中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 983-996 DOI: 10.7536/PC230221 Previous Articles   

• Review •

Gases under High Pressure and Their Associated Chemical Reactions

Peng Liu, Yong Zhou, Liangyu Liu, Yang Chen, Xiaoyang Liu()   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University,Changchun 130031, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: liuxy@jlu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(22171101)
Richhtml ( 7 ) PDF ( 135 ) Cited
Export

EndNote

Ris

BibTeX

The study of gases under high pressure is a very important research direction, which is of great significance to many disciplines. This paper introduces the special physical and chemical properties of gases and the chemical reactions they participate in under high pressure conditions. Gases behave very differently at high pressure than they do under ambient conditions. At extreme pressures, gases undergo structural transformations, change their electromagnetic properties, and exhibit interesting phase transitions. The chemical reactions of the gases also change and new reaction paths occur. Understanding the effect of high pressure on gas reactions is critical to improving our understanding of the synthesis of new compounds. In addition, the paper also introduces the practical significance of gas under high pressure. The unique properties of gas under high pressure make it widely used in other disciplines. This paper especially introduces the application of gas under high pressure in high-temperature superconductors, extremely high-energy materials and planetary science. In conclusion, the study of gases at high pressure provides valuable insights into the fundamental properties of matter, and understanding these phenomena is critical to advancing disciplines such as condensed matter physics, materials science, and chemistry. Finally, the prospect of further research on gases under high pressure is given.

Contents

1 Introduction

2 Simple gas under high pressure

2.1 Argon and hydrogen under high pressure

2.2 Metallization of xenon under high pressure

2.3 Unique structure of Xe-H2 compounds under high pressure

2.4 Chemical reaction of xenon and fluorine under high pressure

3 Gases with superconductivity under high pressure

3.1 Overview of superconductivity

3.2 High-temperature superconductors predicted at high pressure

3.3 High temperature superconductivity of lanthanide polyhydrides under high pressure

3.4 Second group of lanthanide polyhydride superconductors under high pressure

4 Extreme energy materials

4.1 Nitrogen under high pressure

4.2 Hydrogen under high pressure

5 Applications of planetary science

5.1 Applications of helium in Planetary Science

5.2 Missing xenon paradox

6 Conclusion and outlook

Fig.1 (A) LeBail full-profile fitting of XRD pattern collected with rotating DAC by ±10° at 265 GPa. (Inset) Caked raw image. Masked regions (semitransparent blue) are saturated diffraction peaks from diamond. (B) EOS of Ar(H2)2. (C) Cell parameters of Ar(H2)2 at pressures. Six samples were used to determine cell parameter a. Three of the six samples were used to determine both a, c, and unit cell volume. This is due to preferred orientations of Ar(H2)2 crystals formed under pressure[34].Copyright (2017) National Academy of Sciences, U.S.A
Fig.2 Top: Periodic table of superconducting elemental solids and their experimental critical temperature(Tc). Bottom: Periodic table of superconducting binary hydrides (0~300 GPa). Theoretical predictions indicated in blue and experimental results in red[66]. Copyright 2020, Elsevier Science Direct
Fig.3 Clathrate structures of REH6 (a), REH9 (b), and REH10 (c). The small and large spheres represent H and RE atoms, respectively. The middle panel depicts the RE-centered H24, H29, and H32 cages of REH6, REH9, and REH10, respectively. Each H24 or H32 cage with Oh or D4h symmetry contains six squares and eight hexagons or six squares and twelve hexagons. One H29 cage consists of six irregular squares, six pentagons, and six hexagons[96]. Copyright 2017, American Physical Society
Fig.4 Pressure temperature path for the synthesis and stability of various Ce-H phases. a Starting at 9 GPa, cerium reacts with hydrogen to form F m 3 - m - C e H 2, which remained stable up to 33 GPa. b At 33 GPa with laser heating, F m 3 - m - C e H 2 in H2 medium reacted to form β - P m 3 - n - C e H 3 . β - P m 3 - n - C e H 3 remained stable up to 80 GPa. c Laser heating of β - P m 3 - n - C e H 3 in H2 medium at 80~100 GPa resulted in the occurrence of the P 6 3 / m m c - C e H 9 superhydride. The superhydride phase was found to be stable up to the maximum pressure reached in our studies i.e. 100 GPa. d After complete decompression, β - P m 3 - n - C e H 3 and I 4 1 m d - C e 2 H 5 were recovered at ambient conditions[100]. Copyright 2019, Nature Communications
Fig.5 Pressure-composition phase diagram of theoretically predicted stable phases in the Ce-H system at high pressures. Red horizontal bars show the range of stability of each phase; this phase diagram was created on the basis of the evolutionary structure prediction method USPEX. The experimentally discovered P63/mmc-CeH9 is predicted to be stable from 78 GPa up to at least 250 GPa[100]. Copyright 2019, Nature Communications
Fig.6 Calculated electronic energy gap at 0 K (static conditions) (black), 10 000 K (blue), 20 000 K (green), and 50 000 K (red) and along a precompressed Hugoniot with ρ1/ρ0 = 4, where ρ1 is the precompressed density and ρ0 = 0.1233 g·cm-3 (gray)[137]. Copyright 2008 National Academy of Sciences, U.S.A
[126]
Castelvecchi D. Nature, 2017, 542(7639): 17.

