中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (10): 1519-1533 DOI: 10.7536/PC230214 Previous Articles   Next Articles

• Review •

Preparation and Extraction Application of Lithium Ion Selective Adsorption Materials

Xinyi Chen1, Kaisheng Xia1,*(), Qiang Gao1, Zhen Yang2,*(), Yudie Li1, Yi Meng1, Liang Chen3, Chenglin Liu2   

  1. 1 Faculty of Materials Science and Chemistry, China University of Geosciences,Wuhan 430078, China
    2 School of Earth Resources, China University of Geosciences,Wuhan 430074, China
    3 School of Physics, Huazhong University of Science & Technology,Wuhan 430074, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: kaishengxia@cug.edu.cn (Kaisheng Xia);yangzhen@cug.edu.cn (Zhen Yang)
  • Supported by:
    Science and Technology Major Projects of Xinjiang Autonomous Region(2022A03009); National Natural Science Foundation of China(21975228)
Richhtml ( 29 ) PDF ( 452 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, with the rapid advancement and large-scale application of lithium battery technology and electric vehicle, the market demand for lithium resource is growing sharply. However, due to insufficient mining degree and extraction technology, the total production capacity of ore lithium and brine lithium resources is far below the actual market demand. Extracting lithium from surface salt lake brine, deep brine and other liquid resources has the advantages of large resource potential and low extraction cost, which presents an important research direction in the lithium resource extraction field. Among available lithium extraction technologies, adsorption method is suitable for extracting lithium from low concentration and large volume liquid brine resources in China, and selective lithium ion adsorption materials are the core of adsorption method. In this review, we focus on the preparation and application of lithium ion selective adsorption materials for lithium extraction from brine. The preparation methods, adsorption properties and adsorption mechanisms of organic (crown ether), inorganic (aluminum-, manganese- and titanium-based adsorbents) and composite selective lithium adsorption materials are reviewed. This review provides a brief prospect for the design and development of new lithium adsorption materials, which may push forward the efficient extraction and utilization of lithium resources from salt lake brine.

Contents

1 Introduction

2 Crown ether adsorbents

2.1 Preparation of crown ether adsorbent

2.2 Selective lithium extraction performance

2.3 Selective lithium extraction mechanism

3 Alumina-based materials

3.1 Preparation of aluminum adsorbent

3.2 Selective lithium extraction mechanism of aluminum adsorbent

3.3 Selective lithium extraction performance of aluminum-based adsorbent

4 Lithium ion sieve adsorbent

4.1 Preparation of ion sieve adsorbent

4.2 Lithium ion insertion/extraction mechanism

4.3 Selective lithium extraction performanc of lithium ion sieve

4.4 Molded lithium ion sieve adsorbent

5 Other types of adsorbents

6 Conclusion and outlook

Fig.1 Classification of adsorbents for lithium recovery
Table 1 Performance of crown ether ligand composite adsorption materials
Fig.2 Size of alkali metal ions and crown ethers
Fig.3 The equilibrium geometry of 15-crown-5 (a), K+ and 15-crown-5 forming a ‘pyramid structure’ (b) and K+ and 15-crown-5 forming a ‘ sandwich structure ’ (c)
Fig.4 The structural model of chlorine-ion-intercalated LiAl-layered double hydroxides (LDHs)
Table 2 Performance comparison of three metal-based adsorbent
Table 3 Synthesis methods and properties of aluminum-based adsorbents
Fig.5 Mechanism of Li intercalation and deintercalation in spinel LMO adsorbent
Fig.6 A schematic diagram of Li+ extraction and insertion process in LIS
Table 4 Synthesis methods and properties of different titanium-based ion sieves
Table 5 Synthesis methods and properties of different manganese ion sieves
Table 6 Summary of advantages and disadvantages of crown ether, aluminum based, lithium-ion sieve type, and other types of adsorbents
[1]
Liu G, Zhao Z W, Ghahreman A. Hydrometallurgy, 2019, 187: 81.

