中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (10): 1544-1558 DOI: 10.7536/PC230215 Previous Articles   

• Review •

Application of Pyrite and Its Modified Composite in Water Pollution Treatment

Yanxiao Chi1, Yuxuan Yang1, Kunlun Yang1,2,*(), Xianrong Meng2, Wei Xu2, Hengfeng Miao1   

  1. 1 College of Environment and Civil Engineering, Jiangnan University,Wuxi 214122, China
    2 Suzhou Institute of Environmental Science, Jiangsu Postdoctoral Innovation Practice Base,Suzhou 215009
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yangkunlun@jiangnan.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22206061); Fundamental Research Funds for the Central Universities(JUSRP122022)
Richhtml ( 43 ) PDF ( 374 ) Cited
Export

EndNote

Ris

BibTeX

Due to its strong surface activity, precipitation adsorption, redox and relatively excellent photocatalytic properties, pyrite has been widely used to treat heavy metals, organic pollutants and various inorganic salts in the polluted water. However, some inherent defects of pyrite, such as small specific surface area, high susceptibility to agglomeration, etc., limit its practical applications. Appropriate modification of pyrite via morphological adjustment, elemental doping, and material loading can improve the dispersion performance of particle size, expose more functional groups and increase electron transport rate to further modulate the related properties and enhance the wastewater treatment capacity of pyrite, In this article, we firstly introduce the basic information, the application and the mechanism of pyrite in wastewater treatment, and then describe the typical modification methods of pyrite and their corresponding strengthening mechanisms for treating wastewater. This article will provide a systematic introduction and outlook for the development of pyrite-based composite materials in the field of environmental treatment.

Contents

1 Introduction

2 Adsorption of pyrite

2.1 Application and mechanism of pyrite adsorption capacity

2.2 Improvement of pyrite materials and enhancement of adsorption capacity

3 Oxidation of pyrite

3.1 Application and mechanism of pyrite oxidation ability

3.2 Improvement of pyrite materials and enhancement of oxidation capacity

4 Reduction of pyrite

4.1 Application and mechanism of pyrite reduction ability

4.2 Improvement of pyrite materials and enhancement of reduction capacity

5 Conclusion and outlook

Fig.1 Crystal structure of pyrite[10]
Fig.2 Mechanism of pyrite adsorbing heavy metals[25]
Fig.3 Mechanism of pyrite adsorbing organic pollutants
Fig.4 Some typical strategies to enhance the adsorption performance of pyrite for the removal of heavy metals
Table 1 Adsorption and removal of heavy metals by pyrite modified materials
Fig.5 Mechanism of heavy metal removal by pyrite oxidation
Fig.6 Proposed mechanisms of pyrite-mediated Fenton oxidation and persulfate oxidation processes for the degradation of organic pollutants[4]
Table 2 Removal of heavy metals by oxidation of pyrite modified materials
Table 3 Modified pyrite catalytic oxidation degradation of organic compounds
Fig.7 Mechanism of Cr(Ⅵ) reduction by pyrite[91]
Fig.8 Mechanism of reduction of non-metallic ions by pyrite
Fig.9 Reaction mechanism of pyrite reducing organic pollutants
Table 4 Removal of heavy metals by reduction with pyrite modified materials
[1]
Ji H Y, Peng D Z, Fan C T, Zhao K K, Gu Y, Liang Y Q. Urban Clim., 2022, 43: 101148.

doi: 10.1016/j.uclim.2022.101148
[2]
Luo S X, Chen H S, Mou Q S, Wu Y H. Multipurpose Utilization of Mineral Resources, 2020, (05): 27.
(罗宿星, 陈华仕, 牟青松, 伍远辉. 矿产综合利用, 2020, (05): 27.).
[3]
Han D S, Song J K, Batchelor B, Abdel-Wahab A. J. Colloid Interface Sci., 2013, 392: 311.

doi: 10.1016/j.jcis.2012.09.084
[4]
Song B, Zeng Z T, Almatrafi E, Shen M C, Xiong W P, Zhou C Y, Wang W J, Zeng G M, Gong J L. Water Res., 2022, 211: 118048.

doi: 10.1016/j.watres.2022.118048
[5]
Li Y K, Qi X J, Li G H, Wang H. Chem. Eng. J., 2021, 410: 128303.

doi: 10.1016/j.cej.2020.128303
[6]
Guo Q, Tang G B, Zhu W J, Luo Y M, Gao X Y. J. Environ. Sci., 2021, 101: 351.