doi: 10.1038/nature.2017.21379
[127]
Silvera I F, Wijngaarden R J. Phys. Rev. Lett., 1981, 47(1): 39.

doi: 10.1103/PhysRevLett.47.39
[128]
Hemley R J, Mao H K. Phys. Rev. Lett., 1988, 61(7): 857.

pmid: 10039448
[129]
Lorenzana H E, Silvera I F, Goettel K A. Phys. Rev. Lett., 1989, 63(19): 2080.

pmid: 10040757
[130]
Eremets M I, Troyan I A. Nat. Mater., 2011, 10(12): 927.

doi: 10.1038/nmat3175 pmid: 22081083
[131]
Howie R T, Guillaume C L, Scheler T, Goncharov A F, Gregoryanz E. Phys. Rev. Lett., 2012, 108(12): 125501.

doi: 10.1103/PhysRevLett.108.125501
[132]
Goncharov A F, Howie R T, Gregoryanz E. Low Temp. Phys., 2013, 39(5): 402.

doi: 10.1063/1.4807051
[133]
Alfè D, Gillan M J, Price G D. Earth Planet. Sci. Lett., 2002, 195(1/2): 91.

doi: 10.1016/S0012-821X(01)00568-4
[134]
Chabrier G, Saumon D, Hubbard W B, Lunine J I. Astrophys. J. Lett., 1992, 391: 817.

doi: 10.1086/171390
[135]
Young D A, McMahan A K, Ross M. Phys. Rev. B, 1981, 24(9): 5119.

doi: 10.1103/PhysRevB.24.5119
[136]
Weir S T, Mitchell A C, Nellis W J. Phys. Rev. Lett., 1996, 76(11): 1860.

pmid: 10060539
[137]
Stixrude L, Jeanloz R. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(32): 11071.

doi: 10.1073/pnas.0804609105
[138]
Ichimaru S. Rev. Mod. Phys., 1982, 54(4): 1017.

doi: 10.1103/RevModPhys.54.1017
[139]
Klepeis J E, Schafer K J, Barbee T W III, Ross M. Science, 1991, 254(5034): 986.

pmid: 17731520
[140]
Pfaffenzeller O, Hohl D, Ballone P. Phys. Rev. Lett., 1995, 74(13): 2599.

pmid: 10057968
[141]
Fortney J J, Hubbard W B. Astrophys. J. Lett., 2004, 608(2): 1039.

doi: 10.1086/apj.2004.608.issue-2
[142]
Olson P, Christensen U R. Earth Planet. Sci. Lett., 2006, 250(3/4): 561.

doi: 10.1016/j.epsl.2006.08.008
[143]
Ramsay W. Proc. R. Soc. Lond., 1903, 71(467/476): 421.

doi: 10.1098/rspl.1902.0121
[144]
Sanloup C, Schmidt B C, Perez E M C, Jambon A, Gregoryanz E, Mezouar M. Science, 2005, 310(5751): 1174.

doi: 10.1126/science.1119070
[145]
Mahaffy P R, Niemann H B, Alpert A, Atreya S K, Demick J, Donahue T M, Harpold D N, Owen T C. J. Geophys. Res., 2000, 105(E6): 15061.
[146]
Owen T, Mahaffy P, Niemann H B, Atreya S, Donahue T, Bar-Nun A, de Pater I. Nature, 1999, 402(6759): 269.

doi: 10.1038/46232
[147]
Dewaele A, Worth N, Pickard C J, Needs R J, Pascarelli S, Mathon O, Mezouar M, Irifune T. Nat. Chem., 2016, 8(8): 784.

