, Harmon T S, Mitrea D M, Zhu L, Richardson T M, Kriwacki R W, Pappu R V, Brangwynne C P. Cell, 2016, 165(7): 1686.

doi: 10.1016/j.cell.2016.04.047
[48]
You K Q, Huang Q, Yu C Y, Shen B Y, Sevilla C, Shi M L, Hermjakob H, Chen Y, Li T T. Nucleic Acids Res., 2020, 48(D1): D354.

doi: 10.1093/nar/gkz847
[49]
Hou C, Wang X X, Xie H T, Chen T Y, Zhu P Y, Xu X F, You K Q, Li T T. Nucleic Acids Res., 2023, 51(D1): D460.

doi: 10.1093/nar/gkac783
[50]
Meszaros B, Erdos G, Szabo B, Schad E, Tantos A, Abukhairan R, Horvath T, Murvai N, Kovacs O P, Kovacs M, Tosatto S C E, Tompa P, Dosztanyi Z, Pancsa R. Nucleic Acids Res., 2020, 48(D1): D360.
[51]
Wang X, Zhou X, Yan Q L, Liao S F, Tang W Q, Xu P Y, Gao Y, Li Q, Dou Z H, Yang W S, Huang B F, Li J H, Zhang Z Q. Bioinformatics, 2022, 38(7): 2010.

doi: 10.1093/bioinformatics/btac026
[52]
Li Q, Peng X J, Li Y Q, Tang W Q, Zhu J A, Huang J, Qi Y F, Zhang Z Q. Nucleic Acids Res., 2020, 48(D1): D320.

doi: 10.1093/nar/gkz778
[53]
Ning W S, Guo Y P, Lin S F, Mei B, Wu Y, Jiang P R, Tan X D, Zhang W Z, Chen G W, Peng D, Chu L, Xue Y. Nucleic Acids Res., 2020, 48(D1): D288.

doi: 10.1093/nar/gkz1027
[54]
Sun Y P, Zhang S Q, Hu J J, Tao Y Q, Xia W C, Gu J G, Li Y C, Cao Q, Li D, Liu C. iScience, 2022, 25(1): 103701.

doi: 10.1016/j.isci.2021.103701
[55]
Li X F, van der Gucht J, Erni P, de Vries R. J. Colloid Interface Sci., 2023, 632: 357.

doi: 10.1016/j.jcis.2022.11.071
[56]
Girelli A, Rahmann H, Begam N, Ragulskaya A, Reiser M, Chandran S, Westermeier F, Sprung M, Zhang F J, Gutt C, Schreiber F. Phys. Rev. Lett., 2021, 126(13): 138004.

doi: 10.1103/PhysRevLett.126.138004
[57]
Zhang X J, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung H K H, Becher I, Poser I, Müller C W, Hyman A A, Savitski M M, Mahamid J. Cell, 2023, 186(9): 1877.

doi: 10.1016/j.cell.2023.03.015
[58]
Yu M, Heidari M, Mikhaleva S, Tan P S, Mingu S, Ruan H, Reinkemeier C D, Obarska-Kosinska A, Siggel M, Beck M, Hummer G, Lemke E A. Nature, 2023, 617(7959): 162.

doi: 10.1038/s41586-023-05990-0
[1] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[2] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[3] Yang Lijiang, Shao Qiang, Gao Yiqin. Enhanced Sampling Method in Molecular Simulations [J]. Progress in Chemistry, 2012, 24(06): 1199-1213.
[4] Lin Yingwu. Computer-Aided Rational Protein Design: From Myoglobin to Nitric Oxide Reductases [J]. Progress in Chemistry, 2012, 24(05): 784-789.
[5] Zheng Yansheng, Zhuo Zhihao, Mo Qian, Li Junsheng. Molecular Simulation and Quantum Chemistry Calculation of Ionic Liquids [J]. Progress in Chemistry, 2011, 23(9): 1862-1870.
[6] . Application of Molecular Simulation in Biosensor Development [J]. Progress in Chemistry, 2010, 22(05): 845-851.
[7] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[8] Zhang Aijuan Xie Yun Zhou Jian. Experimental Control and Characterization of Proteins Orientation on Surfaces [J]. Progress in Chemistry, 2009, 21(0708): 1408-1417.
[9] Jing Yu Peiyi Wu . Progress In Two-Dimensional Fluorescence Correlation Spectroscopy [J]. Progress in Chemistry, 2006, 18(12): 1691-1702.
[10] Zhang Yang,Yang Jichu,Yu Yangxin,Li Yigui. Molecular Simulation and Its Applications in the Field of Supercritical Fluids [J]. Progress in Chemistry, 2005, 17(06): 955-962.
[11] Cao Bin*,Gao Jinsen,Xu Chunming. The Applications of Molecular Simulation Technology in the Fields of Petroleum [J]. Progress in Chemistry, 2004, 16(02): 291-.
[12] Li Yigui,Li Chunxi. Progress in Study on Molecular Thermodynamic Model for Electrolyte Solution [J]. Progress in Chemistry, 1996, 8(02): 155-.