doi: 10.1016/j.jes.2020.08.029
[7]
Li Z F. Doctoral Dissertation of Shaoxing University, 2017.
(栗占锋. 绍兴文理学院博士论文, 2017.).
[8]
Wang Y. Doctoral Dissertation of Jilin University, 2022.
(王遥. 吉林大学博士论文, 2022).
[9]
Khabbaz M, Entezari M H. J. Environ. Manag., 2017, 187: 416.

doi: 10.1016/j.jenvman.2016.11.005
[10]
Zheng X F, Pan X, Nie Z Y, Yang Y, Liu L Z, Yang H Y, Xia J L. Minerals, 2018, 8(9): 366.

doi: 10.3390/min8090366
[11]
Mashayekh-Salehi A, Akbarmojeni K, Roudbari A, Peter van der Hoek J, Nabizadeh R, Dehghani M H, Yaghmaeian K. J. Clean. Prod., 2021, 291: 125235.

doi: 10.1016/j.jclepro.2020.125235
[12]
Jiang K, Liu J, Wang Y, Zhang D J, Han Y X. Appl. Surf. Sci., 2023, 610: 155476.

doi: 10.1016/j.apsusc.2022.155476
[13]
Zhang X F, Fan H, Yuan J, Tian J, Wang Y F, Lu C L, Han H S, Sun W. J. Environ. Chem. Eng., 2022, 10(6): 108856.

doi: 10.1016/j.jece.2022.108856
[14]
Shi S, Wu Q Y, Li X Z, Huang M H. Environmental Science, 2020, 41(09): 4124.

doi: 10.1021/es062723+
(石松, 吴乾元, 李新正, 黄满红. 环境科学, 2020, 41(09): 4124.).
[15]
Yang Y J, Liu J, Liu F, Wang Z, Miao S. J. Hazard. Mater., 2018, 344: 104.

doi: 10.1016/j.jhazmat.2017.10.011
[16]
Borah D, Senapati K. Fuel, 2006, 85(12/13): 1929.

doi: 10.1016/j.fuel.2006.01.012
[17]
He Y. Doctoral Dissertation of University of South China, 2019.
(何叶. 南华大学博士论文, 2019.).
[18]
Bulut G, Yenial Ü, Emiroğlu E, Ali Sirkeci A. J. Clean. Prod., 2014, 84: 526.

doi: 10.1016/j.jclepro.2013.08.018
[19]
Bostick B C, Fendorf S. Geochimica Cosmochimica Acta, 2003, 67(5): 909.

doi: 10.1016/S0016-7037(02)01170-5
[20]
He X Y, Min X B, Peng T Y, Ke Y, Zhao F P, Sillanpää M, Wang Y Y. Environ. Sci. Pollut. Res., 2020, 27(14): 16484.

doi: 10.1007/s11356-020-08163-y
[21]
Hu G L. Doctoral Dissertation of Central China Normal University, 2022.
(胡国良. 华中师范大学博士论文, 2022.).
[22]
Gan M, Li J Y, Sun S J, Cao Y Y, Zheng Z H, Zhu J Y, Liu X X, Wang J, Qiu G Z. Chem. Eng. J., 2018, 341: 27.

doi: 10.1016/j.cej.2018.02.014
[23]
Liu Y L, Wu S H, Liang Z S, Liu Y, Ren H T, Jia S Y, Han X. Chem. Geol., 2019, 522: 223.

doi: 10.1016/j.chemgeo.2019.05.023
[24]
Luo S X, Nie X, Yang M Z, Fu Y H, Zeng P, Wan Q. Minerals, 2018, 8(10): 428.

doi: 10.3390/min8100428
[25]
Gao R Q, Hu P W, Dai Y N, Zhang Y, Liu L, Yang W Z. Appl. Surf. Sci., 2022, 602: 154353.

doi: 10.1016/j.apsusc.2022.154353
[26]
Wang J, Chen T H, Li P, Xie J J, Ma B D, Cao Y G. Acta Mineralogica Sinica, 2012, 32(02): 238.
(王菊, 陈天虎, 李平, 谢晶晶, 马炳德, 曹光跃. 矿物学报, 2012, 32(02): 238.).
[27]
Abdullah N H, Xian O J, Yi C Z, Yuan N S, Yaacob M S S, Salim N a A, Ahmad N, Lazim Z M, Nuid M, Abdullah F. Biointerface Research in Applied Chemistry, 2023, 13(1), 56.
[28]
Zhang J, Li R H, Li J, Liu B. Chinese Journal of Environmental Engineering, 2013, 7(10): 3856.
(张菁, 李睿华, 李杰, 刘波. 环境工程学报, 2013, 7(10): 3856.).
[29]
Pang Y M, Wang J L. Bioresour. Technol., 2020, 318: 124105.