doi: 10.1038/nchem.2528 pmid: 27442284
[148]
Zhu L, Liu H Y, Pickard C J, Zou G T, Ma Y M. Nat. Chem., 2014, 6(7): 644.

doi: 10.1038/nchem.1925 pmid: 24950336
[1]
Mao H K, Chen X J, Ding Y, Li B, Wang L. Rev. Mod. Phys., 2018, 90(1): 015007.

doi: 10.1103/RevModPhys.90.015007
[2]
Liu X Y. Progress in Chemistry, 2020, 32(8): 1184.
( 刘晓旸. 化学进展, 2020, 32(8): 1184.).

doi: 10.7536/PC200435
[3]
Liu X Y. Progress in Chemistry, 2009, 21(7/8): 1373.
( 刘晓旸. 化学进展, 2009, 21(7/8): 1373.).
[4]
Eswarappa Prameela S, Pollock T M, Raabe D, Meyers M A, Aitkaliyeva A, Chintersingh K L, Cordero Z C, Graham-Brady L. Nat. Rev. Mater., 2022, 8(2): 81.

doi: 10.1038/s41578-022-00496-z
[5]
Helled R, Mazzola G, Redmer R. Nat. Rev. Phys., 2020, 2(10): 562.

doi: 10.1038/s42254-020-0223-3
[6]
Hirose K, Wood B, Vočadlo L. Nat. Rev. Earth Environ., 2021, 2(9): 645.

doi: 10.1038/s43017-021-00203-6
[7]
McMillan P F. Nat. Mater., 2002, 1(1): 19.

pmid: 12618843
[8]
Horvath-Bordon E, Riedel R, Zerr A, McMillan P F, Auffermann G, Prots Y, Bronger W, Kniep R, Kroll P. Chem. Soc. Rev., 2006, 35(10): 987.

pmid: 17003902
[9]
Zhang X, Zhao Y, Yang G. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(3): e1582.
[10]
Miao M S, Sun Y H, Zurek E, Lin H Q. Nat. Rev. Chem., 2020, 4(10): 508.

doi: 10.1038/s41570-020-0213-0
[11]
Lobanov S S, Chen P N, Chen X J, Zha C S, Litasov K D, Mao H K, Goncharov A F. Nat. Commun., 2013, 4: 2446.

doi: 10.1038/ncomms3446 pmid: 24026399
[12]
McMillan P F. Chem. Soc. Rev., 2006, 35(10): 855.

pmid: 17003892
[13]
Akahama Y, Kawamura H, Häusermann D, Hanfland M, Shimomura O. Phys. Rev. Lett., 1995, 74(23): 4690.

pmid: 10058574
[14]
Shimizu K, Suhara K, Ikumo M, Eremets M I, Amaya K. Nature, 1998, 393(6687): 767.

doi: 10.1038/31656
[15]
Eremets M, Gregoryanz E, Struzhkin V, Mao H K, Hemley R, Mulders N, Zimmerman N. Phys. Rev. Lett., 2000, 85(13): 2797.

pmid: 10991236
[16]
Somayazulu M, Dera P, Goncharov A F, Gramsch S A, Liermann P, Yang W G, Liu Z X, Mao H K, Hemley R J. Nat. Chem., 2010, 2(1): 50.

doi: 10.1038/nchem.445 pmid: 21124380
[17]
Mao W L, Mao H K, Meng Y, Eng P J, Hu M Y, Chow P, Cai Y Q, Shu J F, Hemley R J. Science, 2006, 314(5799): 636.

doi: 10.1126/science.1132884
[18]
Ginzburg V L. Physics-Uspekhi, 1999, 42(4): 353.

doi: 10.1070/PU1999v042n04ABEH000562
[19]
Mukhin K N, Sustavov A F, Tikhonov V N. Physics-Uspekhi, 2003, 46(5): 493.

doi: 10.1070/PU2003v046n05ABEH001288
[20]
Ashcroft N W. Phys. Rev. Lett., 2004, 92(18): 187002.

doi: 10.1103/PhysRevLett.92.187002
[21]
Carlsson A E, Ashcroft N W. Phys. Rev. Lett., 1983, 50(17): 1305.

doi: 10.1103/PhysRevLett.50.1305
[22]
Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O. Proc. Natl. Acad. Sci. USA, 2009, 106(42): 17640.