doi: 10.1016/j.hydromet.2019.05.005
[2]
USGS. Mineral commodity summaries 2022, in: MineralCommodity Summaries, 2022.
[3]
Xu W M, Xiao J, Ding Y R. LAOQUJIANSHE, 2023, 3: 3.
(徐伟民, 肖坚, 丁冀荣. 老区建设, 2023, 3: 3.).
[4]
USGS. Reston, VA, 2023.
[5]
Chen L, Yang L, Liu T, Gao J, Hu Y B, Liu Y Q. Chem Eng Oil Gas, 2023, 52(2): 41.
(陈立, 杨立, 刘韬, 高杰, 胡永碧, 刘友权. 石油与天然气化工, 2023, 52(2): 41.).
[6]
Dai H Z, Wang D H, Liu S B, Li X, Wang C H, Liu Y. Acta Geologica Sinica, 2023, 97(2): 583.
(代鸿章, 王登红, 刘善宝, 李鑫, 王成辉, 孙艳. 地质学报, 2023, 97(2): 583.).
[7]
Nie Z, Wu Q, Ding T, Bu L Z, Wang Y S, Yu J J, Hou X H. Inorg. Chem. Ind., 2022, 54(10): 1.
(乜贞, 伍倩, 丁涛, 卜令忠, 王云生, 余疆江, 侯献华. 无机盐工业, 2022, 54(10): 1.).
[8]
Zhang Y X. China Econ. Week., 2023, 4: 42.
(张宇轩. 中国经济周刊, 2023, 4: 42).
[9]
Chen S Q, Nan X J, Zhang N, Li L, Yu X P, Guo Y F, Deng T L. J. Chem. Eng. Japan, 2019, 52(6): 508.

doi: 10.1252/jcej.17we230
[10]
Zhang Y, Xu R, Wang L, Sun W. Miner. Eng., 2022, 180: 107468.

doi: 10.1016/j.mineng.2022.107468
[11]
Zhao B, Guo M, Qian F R, Qian Z Q, Xu N C, Wu Z J, Liu Z. RSC Adv., 2020, 10(58): 35153.

doi: 10.1039/D0RA05094F
[12]
Zhao B, Qian Z Q, Qiao Y J, Li J, Wu Z J, Liu Z. Chem. Eng. J., 2023, 451: 138870.

doi: 10.1016/j.cej.2022.138870
[13]
Li H W, Wang Y, Li T Y, Ren X K, Wang J X, Wang Z, Zhao S. Chem. Eng. J., 2022, 438: 135658.

doi: 10.1016/j.cej.2022.135658
[14]
Zhao Z W, Liu G, Jia H, He L H. J. Membr. Sci., 2020, 596: 117685.

doi: 10.1016/j.memsci.2019.117685
[15]
Zhang H Z, Xu Z L, Sun J Y. RSC Adv., 2018, 8(51): 29455.

doi: 10.1039/C8RA05507F
[16]
Yu C, Lu J, Dai J W, Dong Z Q, Lin X Y, Xing W D, Wu Y L, Ma Z F. J. Colloid Interface Sci., 2020, 572: 340.

doi: 10.1016/j.jcis.2020.03.091
[17]
Yu H W, Hossain S M, Wang C, Choo Y, Naidu G, Han D S, Shon H K. Desalination, 2023, 556: 116569.

doi: 10.1016/j.desal.2023.116569
[18]
Burgard M, Yaftian M R, Jeunesse C, Bagatin I, Matt D. J. Inclusion Phenom. Macrocycl. Chem., 2000, 38(1/4): 413.

doi: 10.1023/A:1008192012881
[19]
Qian F R, Guo M, Qian Z Q, Zhao B, Li J, Wu Z J, Liu Z. Sep. Purif. Technol., 2021, 264: 118433.

doi: 10.1016/j.seppur.2021.118433
[20]
Sun S Y, Zhang Q H, Yu J G. Journal of Inorganic Materials, 2010, 25: 626.

doi: 10.3724/SP.J.1077.2010.00626
(孙淑英, 张钦辉, 于建国. 无机材料学报, 2010, 25: 626.).

doi: 10.3724/SP.J.1077.2010.00626
[21]
Sun J, Li X W, Huang Y H, Luo G L, Tao D J, Yu J T, Chen L L, Chao Y H, Zhu W S. Chem. Eng. J., 2023, 453: 139485.

doi: 10.1016/j.cej.2022.139485
[22]
Pedersen C J. J. Am. Chem. Soc., 1967, 89(26): 7017.

doi: 10.1021/ja01002a035
[23]
Hangarge R V, La D D, Boguslavsky M, Jones L A, Kim Y S, Bhosale S V. ChemistrySelect, 2017, 2(35): 11487.

doi: 10.1002/slct.v2.35
[24]
Tachibana Y, Tanaka M, Nogami M. J. Radioanal. Nucl. Chem., 2019, 322(2): 717.