doi: 10.1016/j.biortech.2020.124105
[30]
TorrentÓ C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J. Chem. Geol., 2011, 287(1/2): 90.

doi: 10.1016/j.chemgeo.2011.06.002
[31]
Wang D, Liu H F, Qian T W. Environmental Pollution & Control, 2014, 36(03): 30.
(王丹, 刘宏芳, 钱天伟. 环境污染与防治, 2014, 36(03): 30.).
[32]
Bostick B C, Fendorf S, Helz G R. Environ. Sci. Technol., 2003, 37(2): 285.

doi: 10.1021/es0257467
[33]
Pu J Y, Feng C P, Liu Y, Li R, Kong Z, Chen N, Tong S, Hao C B, Liu Y,. Bioresour. Technol., 2014, 173: 117.

doi: 10.1016/j.biortech.2014.09.092
[34]
Tong S, Stocks J L, Rodriguez-Gonzalez L C, Feng C P, Ergas S J. Bioresour. Technol., 2017, 244: 296.

doi: 10.1016/j.biortech.2017.07.109
[35]
Li R H, Yuan Y L, Zhan X M, Liu B. Environ. Sci. Pollut. Res., 2014, 21(2): 972.

doi: 10.1007/s11356-013-1966-5
[36]
Galvez-Martinez S, Mateo-Marti E. Life, 2018, 8(4): 50.

doi: 10.3390/life8040050
[37]
Fang Y F, Li X Y, Zhou W, Wang X W, Cai K, Jia M K, Huang Y P. Environ. Chem., 2014, 33(11): 1941.
(方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 环境化学, 2014, 33(11): 1941.).
[38]
Cai K, Xiong S W, Zhang X X, Li R P, Huang Y P. Acta Petrologica et Mineralogica, 2014, 33(02): 370.
(蔡宽, 熊世威, 张欣欣, 李瑞萍, 黄应平. 岩石矿物学杂志, 2014, 33(02): 370.).
[39]
Hu J S, Li R H, Sun Q Q, Liu Z, Zhang X M. Chinese Journal of Environmental Engineering, 2015, 9(11): 5463.
(胡俊松, 李睿华, 孙茜茜, 刘卓, 张小梅. 环境工程学报, 2015, 9(11): 5463.).
[40]
Wang Z H, Xie X H, Xiao S M, Liu J S. Hydrometallurgy, 2010, 102(1/4): 87.

doi: 10.1016/j.hydromet.2010.01.004
[41]
Han G, Wen S M, Wang H, Feng Q C. Sep. Purif. Technol., 2020, 240: 116650.

doi: 10.1016/j.seppur.2020.116650
[42]
Pourghahramani P, Akhgar B N. J. Ind. Eng. Chem., 2015, 25: 131.

doi: 10.1016/j.jiec.2014.10.023
[43]
He X Y, Min X B, Peng T Y, Ke Y, Zhao F P, Wang Y Y, Sillanpää M. J. Chem. Eng. Data, 2019, 64(12): 5910.

doi: 10.1021/acs.jced.9b00801
[44]
Huang S J. Doctoral Dissertation of Guangdong University of Technology, 2017.
(黄树杰. 广东工业大学博士论文, 2017.).
[45]
Qi L Q, Wang X, Wang W, Li J X, Huang Y. Environ. Sci. Pollut. Res., 2022, 29(26): 39228.

doi: 10.1007/s11356-022-18963-z
[46]
Cui J Y. Doctoral Dissertation of Taiyuan University of Science and Technology, 2016.
(崔晋艳. 太原科技大学博士论文, 2016.).
[47]
Zhang W, Huang F Y, Hu W W. Environ. Sci. Pollut. Res., 2020, 27(29): 36816.

doi: 10.1007/s11356-020-09780-3
[48]
Kong Z, Song Y Q, Shao Z Y, Chai H X. Water Res., 2021, 206: 117737.

doi: 10.1016/j.watres.2021.117737
[49]
Li H B, Li Y F, Guo J B, Song Y Y, Hou Y N, Lu C C, Han Y, Shen X F, Liu B W. Environ. Res., 2021, 194: 110708.