doi: 10.1073/pnas.0908262106 pmid: 19805046
[23]
Kleppe A K, Amboage M, Jephcoat A P. Sci. Rep., 2014, 4: 4989.

doi: 10.1038/srep04989
[24]
Somayazulu M S, Finger L W, Hemley R J, Mao H K. Science, 1996, 271(5254): 1400.

doi: 10.1126/science.271.5254.1400
[25]
Strobel T A, Somayazulu M, Sinogeikin S V, Dera P, Hemley R J. J. Am. Chem. Soc., 2016, 138(42): 13786.

doi: 10.1021/jacs.6b06986
[26]
Strobel T A, Chen X J, Somayazulu M, Hemley R J. J. Chem. Phys., 2010, 133(16): 164512.

doi: 10.1063/1.3505299
[27]
Strobel T A, Somayazulu M, Hemley R J. Phys. Rev. Lett., 2009, 103(6): 065701.

doi: 10.1103/PhysRevLett.103.065701
[28]
Loubeyre P, Letoullec R, Pinceaux J P. Phys. Rev. Lett., 1992, 69(8): 1216.

pmid: 10047157
[29]
Hemley R J. Annu. Rev. Phys. Chem., 2000, 51: 763.

pmid: 11031299
[30]
Bernard S, Loubeyre P, ZÉrah G. Europhys. Lett., 1997, 37(7): 477.

doi: 10.1209/epl/i1997-00175-8
[31]
Yao Y, Klug D D. Phys. Rev. B, 2011, 83(2): 020105.

doi: 10.1103/PhysRevB.83.020105
[32]
Matsumoto N, Nagara H. J. Phys.: Condens. Matter, 2007, 19(36): 365237.

doi: 10.1088/0953-8984/19/36/365237
[33]
Chacham H, Koiller B. Phys. Rev. B, 1995, 52(9): 6147.

pmid: 9981829
[34]
Ji C, Goncharov A F, Shukla V, Jena N K, Popov D, Li B, Wang J Y, Meng Y, Prakapenka V B, Smith J S, Ahuja R, Yang W G, Mao H K. Proc. Natl. Acad. Sci. USA, 2017, 114(14): 3596.

doi: 10.1073/pnas.1700049114
[35]
Ulivi L, Bini R, Loubeyre P, Letoullec R, Jodl H. Phys. Rev. B, 1999, 60(9): 6502.

doi: 10.1103/PhysRevB.60.6502
[36]
Mao H K, Hemley R J. Rev. Mod. Phys., 1994, 66(2): 671.

doi: 10.1103/RevModPhys.66.671
[37]
Goncharov A F, Eggert J H, Mazin I I, Hemley R J, Mao H K. Phys. Rev. B, 1996, 54(22): R15590.

doi: 10.1103/PhysRevB.54.R15590
[38]
LeSar R, Ekberg S A, Jones L H, Mills R L, Schwalbe L A, Schiferl D. Solid State Commun., 1979, 32(2): 131.

doi: 10.1016/0038-1098(79)91073-1
[39]
Dias R P, Silvera I F. Science, 2017, 355(6326): 715.

doi: 10.1126/science.aal1579
[40]
Hemley R J, Ashcroft N W. Phys. Today, 1998, 51(8): 26.
[41]
Wigner E, Huntington H B. J. Chem. Phys., 1935, 3(12): 764.

doi: 10.1063/1.1749590
[42]
Asaumi K, Mori T, Kondo Y. Phys. Rev. Lett., 1982, 49(11): 837.

doi: 10.1103/PhysRevLett.49.837
[43]
Caldwell W A, Nguyen J H, Pfrommer B G, Mauri F, Louie S G, Jeanloz R. Science, 1997, 277(5328): 930.

doi: 10.1126/science.277.5328.930
[44]
Chacham H, Zhu X J, Louie S G. Phys. Rev. B, 1992, 46(11): 6688.

pmid: 10002369
[45]
Goettel K A, Eggert J H, Silvera I F, Moss W C. Phys. Rev. Lett., 1989, 62(6): 665.

pmid: 10040297
[46]
Itie J P, Le Toullec R. J. Phys. Colloques, 1984, 45(C8): C8.
[47]
Jephcoat A P, Mao H K, Finger L W, Cox D E, Hemley R J, Zha C S. Phys. Rev. Lett., 1987, 59(23): 2670.