doi: 10.1007/s10967-019-06792-3
[25]
Luo X B, Guo B, Luo J M, Deng F, Zhang S Y, Luo S L, Crittenden J. ACS Sust. Chem. Eng., 2015, 3(3): 460.

doi: 10.1021/sc500659h
[26]
Cheng Q, Zhang Y Z, Zheng X D, Sun W, Li B T, Wang D D, Li Z Y. Sep. Purif. Technol., 2021, 262: 118312.

doi: 10.1016/j.seppur.2021.118312
[27]
Bai X, Dai J D, Ma Y, Bian W B, Pan J M. Chem. Eng. J., 2020, 380: 122386.

doi: 10.1016/j.cej.2019.122386
[28]
Jo H, Le T H, Lee H, Lee J S, Kim M, Lee S, Chang M, Yoon H. Chem. Eng. J., 2023, 452: 139274.

doi: 10.1016/j.cej.2022.139274
[29]
Ding T, Wu Q, Zheng M P, Nie Z, Li M, Peng S P, Wang Y S, Yu X D, Qian C, Tang S, Wang M L. Front. Energy Res., 2021, 9: 765612.

doi: 10.3389/fenrg.2021.765612
[30]
Dixit S S, Shashidhar M S, Devaraj S. Tetrahedron, 2006, 62(18): 4360.

doi: 10.1016/j.tet.2006.02.075
[31]
Park S S, Moorthy M S, Song H J, Ha C S. J. Nanosci. Nanotechnol., 2014, 14(11): 8845.

pmid: 25958615
[32]
Zheng X D, Li A, Hua J, Zhang Y Z, Li Z Y. Nanomaterials, 2021, 11(10): 2668.

doi: 10.3390/nano11102668
[33]
Wang W Q, Julaiti P, Ye G, Huo X M, Chen J. Chem. Eng. J., 2018, 336: 669.

doi: 10.1016/j.cej.2017.12.045
[34]
Lu T T, Zhu Y F, Qi Y X, Kang Y R, Wang A Q. Chem. Eng. J., 2019, 368: 988.

doi: 10.1016/j.cej.2019.03.040
[35]
Wang P, Dai J D, Ma Y, Chen L Z, Pan J M. Chem. Eng. J., 2020, 380: 122495.

doi: 10.1016/j.cej.2019.122495
[36]
Alexandratos S D, Stine C L, Sachleben R A, Moyer B A. Polymer, 2005, 46(17): 6347.

doi: 10.1016/j.polymer.2004.10.091
[37]
Xi G Q. Journal of Hainan Normal University(Natural Science), 2001, 68.
(奚干卿. 海南师范学院学报(自然科学版), 2001, 68.).
[38]
Valente M, Sousa S F, Lopes Magalhães A, Freire C. J. Solut. Chem., 2010, 39(8): 1230.

doi: 10.1007/s10953-010-9579-9
[39]
Martínez-Haya B, Hurtado P, Hortal A R, Steill J D, Oomens J, Merkling P J. J. Phys. Chem. A, 2009, 113(27): 7748.

doi: 10.1021/jp902150v pmid: 19518056
[40]
Alexander V. Chem. Rev., 1995, 95(2): 273.

doi: 10.1021/cr00034a002
[41]
Taziaux D, Soumillion J P, Habib Jiwan J L. J. Photochem. Photobiol. A Chem., 2004, 162(2/3): 599.

doi: 10.1016/S1010-6030(03)00424-6
[42]
Babujohn N A, Eluri A, Nabeela V P. Chemical Engineering Journal, 2023, 464: 142459.

doi: 10.1016/j.cej.2023.142459
[43]
Liang S Z C, Ji G X, Sun X L, Li G D, Zhang S T. Chin. J. Inorg. Chem., 2021, 37(11): 2037.
(梁苏卓成, 姬国勋, 孙新利, 李国东, 张仕通. 无机化学学报, 2021, 37(11): 2037.).
[44]
Torrejos R E C, Nisola G M, Park M J, Shon H K, Seo J G, Koo S, Chung W J. Chem. Eng. J., 2015, 264: 89.

doi: 10.1016/j.cej.2014.11.036
[45]
Fogg A M, Freij A J, Parkinson G M. Chem. Mater., 2002, 14(1): 232.

doi: 10.1021/cm0105099
[46]
Qu J, He X M, Wang B T, Zhong L H, Wan L, Li X W, Song S X, Zhang Q W. Appl. Clay Sci., 2016, 120: 24.

doi: 10.1016/j.clay.2015.11.017
[47]
Sissoko I, Iyagba E T, Sahai R, Biloen P. J. Solid State Chem., 1985, 60(3): 283.