doi: 10.1016/j.envres.2021.110708
[50]
Lian J J, Xu S G, Zhang Y M, Han C W. Water Sci. Technol., 2013, 67(8): 1859.

doi: 10.2166/wst.2013.067 pmid: 23579843
[51]
Fornaro T, Boosman A, Brucato J R, ten Kate I L, Siljeström S, Poggiali G, Steele A, Hazen R M. Icarus, 2018, 313: 38.

doi: 10.1016/j.icarus.2018.05.001
[52]
Galvez-Martinez S, Escamilla-Roa E, Zorzano M P, Mateo-Marti E. Appl. Surf. Sci., 2020, 530: 147182.

doi: 10.1016/j.apsusc.2020.147182
[53]
Li Y Y, Liang J L, He X, Zhang L, Liu Y S. J. Hazard. Mater., 2016, 320: 216.

doi: 10.1016/j.jhazmat.2016.08.010
[54]
Gadisa B T, Appiah-Ntiamoah R, Kim H. Environ. Sci. Pollut. Res., 2019, 26(3): 2734.

doi: 10.1007/s11356-018-3811-3
[55]
Zhang P, Yuan S H. Geochimica Cosmochimica Acta, 2017, 218: 153.

doi: 10.1016/j.gca.2017.08.032
[56]
Liu L H, Guo D M, Ning Z P, Liu C S, Qiu G H. Water Res., 2021, 203: 117545.

doi: 10.1016/j.watres.2021.117545
[57]
Fu F L, Wang Q. J. Environ. Manag., 2011, 92(3): 407.

doi: 10.1016/j.jenvman.2010.11.011
[58]
Vidu R, Matei E, Predescu A M, Alhalaili B, Pantilimon C, Tarcea C, Predescu C. Toxics, 2020, 8(4): 101.

doi: 10.3390/toxics8040101
[59]
Kong L H, Hu X Y, He M C. Environ. Sci. Technol., 2015, 49(6): 3499.

doi: 10.1021/es505584r
[60]
Yan L, Chan T S, Jing C Y. Environ. Pollut., 2020, 262: 114309.

doi: 10.1016/j.envpol.2020.114309
[61]
Sun F L, Dempsey B A, Osseo-Asare K A. J. Colloid Interface Sci., 2012, 388(1): 170.

doi: 10.1016/j.jcis.2012.08.019
[62]
Zhao L H, Chen Y F, Liu Y X, Luo C, Wu D L. Chemosphere, 2017, 188: 557.

doi: 10.1016/j.chemosphere.2017.09.019
[63]
Yu F K, Wang Y, Ma H R, Zhou M H. Sep. Purif. Technol., 2020, 248: 117022.

doi: 10.1016/j.seppur.2020.117022
[64]
Ammar S, Oturan M A, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E. Water Res., 2015, 74: 77.

doi: 10.1016/j.watres.2015.02.006
[65]
Barhoumi N, Oturan N, Olvera-Vargas H, Brillas E, Gadri A, Ammar S, Oturan M A. Water Res., 2016, 94: 52.

doi: S0043-1354(16)30101-4 pmid: 26938493
[66]
Rahimi F, van der Hoek J P, Royer S, Javid A, Mashayekh-Salehi A, Jafari Sani M. J. Water Process. Eng., 2021, 40: 101808.

doi: 10.1016/j.jwpe.2020.101808
[67]
Nichela D A, Donadelli J A, Caram B F, Haddou M, Rodriguez Nieto F J, Oliveros E, García Einschlag F S. Appl. Catal. B Environ., 2015, 170/171: 312.

doi: 10.1016/j.apcatb.2015.01.028
[68]
Zhang P, Huang W, Ji Z, Zhou C G, Yuan S H. Geochimica Cosmochimica Acta, 2018, 238: 394.

doi: 10.1016/j.gca.2018.07.018
[69]
Zhou Y, Wang X L, Zhu C Y, Dionysiou D D, Zhao G C, Fang G D, Zhou D M. Water Res., 2018, 142: 208.

doi: 10.1016/j.watres.2018.06.002
[70]
Wu X J, Yang J M, Liu S Y, He Z W, Wang Y Y, Qin W X, Si Y B. Chemosphere, 2022, 309: 136793.

doi: 10.1016/j.chemosphere.2022.136793
[71]
Crundwell F K. Miner. Eng., 2021, 161: 106728.

