中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1123-1135 DOI: 10.7536/PC230114   Next Articles

• Review •

Combination Antitumor Therapy Based on Codelivery Nanosystems of Doxorubicin

Yuhan Bao, Zifeng Guo, Jintao Li, Mingzu Zhang, Jinlin He(), Peihong Ni   

  1. College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University,Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jlhe@suda.edu.cn
  • About author:
    †These authors contributed equally.
  • Supported by:
    Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJA150009); Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University(202110285025Z)
Richhtml ( 57 ) PDF ( 418 ) Cited
Export

EndNote

Ris

BibTeX

Tumor has been one of the most common causes of death worldwide, while chemotherapy is still the major tool for antitumor treatment. As a broad-spectrum anthracycline-type antitumor drug, doxorubicin (DOX) has been widely used in different types of tumors in clinical practices. Nevertheless, its serious side effects, including cumulative cardiotoxicity and dose-limiting myelosuppression, present significant challenges to the clinical application. Researchers have long been committed to finding routes to reduce the toxic side effects of DOX, whereas the strategies of combination antitumor therapies based on codelivery nanosystems have received wide attention. They can realize the targeted enrichment and on-demand release of drugs in the lesion area, reducing the adverse reaction of DOX to normal tissues through drug combination and reversing the multi-drug resistance (MDR) of tumor cells to a certain extent. In this review, we focus on the recent progress on the DOX-based combination antitumor therapies together with other chemotherapeutic agents (camptothecin, paclitaxel, cisplatin), genetic drugs (pDNA, siRNA, miRNA), gas molecules (NO, O2, CO, H2S, SO2) or natural medicines (dexrazoxane, berberine, flavonoids). Besides, the current challenges and future trends of DOX-based combination therapies are also prospected.

Contents

1 Introduction

2 Combination therapy of DOX with other chemotherapeutic agents

3 Combination therapy of DOX with genetic drugs

4 Combination therapy of DOX with gas molecules

4.1 DOX in combination with NO

4.2 DOX in combination with O2

4.3 DOX in combination with CO

4.4 DOX in combination with H2S

4.5 DOX in combination with SO2

5 Combination therapy of DOX with natural medicines

6 Conclusion and outlook

Fig.1 Chemical structure and functional moieties of DOX
Fig.2 Schematic illustration of micelle structure with DOX in combination with CPT and CDDP respectively. (a) Stimuli-responsive polymer prodrug mixed micelles for co-loading DOX and CPT[26]. Copyright 2016, The Royal Society of Chemistry. (b) Self-crosslinking nanomicelles for co-loading DOX and CDDP[35]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.3 Schematic illustration of DOX combined gene therapy. (a) Polyphosphate ester multifunctional carrier for the delivery of DOX and p53[48]. Copyright 2018, The Royal Society of Chemistry. (b) mPEG-PCL-g-PDMAEMA micelles co-deliver DOX and Cy5-siRNA[56]. Copyright 2016, American Chemical Society. (c) Amphiphilic containing phosphorus dendrimer micelles co-loading DOX and miR-21i[62]. Copyright 2022, The Royal Society of Chemistry. (d) lsDNA produced by TK1 mRNA, fluorescent hairpins HP and DOX self-assemble into DNA nanosphere[70]. Copyright 2020, American Chemical Society
Fig.4 Schematic illustration of DOX combined gas therapy. (a) Self-assembly and photo-triggered drug release of DOX-loading triblock copolymers of PEG-b-PNORM-b-PEG containing NO-releasing moieties within the main chain[81]. Copyright 2020, The Royal Society of Chemistry. (b) The amphiphilic molecule F-IR780-PEG co-loaded with DOX and O2 generates1O2 and releases DOX under near-infrared light irradiation[86]. Copyright 2019, The Royal Society of Chemistry. (c) Nanocarrier containing nitrophenyl ether and 3-HF derivatives loaded with DOX releases CO and DOX under illumination[95]. Copyright 2022, Multidisciplinary Digital Publishing Institute. (d) Tumor specific lipase responsive carrier loaded with DOX can release H2S through diallyl trisulfide reacting with GSH at the lesion site)[105]. Copyright 2022, Frontiers. (e) SO2-releasing amphiphilic polymeric prodrug based on pegylated poly(L-glutamate)[109]
[1]
Zheng R S, Zhang S W, Zeng H M, Wang S M, Sun K X, Chen R, Li L, Wei W Q, He J. J. Natl. Cancer Cent., 2022, 2(1): 1.
[2]
GBD 2019 Diseases and Injuries Collaborators. Lancet, 2020, 396(10258): 1204.

doi: 10.1016/S0140-6736(20)30925-9
[3]
Li Y, Huang W, Huang P, Zhu X Y, Yan D Y. Prog. Chem., 2014, 26(8): 1395.
(黎燕, 黄卫, 黄平, 朱新远, 颜德岳. 化学进展, 2014, 26(8): 1395.).
[4]
Jing X D, Sun Y, Yu B, Shen Y Q, Hu H, Cong H L. Prog. Chem., 2021, 33(6): 926.
(荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 化学进展, 2021, 33(6): 926.).

doi: 10.7536/PC200728
[5]
Yin Q, Shen J N, Zhang Z W, Yu H J, Li Y P. Adv. Drug Deliv. Rev., 2013, 65(13/14): 1699.