doi: 10.1016/0022-4596(85)90278-6
[48]
Chen D, Li Y, Zhang J, Zhou J Z, Guo Y, Liu H. Chem. Eng. J., 2012, 185/186: 120.

doi: 10.1016/j.cej.2012.01.059
[49]
Guo M, Liu Z, Li Q, Wu Z J. Qinghai Science and Technology, 2019, 26: 16.
(郭敏, 刘忠, 李权, 吴志坚. 青海科技, 2019, 26: 16.).
[50]
Liu X H, Zhong M L, Chen X Y, Zhao Z W. Hydrometallurgy, 2018, 176: 73.

doi: 10.1016/j.hydromet.2018.01.005
[51]
Zhong J, Lin S, Yu J G. Desalination, 2021, 505: 114983.

doi: 10.1016/j.desal.2021.114983
[52]
Dong Q, Li Y J, Pu X L, Zhu S L. Chinese Journal of Rare Metals, 2007, 3: 357.
(董茜, 李燕杰, 朴香兰, 朱慎林. 稀有金属, 2007, 3: 357.).
[53]
Goh K H, Lim T T, Dong Z L. Water Res., 2008, 42(6/7): 1343.

doi: 10.1016/j.watres.2007.10.043
[54]
Isupov V P, Kotsupalo N P, Nemudry A P, Menzeres L T. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1999. 621.
[55]
Sun Y, Guo X Y, Hu S F, Xiang X. J. Energy Chem., 2019, 34: 80.

doi: 10.1016/j.jechem.2018.09.022
[56]
Chen J, Lin S, Yu J. Journal of Hazardous Materials, 2020, 388: 122101.

doi: 10.1016/j.jhazmat.2020.122101
[57]
Heidari N, Momeni P. Environmental Earth Sciences, 2017, 76(16): 1.

doi: 10.1007/s12665-016-6304-z
[58]
Cheng P G, Huang C F, Gan S T, Gong J K, Xiang J, Tang N. Inorg. Chem. Ind., 2021, 53(6): 140.
(程鹏高, 黄传峰, 甘善甜, 龚经款, 项军, 唐娜. 无机盐工业, 2021, 53(6): 140.).
[59]
Paranthaman M P, Li L, Luo J Q, Hoke T, Ucar H, Moyer B A, Harrison S. Environ. Sci. Technol., 2017, 51(22): 13481.

doi: 10.1021/acs.est.7b03464
[60]
Shi X C, Zhang Z B, Zhou D F, Zhou X C, Tang T G, Yin S H. J. Central South Univ. Sci. Technol., 2013, 44(3): 892.
(石西昌, 张志兵, 周定方, 周喜诚, 唐天罡, 尹世豪. 中南大学学报(自然科学版), 2013, 44(3): 892.).
[61]
Kosova N V, Uvarov N F, Devyatkina E T, Avvakumov E G. Solid State Ionics, 2000, 135: 107.

doi: 10.1016/S0167-2738(00)00288-5
[62]
Huang Y D, Jiang R R, Bao S J, Cao Y L, Jia D Z. Nanoscale Res. Lett., 2009, 4(4): 353.

doi: 10.1007/s11671-009-9252-7
[63]
Takada T, Hayakawa H, Akiba E. J. Solid State Chem., 1995, 115(2): 420.

doi: 10.1006/jssc.1995.1154
[64]
Thanh N T K, MacLean N, Mahiddine S. Chem. Rev., 2014, 114(15): 7610.

doi: 10.1021/cr400544s
[65]
Zhang Y C, Wang H, Wang B, Yan H, Ahniyaz A, Yoshimura M. Mater. Res. Bull., 2002, 37(8): 1411.

doi: 10.1016/S0025-5408(02)00796-1
[66]
Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Adv. Powder Technol., 2009, 20(5): 432.

doi: 10.1016/j.apt.2009.02.008
[67]
Helan M, Berchmans L J. Mater. Manuf. Process., 2011, 26(11): 1369.

doi: 10.1080/10426914.2010.536932
[68]
Yu Q Q, Morioka E, Sasaki K. Microporous Mesoporous Mater., 2013, 179: 122.

doi: 10.1016/j.micromeso.2013.05.026
[69]
Zhang L Y, Zhou D L, Yao Q Q, Zhou J B. Appl. Surf. Sci., 2016, 368: 82.