doi: 10.1016/j.mineng.2020.106728
[72]
Guo D M. Doctoral Dissertation of Huazhong Agricultural University, 2021.
(郭迪满. 华中农业大学博士论文, 2021.).
[73]
Wang W T, Zhang C J, Shan J, He M C. Chem. Geol., 2020, 552: 119790.

doi: 10.1016/j.chemgeo.2020.119790
[74]
Fu D, Kurniawan T A, Lin L, Li Y Q, Avtar R, Dzarfan Othman M H, Li F. J. Environ. Manag., 2021, 286: 112246.

doi: 10.1016/j.jenvman.2021.112246
[75]
Du M M, Zhang Y Q, Hussain I, Du X D, Huang S B, Wen W. Chemosphere, 2019, 233: 744.

doi: 10.1016/j.chemosphere.2019.05.197
[76]
Lee D W, Ahn Y, Cho D W, Basak B, Jeon B H, Choi J. Environ. Pollut., 2023, 317: 120681.

doi: 10.1016/j.envpol.2022.120681
[77]
Fathinia S, Fathinia M, Rahmani A A, Khataee A. Appl. Surf. Sci., 2015, 327: 190.

doi: 10.1016/j.apsusc.2014.11.157
[78]
Gong C, Zhai J L, Wang X, Zhu W J, Yang D L, Luo Y M, Gao X Y. Chemosphere, 2022, 307: 136199.

doi: 10.1016/j.chemosphere.2022.136199
[79]
Xu C X, Kong Y L, Zhang W J, Yang M D, Wang K, Chang L, Chen W, Huang G B, Zhang J. Sep. Purif. Technol., 2022, 303: 122266.

doi: 10.1016/j.seppur.2022.122266
[80]
Zhao B C, Gong J L, Song B, Sang F, Zhou C Y, Zhang C, Cao W C, Niu Q Y, Chen Z P. Chemosphere, 2022, 308: 136427.

doi: 10.1016/j.chemosphere.2022.136427
[81]
Luo K, Pang Y, Wang D B, Li X, Wang L P, Lei M, Huang Q, Yang Q. J. Environ. Sci., 2021, 108: 201.

doi: 10.1016/j.jes.2021.02.021
[82]
Shi X G, Ma K, Gu Y W, Zhang W Q, Sun J. Sep. Purif. Technol., 2022, 292: 121060.

doi: 10.1016/j.seppur.2022.121060
[83]
Rashid J, Saleem S, Awan S U, Iqbal A, Kumar R, Barakat M A, Arshad M, Zaheer M, Rafique M, Awad M. RSC Adv., 2018, 8(22): 11935.

doi: 10.1039/C8RA02077A
[84]
Deng X H, Yang Y, Mei Y Q, Li J Q, Guo C L, Yao T J, Guo Y M, Xin B F, Wu J. J. Alloys Compd., 2022, 901: 163437.

doi: 10.1016/j.jallcom.2021.163437
[85]
Subhiksha V, Alatar A A, Okla M K, Alaraidh I A, Mohebaldin A, Aufy M, Abdel-Maksoud M A, Raju L L, Thomas A M, Khan S S. Chemosphere, 2022, 303: 135177.

doi: 10.1016/j.chemosphere.2022.135177
[86]
Zhang F L, Liu J X, Yue H R, Cheng G J, Xue X X. Vacuum, 2021, 192: 110433.

doi: 10.1016/j.vacuum.2021.110433
[87]
Guo X J, Jia J L, Xu Y N, Meng Q, Zha F, Tang X H, Tian H F. Appl. Surf. Sci., 2021, 556: 149786.

doi: 10.1016/j.apsusc.2021.149786
[88]
Raju A G, Rao B D, Himabindu G, Botsa S M. J. Mater. Res. Technol., 2022, 17: 2648.

doi: 10.1016/j.jmrt.2022.01.166
[89]
Wang H H, Lei W, Li X J, Huang Z, Jia Q L, Zhang H J. Progress in Chemistry, 2021, 32(12): 1990.
(王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 化学进展, 2021, 32(12): 1990.).
[90]
Lin Y T, Huang C P. Sep. Purif. Technol., 2008, 63(1): 191.

doi: 10.1016/j.seppur.2008.05.001
[91]
Nie X, Li G Y, Wang Y, Luo Y M, Song L, Yang S G, Wan Q. J. Hazard. Mater., 2022, 424: 127504.