pmid: 10035618
[48]
Ray A K, Trickey S B, Weidman R S, Kunz A B. Phys. Rev. Lett., 1980, 45(11): 933.

doi: 10.1103/PhysRevLett.45.933
[49]
Reichlin R, Brister K E, McMahan A K, Ross M, Martin S, Vohra Y K, Ruoff A L. Phys. Rev. Lett., 1989, 62(6): 669.

pmid: 10040298
[50]
Ross M, McMahan A K. Phys. Rev. B, 1980, 21(4): 1658.

doi: 10.1103/PhysRevB.21.1658
[51]
Syassen K. Phys. Rev. B, 1982, 25(10): 6548.

doi: 10.1103/PhysRevB.25.6548
[52]
Zisman A N, Aleksandrov I V, Stishov S M. Phys. Rev. B, 1985, 32(1): 484.

pmid: 9936693
[53]
Hanni M, Lantto P, Runeberg N, Jokisaari J, Vaara J. J. Chem. Phys., 2004, 121(12): 5908.
[54]
Asaumi K. Phys. Rev. B, 1984, 29(12): 7026.

doi: 10.1103/PhysRevB.29.7026
[55]
Khriachtchev L, Lignell A, Juselius J, Räsänen M, Savchenko E. J. Chem. Phys., 2005, 122(1): 014510.

doi: 10.1063/1.1827592
[56]
Bartlett N. Proc. Chem. Soc., 1962, (June): 197.
[57]
Grochala W. Chem. Soc. Rev., 2007, 36(10): 1632.

doi: 10.1039/b702109g
[58]
Tramšek M, Žemva B. Acta Chim. Slov., 2006, 53(2): 105.
[59]
Brown E C, Cohen A, Benny Gerber R. J. Chem. Phys., 2005, 122(17): 171101.

doi: 10.1063/1.1903943
[60]
Pauling L. Proc. Natl. Acad. Sci. USA, 1976, 73(5): 1403.

pmid: 16592315
[61]
Dixon D A, de Jong W A, Peterson K A, Christe K O, Schrobilgen G J. J. Am. Chem. Soc., 2005, 127(24): 8627.

doi: 10.1021/ja0423116
[62]
Jortner J, Rice S A, Wilson E G. J. Chem. Phys., 1963, 38(9): 2302.

doi: 10.1063/1.1733966
[63]
Kim M, Debessai M, Yoo C S. Nat. Chem., 2010, 2(9): 784.

doi: 10.1038/nchem.724
[64]
Agron P A, Begun G M, Levy H A, Mason A A, Jones C G, Smith D F. Science, 1963, 139(3557): 842.

pmid: 17798193
[65]
Meissner W, Ochsenfeld R. Naturwissenschaften, 1933, 21(44): 787.
[66]
Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M. Phys. Rep., 2020, 856: 1.

doi: 10.1016/j.physrep.2020.02.003
[67]
London F, London H, Lindemann F A. Proc. R. Soc. Lond., 1935, 149(866): 71.
[68]
Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 106(1): 162.

doi: 10.1103/PhysRev.106.162
[69]
Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 108(5): 1175.

doi: 10.1103/PhysRev.108.1175
[70]
Bednorz J G, Müller K A. Z. Physi. B Condens. Matter, 1986, 64(2): 189.

doi: 10.1007/BF01303701
[71]
Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W. Phys. Rev. Lett., 1987, 58(9): 908.

pmid: 10035069
[72]
Schilling A, Cantoni M, Guo J D, Ott H R. Nature, 1993, 363(6424): 56.

doi: 10.1038/363056a0
[73]
Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y. Nature, 1993, 365(6444): 323.

doi: 10.1038/365323a0
[74]
Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J, Mao H K. Phys. Rev. B., 1994, 50(6): 4260.

pmid: 9976724
[75]
Kamihara Y, Watanabe T, Hirano M, Hosono H. J. Am. Chem. Soc., 2008, 130(11): 3296.

doi: 10.1021/ja800073m pmid: 18293989
[76]
Ginzburg V L. Contemp. Phys., 1992, 33(1): 15.

doi: 10.1080/00107519208219137
[77]
Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I. Nature, 2015, 525(7567): 73.

doi: 10.1038/nature14964
[78]
Li Y W, Hao J, Liu H Y, Li Y L, Ma Y M. J. Chem. Phys., 2014, 140(17): 174712.

doi: 10.1063/1.4874158
[79]
Goncharov A F, Hemley R J. Chem. Soc. Rev., 2006, 35(10): 899.