doi: 10.1016/j.apsusc.2016.01.203
[70]
Li X W, Chen L L, Chao Y H, Zhu L H, Luo G L, Sun J, Jiang L, Zhu W S, Liu Z C, Xu C M. Desalination, 2022, 537: 115847.

doi: 10.1016/j.desal.2022.115847
[71]
Shi X C, Zhang Z B, Zhou D F, Zhang L F, Chen B Z, Yu L L. Trans. Nonferrous Met. Soc. China, 2013, 23(1): 253.

doi: 10.1016/S1003-6326(13)62453-X
[72]
Xu X, Chen Y M, Wan P Y, Gasem K, Wang K Y, He T, Adidharma H, Fan M H. Prog. Mater. Sci., 2016, 84: 276.

doi: 10.1016/j.pmatsci.2016.09.004
[73]
Hunter J C. J. Solid State Chem., 1981, 39(2): 142.

doi: 10.1016/0022-4596(81)90323-6
[74]
Ooi K, Miyai Y, Katoh S, Maeda H, Abe M. Chem. Lett., 1988, 17(6): 989.

doi: 10.1246/cl.1988.989
[75]
Shen X M, Clearfield A. J. Solid State Chem., 1986, 64(3): 270.

doi: 10.1016/0022-4596(86)90071-X
[76]
Sato K, Poojary D M, Clearfield A, Kohno M, Inoue Y. J. Solid State Chem., 1997, 131(1): 84.

doi: 10.1006/jssc.1997.7348
[77]
Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N. J. Electroanal. Chem., 2003, 559: 77.

doi: 10.1016/S0022-0728(03)00040-8
[78]
Ammundsen B, Jones D J, Rozière J, Berg H, Tellgren R, Thomas J O. Chem. Mater., 1998, 10(6): 1680.

doi: 10.1021/cm9800478
[79]
Kim Y S, Kanoh H, Hirotsu T, Ooi K. Mater. Res. Bull., 2002, 37(2): 391.

doi: 10.1016/S0025-5408(01)00776-0
[80]
Wei S D, Wei Y F, Chen T, Liu C B, Tang Y H. Chem. Eng. J., 2020, 379: 122407.

doi: 10.1016/j.cej.2019.122407
[81]
Moazeni M, Hajipour H, Askari M, Nusheh M. Mater. Res. Bull., 2015, 61: 70.

doi: 10.1016/j.materresbull.2014.09.069
[82]
Chitrakar R, Makita Y, Ooi K, Sonoda A. Dalton Trans., 2014, 43(23): 8933.

doi: 10.1039/c4dt00467a pmid: 24801244
[83]
Hosogi Y, Kato H, Kudo A. Journal of Materials Chemistry, 2008, 18: 647.

doi: 10.1039/B715679K
[84]
Ooi K, Miyai Y, Sakakihara J. Langmuir, 1991, 7(6): 1167.

doi: 10.1021/la00054a025
[85]
Feng Q, Miyai Y, Kanoh H, Ooi K. Langmuir, 1992, 8(7): 1861.

doi: 10.1021/la00043a029
[86]
Zandevakili S, Ranjbar M, Ehteshamzadeh M. Micro Nano Lett., 2015, 10(2): 58.
[87]
Gu D L, Sun W J, Han G F, Cui Q, Wang H Y. Chem. Eng. J., 2018, 350: 474.

doi: 10.1016/j.cej.2018.05.191
[88]
Tomita Y, Yonekura H, Kobayashi K. Bull. Chem. Soc. Jpn., 2002, 75(10): 2253.

doi: 10.1246/bcsj.75.2253
[89]
Tian L Y, Ma W, Han M. Chem. Eng. J., 2010, 156(1): 134.

doi: 10.1016/j.cej.2009.10.008
[90]
Li N, Gan K F, Lu D L, Zhang J L, Wang L Z. Res. Chem. Intermed., 2018, 44(2): 1105.

doi: 10.1007/s11164-017-3154-6
[91]
Han H J, Wu Y M, Cao Y S, Han T T, Tang W P. Inorg. Chem. Ind., 2022, 54(8): 59.
(韩红静, 吴勇民, 曹永生, 韩婷婷, 汤卫平. 无机盐工业, 2022, 54(8): 59.).
[92]
Li X W, Chao Y H, Chen L L, Chen W, Luo J, Wang C, Wu P W, Li H M, Zhu W S. Chem. Eng. J., 2020, 392: 123731.