doi: 10.1016/j.jhazmat.2021.127504
[92]
Yu H Q, Yu T, Zeng K. Front. Environ. Sci., 2022, 10: 955519.

doi: 10.3389/fenvs.2022.955519
[93]
Kang M L, Chen F R, Wu S J, Yang Y Q, Bruggeman C, Charlet L. Environ. Sci. Technol., 2011, 45(7): 2704.

doi: 10.1021/es1033553
[94]
Deen S G, Hendry M J, Lee Barbour S, Das S, Essilfie-Dughan J. Geochemistry, 2022, 82(1): 125863.

doi: 10.1016/j.chemer.2022.125863
[95]
Liu H F, Qian T W, Zhang M G. Spectroscopy and Spectral Analysis, 2015, 35(02): 543.
(刘宏芳, 钱天伟, 张敏刚. 光谱学与光谱分析, 2015, 35(02): 543.).
[96]
Li P. Doctoral Dissertation of Hefei University of Technology, 2016.
(李平. 合肥工业大学博士论文, 2016.).
[97]
Zhang Y L, Zhang K, Dai C M, Zhou X F. Chem. Eng. Sci., 2014, 111: 135.
[98]
Kriegman-King M R, Reinhard M. Environ. Sci. Technol., 1994, 28(4): 692.

doi: 10.1021/es00053a025
[99]
Zhang Y Q, Tran H P, Hussain I, Zhong Y Q, Huang S B. Chem. Eng. J., 2015, 279: 396.

doi: 10.1016/j.cej.2015.03.016
[100]
Rahim H U, Qaswar M, Wang M L, Jing X D, Cai X Y. J. Environ. Chem. Eng., 2021, 9(6): 106696.

doi: 10.1016/j.jece.2021.106696
[101]
Cheng J, Yuan J, Li S Y, Yang X L, Lu Z J, Xu J M, He Y. Crit. Rev. Environ. Sci. Technol., 2022, 52(14): 2582.

doi: 10.1080/10643389.2021.1886890
[102]
Huang H J, Chen J Y, Wang X F. Modern Mining, 2021, 37(04): 176.
(黄海军, 陈金毅, 王小凤. 现代矿业, 2021, 37(04): 176.).
[103]
Tang J C, Zhao B B, Lyu H H, Li D. J. Hazard. Mater., 2021, 413: 125415.

doi: 10.1016/j.jhazmat.2021.125415
[104]
Liu C R, Xiao H, Liu Y, Li D J, He H, Huang X H, Shen W T, Yan Z Y, Dang Z, Zhu R L. J. Colloid Interface Sci., 2023, 629: 847.

doi: 10.1016/j.jcis.2022.09.129
[105]
Guo Y D, Li C X, Gong Z H, Guo Y P, Wang X G, Gao B, Qin W J, Wang G H. J. Hazard. Mater., 2020, 397: 122580.

doi: 10.1016/j.jhazmat.2020.122580
[106]
Yang W C, Li X M, Xi D D, Li Q, Yang Z H, Min X B, Lin Z, Liao Q. Chemosphere, 2021, 281: 130957.

doi: 10.1016/j.chemosphere.2021.130957
[107]
Zhao B B, Tang J C, Lyu H H, Liu F, Wang L. J. Environ. Chem. Eng., 2022, 10(2): 107181.

doi: 10.1016/j.jece.2022.107181
[108]
Lin Y T, Li J F, Chen S Y, Zhou H D, Shu Y M, Tang L Q, Long Q, Zhang P C, Huang Y. Sep. Purif. Technol., 2023, 308: 122764.

doi: 10.1016/j.seppur.2022.122764
[109]
Liu H F, Qian T W, Zhang M G. Spectroscopy and Spectral Analysis, 2015, 35(2): 543.
[110]
Charlet L, Kang M L, Bardelli F, Kirsch R, GÉhin A, Grenèche J M, Chen F R. Environ. Sci. Technol., 2012, 46(9): 4869.

doi: 10.1021/es204181q
[111]
Ri C, Li F X, Mun H, Liu L N, Tang J C. Chem. Eng. J., 2023, 452: 139086.

doi: 10.1016/j.cej.2022.139086
[1] Hao Zhang, Yanhui Wu. Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation [J]. Progress in Chemistry, 2023, 35(8): 1154-1167.
[2] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[3] Qingping Li, Tao Li, Chenchen Shao, Wei Liu. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(7): 1053-1064.
[4] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[7] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[8] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[9] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[12] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[13] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[14] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[15] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.