doi: 10.1039/b607523c
[80]
Shimizu H, Nakamichi Y, Sasaki S. J. Chem. Phys., 1991, 95(3): 2036.
[81]
Endo S, Ichimiya N, Koto K, Sasaki S, Shimizu H. Phys. Rev. B, 1994, 50(9): 5865.

pmid: 9976954
[82]
Endo S, Honda A, Sasaki S, Shimizu H, Shimomura O, Kikegawa T. Phys. Rev. B, 1996, 54(2): R717.

doi: 10.1103/physrevb.54.r717 pmid: 9985417
[83]
Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S, Shimizu H. Phys. Rev. Lett., 1997, 79(6): 1082.

doi: 10.1103/PhysRevLett.79.1082
[84]
Cockcroft J K, Fitch A N. Zeitschrift Für Kristallographie Cryst. Mater., 1990, 193(1/4): 1.
[85]
Collins M J, Ratcliffe C I, Ripmeester J A. J. Phys. Chem., 1989, 93(21): 7495.

doi: 10.1021/j100358a046
[86]
Fujihisa H, Yamawaki H, Sakashita M, Nakayama A, Yamada T, Aoki K. Phys. Rev. B, 2004, 69(21): 214102.

doi: 10.1103/PhysRevB.69.214102
[87]
Rousseau R, Boero M, Bernasconi M, Parrinello M, Terakura K. Phys. Rev. Lett., 2000, 85(6): 1254.

pmid: 10991525
[88]
Kometani S, Eremets M I, Shimizu K, Kobayashi M, Amaya K. J. Phys. Soc. Jpn., 1997, 66(9): 2564.

doi: 10.1143/JPSJ.66.2564
[89]
Gao G Y, Oganov A R, Li P F, Li Z W, Wang H, Cui T, Ma Y M, Bergara A, Lyakhov A O, Iitaka T, Zou G T. Proc. Natl. Acad. Sci. USA, 2010, 107(4): 1317.

doi: 10.1073/pnas.0908342107
[90]
Gao G Y, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y M, Zou G T. Phys. Rev. Lett., 2008, 101(10): 107002.

doi: 10.1103/PhysRevLett.101.107002
[91]
Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J. Phys. Rev. Lett., 2011, 107(25): 255503.

doi: 10.1103/PhysRevLett.107.255503
[92]
Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J, Cui T. Sci. Rep., 2014, 4: 6968.

doi: 10.1038/srep06968
[93]
Duan D F, Huang X L, Tian F B, Li D, Yu H Y, Liu Y X, Ma Y B, Liu B B, Cui T. Phys. Rev. B, 2015, 91(18): 180502.

doi: 10.1103/PhysRevB.91.180502
[94]
Bernstein N, Stephen Hellberg C, Johannes M D, Mazin I I, Mehl M J. Phys. Rev. B, 2015, 91(6): 060511.

doi: 10.1103/PhysRevB.91.060511
[95]
Satterthwaite C B, Toepke I L. Phys. Rev. Lett., 1970, 25(11): 741.

doi: 10.1103/PhysRevLett.25.741
[96]
Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M. Phys. Rev. Lett., 2017, 119(10): 107001.

doi: 10.1103/PhysRevLett.119.107001
[97]
Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(27): 6990.

doi: 10.1073/pnas.1704505114
[98]
Wang H, Li X, Gao G Y, Li Y W, Ma Y M. Wires Comput. Mol. Sci., 2018, 8(1): e1330.
[99]
Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M. Phys. Rev. Lett., 2019, 123(9): 097001.

doi: 10.1103/PhysRevLett.123.097001
[100]
Salke N P, Davari Esfahani M M, Zhang Y J, Kruglov I A, Zhou J S, Wang Y G, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F. Nat. Commun., 2019, 10: 4453.

doi: 10.1038/s41467-019-12326-y
[101]
Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T. Nat. Commun., 2019, 10: 3461.

doi: 10.1038/s41467-019-11330-6
[102]
Geballe Z M, Liu H Y, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M, Hemley R J. Angew. Chem. Int. Ed., 2018, 57(3): 688.

doi: 10.1002/anie.v57.3
[103]
Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J. Phys. Rev. Lett., 2019, 122(2): 027001.

doi: 10.1103/PhysRevLett.122.027001
[104]
Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I. Nature, 2019, 569(7757): 528.