doi: 10.1016/j.cej.2019.123731
[93]
LI C, Xiao J L, Sun S Y. CIESC Journal, 2014, 65: 220.
[94]
Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K. Ind. Eng. Chem. Res., 2002, 41(17): 4281.

doi: 10.1021/ie010847j
[95]
Hong H J, Park I S, Ryu T, Ryu J, Kim B G, Chung K S. Chem. Eng. J., 2013, 234: 16.

doi: 10.1016/j.cej.2013.08.060
[96]
Zhou S Y, Guo X J, Yan X, Chen Y, Lang W Z. Particuology, 2022, 69: 100.

doi: 10.1016/j.partic.2021.12.002
[97]
Xie L X, Chen X M. CIESC Journal, 2014, 65: 237.
[98]
Ma L W, Chen B Z, Chen Y, Shi X C. Microporous Mesoporous Mater., 2011, 142(1): 147.

doi: 10.1016/j.micromeso.2010.11.028
[99]
Pan L L, Zhu J H, Li Y Y. Multipurp. Util. Miner. Resour., 2002, 2: 28.
(潘立玲, 朱建华, 李渝渝. 矿产综合利用, 2002, 2: 28.).
[100]
Liang Q, Zhang E H, Yan G, Yang Y Z, Liu W F, Liu X G. New Carbon Mater., 2020, 35(6): 696.

doi: 10.1016/S1872-5805(20)60533-9
[101]
Jeong J M, Rhee K Y, Park S J. J. Ind. Eng. Chem., 2015, 27: 329.
[102]
Huang Y, Wang R. Chem. Eng. J., 2019, 378: 122084.

doi: 10.1016/j.cej.2019.122084
[103]
Xu J J, Cai X Y, Cai S M, Shao Y X, Hu C, Lu S R, Ding S J. Energy Environ. Mater., 2022, e12450.
[104]
Chen S M, Song Z B, Wang L, Chen H, Zhang S Q, Pan F, Yang L Y. Acc. Chem. Res., 2022, 55(15): 2088.

doi: 10.1021/acs.accounts.2c00259
[105]
Fu Y, Yang K, Xue S, Li W, Chen S, Song Y, Sun. Advanced Functional Materials, 2023, 33(10): 2210845.

doi: 10.1002/adfm.v33.10
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[3] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[4] Liying Liu, He Gong, Zhe Wang, Gang Li, Tao Du. Application of Pressure Swing Adsorption Technology to Capture CO2 in Highly Humid Flue Gas [J]. Progress in Chemistry, 2018, 30(6): 872-878.
[5] Yao Ma, Fei Yu, Jie Ma. Design of Graphene/Organic Composite Adsorbent and Its Application in Water Treatment [J]. Progress in Chemistry, 2017, 29(6): 582-592.
[6] Wen Zhang, Yingxin Mou, Song Zhao, Lixin Xie, Yuxin Wang, Jing Chen. Adsorption Materials for Lithium Ion from Brine Resources and Their Performances [J]. Progress in Chemistry, 2017, 29(2/3): 231-240.
[7] Wenbo Zhang, Fangqin Li, Jiang Wu*, Hexing Li*. Mercury Removal Technologies of the Flue Gas from Power Plants [J]. Progress in Chemistry, 2017, 29(12): 1435-1445.
[8] Xueqiong Huang, Long Kong, Shouqiang Huang, Liang Li. Metal Sulfide Nanomaterials Based Adsorbents [J]. Progress in Chemistry, 2017, 29(1): 83-92.
[9] Zhang Wen, Ye Gang, Chen Jing* . Composite Materials for Uranium Adsorption [J]. Progress in Chemistry, 2012, 24(12): 2330-2341.
[10] Peng Xianjia Jia Jianjun Luan Zhaokun Wang Jun. Water Treatment Materials Based on Carbon Nanotubes [J]. Progress in Chemistry, 2009, 21(09): 1987-1992.
[11] Song Peng sheng,Yao Yan,Li Jun. Thermodynamics and Phase Equilibria of the Salt Lake Brine System at 25 ℃ [J]. Progress in Chemistry, 2000, 12(03): 255-.
[12] Zhou Li,Lu Chang zhong,Wang Yilin,Yao Jinhua,Wang Yu. Physisorption of Gases on Porous Solids at Above-Critical Temperatures [J]. Progress in Chemistry, 1999, 11(03): 221-.
[13] Zheng Jingtang,Zhang Yinzhi,Wang Maozhang. The Study Progress and Prospect of Porous Carbon Materials [J]. Progress in Chemistry, 1996, 8(03): 241-.