doi: 10.1038/s41586-019-1201-8
[105]
Bi J K, Nakamoto Y, Zhang P Y, Shimizu K, Zou B, Liu H Y, Zhou M, Liu G T, Wang H B, Ma Y M. Nat. Commun., 2022, 13: 5952.

doi: 10.1038/s41467-022-33743-6
[106]
Sun W G, Kuang X Y, Keen H D J, Lu C, Hermann A. Phys. Rev. B, 2020, 102(14): 144524.

doi: 10.1103/PhysRevB.102.144524
[107]
Ashcroft N W. Phys. Rev. Lett., 1968, 21(26): 1748.

doi: 10.1103/PhysRevLett.21.1748
[108]
Simon A. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788.

doi: 10.1002/(ISSN)1521-3773
[109]
Mao H K, Ji C, Li B, Liu G, Gregoryanz E. Engineering, 2020, 6(9): 976.

doi: 10.1016/j.eng.2020.07.010
[110]
Jin C, Liu Y, Wang L J, Zhang W J, Zhang T L, Zhu J L. RSC Adv., 2020, 10(50): 30069.

doi: 10.1039/D0RA06328B
[111]
Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. J. Hazard. Mater., 2009, 161(2/3): 589.

doi: 10.1016/j.jhazmat.2008.04.011
[112]
Badgujar D M, Talawar M B, Asthana S N, Mahulikar P P. J. Hazard. Mater., 2008, 151(2/3): 289.

doi: 10.1016/j.jhazmat.2007.10.039
[113]
Zarko V E. Combust. Explos. Shock. Waves, 2010, 46(2): 121.

doi: 10.1007/s10573-010-0020-x
[114]
Mailhiot C, Yang L H, McMahan A K. Phys. Rev. B, 1992, 46(22): 14419.

pmid: 10003540
[115]
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Nat. Mater., 2004, 3(8): 558.

doi: 10.1038/nmat1146
[116]
Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H K, Hemley R J. J. Chem. Phys., 2007, 126(18): 184505.

doi: 10.1063/1.2723069
[117]
Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K. Sci. Adv., 2020, 6(23): eaba9206.

doi: 10.1126/sciadv.aba9206
[118]
Lipp M J, Klepeis J P, Baer B J, Cynn H, Evans W J, Iota V, Yoo C S. Phys. Rev. B, 2007, 76: 014113.

doi: 10.1103/PhysRevB.76.014113
[119]
Tomasino D, Kim M, Smith J, Yoo C S. Phys. Rev. Lett., 2014, 113(20): 205502.

doi: 10.1103/PhysRevLett.113.205502
[120]
Samartzis P C, Wodtke A M. Int. Rev. Phys. Chem., 2006, 25(4): 527.

doi: 10.1080/01442350600879319
[121]
Goncharov A F, Gregoryanz E, Mao H K, Liu Z X, Hemley R J. Phys. Rev. Lett., 2000, 85(6): 1262.

pmid: 10991527
[122]
Eremets M I, Hemley R J, Mao H K, Gregoryanz E. Nature, 2001, 411(6834): 170.

doi: 10.1038/35075531
[123]
Yoo C S. Matter Radiat. Extrem., 2020, 5(1): 018202.

doi: 10.1063/1.5127897
[124]
Madadi Avargani V, Zendehboudi S, Cata Saady N M, Dusseault M B. Energy Convers. Manag., 2022, 269: 115927.

doi: 10.1016/j.enconman.2022.115927
[125]
Johnston B, Mayo M C, Khare A. Technovation, 2005, 25(6): 569.

doi: 10.1016/j.technovation.2003.11.005
[1] Fengshou Xiao, Qinming Wu, Chengtao Wang. Condensed Matter Chemistry in Catalysis by Zeolites [J]. Progress in Chemistry, 2023, 35(6): 886-903.
[2] Ruren Xu, Wenfu Yan. Condensed Matter Chemistry in Gaseous Molecules Reactions [J]. Progress in Chemistry, 2023, 35(6): 808-820.
[3] Xueli Wang, Qianru Wang, Di Li, Junnian Wei, Jianping Guo, Liang Yu, Dehui Deng, Ping Chen, Zhenfeng Xi. Condensed Matter Chemistry in Nitrogen Fixation [J]. Progress in Chemistry, 2023, 35(6): 904-917.
[4] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[5] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[6] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[7] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[8] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[9] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[10] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[13] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[14] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
[15] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.