doi: 10.1016/j.addr.2013.04.011
[6]
Bukowski K, Kciuk M, Kontek R. Int. J. Mol. Sci., 2020, 21(9): 3233.

doi: 10.3390/ijms21093233
[7]
Gong J N, Shi T R, Liu J F, Pei Z R, Liu J B, Ren X L, Li F Y, Qiu F. Biomed. Pharmacother., 2023, 161: 114505.

doi: 10.1016/j.biopha.2023.114505
[8]
Cagel M, Grotz E, Bernabeu E, Moretton M A, Chiappetta D A. Drug Discov. Today, 2017, 22(2): 270.

doi: 10.1016/j.drudis.2016.11.005
[9]
D'Angelo N A, Noronha M A, Câmara M C C, Kurnik I S, Feng C Y, Araujo V H S, Santos J H P M, Feitosa V, Molino J V D, Rangel-Yagui C O, Chorilli M, Ho E A, Lopes A M. Biomater. Adv., 2022, 133: 112623.

doi: 10.1016/j.msec.2021.112623
[10]
Mele D, Nardozza M, Spallarossa P, Frassoldati A, Tocchetti C G, Cadeddu C, Madonna R, Malagù M, Ferrari R, Mercuro G. Heart Fail. Rev., 2016, 21(5): 621.

doi: 10.1007/s10741-016-9564-5
[11]
Shelburne N, Simonds N I, Adhikari B, Alley M, Desvigne-Nickens P, Dimond E, Filipski K, Gallicchio L, Minasian L. Curr. Oncol. Rep., 2019, 21(1): 9.

doi: 10.1007/s11912-019-0751-0
[12]
Sahu K, Langeh U, Singh C, Singh A. Curr. Res. Pharmacol. Drug Discov., 2021, 2: 100047.
[13]
Chen H B, Gu Z J, An H W, Chen C Y, Chen J, Cui R, Chen S Q, Chen W H, Chen X S, Chen X Y, Chen Z, Ding B Q, Dong Q, Fan Q, Fu T, Hou D Y, Jiang Q, Ke H T, Jiang X Q, Liu G, Li S P, Li T Y, Liu Z, Nie G J, Ovais M, Pang D W, Qiu N S, Shen Y Q, Tian H Y, Wang C, Wang H, Wang Z Q, Xu H P, Xu J F, Yang X L, Zhu S, Zheng X C, Zhang X Z, Zhao Y B, Tan W H, Zhang X, Zhao Y L. Sci. China Chem., 2018, 61(12): 1503.

doi: 10.1007/s11426-018-9397-5
[14]
Li Y, Thambi T, Lee D S. Adv. Healthcare Mater., 2018, 7(1): 1700886.

doi: 10.1002/adhm.v7.1
[15]
Jin H J, Wang L Q, Bernards R. Nat. Rev. Drug Discov., 2023, 22(3): 213.

doi: 10.1038/s41573-022-00615-z
[16]
Swartz M A, Lund A W. Nat. Rev. Cancer, 2012, 12(3): 210.

doi: 10.1038/nrc3186
[17]
Mo R, Gu Z. Mater. Today, 2016, 19(5): 274.

doi: 10.1016/j.mattod.2015.11.025
[18]
Sun H L, Zhong Z Y. ACS Macro Lett., 2020, 9(9): 1292.

doi: 10.1021/acsmacrolett.0c00488
[19]
Zhao C S, Wen S C, Wan Y Q, Ao Y L, Chen W. Prog. Pharm. Sci., 2022, 46(7): 502.
(赵昌顺, 温苏晨, 万雨晴, 敖裕利, 陈维. 药学进展, 2022, 46(7): 502.).
[20]
Hu C, Song Y J, Gao H L. Prog. Pharm. Sci., 2022, 46(7): 485.
(胡川, 宋钰珺, 高会乐. 药学进展, 2022, 46(7): 485.).
[21]
Dai W B, Wang X Y, Song G, Liu T Z, He B, Zhang H, Wang X Q, Zhang Q. Adv. Drug Deliv. Rev., 2017, 115: 23.

doi: 10.1016/j.addr.2017.03.001
[22]
Li Q Y, Zu Y G, Shi R Z, Yao L P. Curr. Med. Chem., 2006, 13(17): 2021.

doi: 10.2174/092986706777585004
[23]
dos A Miguel R, Hirata A S, Jimenez P C, Lopes L B, Costa-Lotufo L V. Pharmaceutics, 2022, 14(8): 1722.

doi: 10.3390/pharmaceutics14081722
[24]
Wang Q Y, Y L Xiang, Hu Q H, Huang S H, Lin J, Zhou Q H. Colloids Surf. B Biointerfaces, 2022, 216: 112588.

doi: 10.1016/j.colsurfb.2022.112588
[25]
Manjusha V, Reshma L R, Anirudhan T S. J. Drug Deliv. Sci. Technol., 2023, 79: 104032.
[26]
Cao D L, He J L, Xu J Y, Zhang M Z, Zhao L, Duan G X, Cao Y W, Zhou R H, Ni P H. Polym. Chem., 2016, 7(25): 4198.

doi: 10.1039/C6PY00701E
[27]
Dong S X, Sun Y, Liu J, Li L, He J L, Zhang M Z, Ni P H. ACS Appl. Mater. Interfaces, 2019, 11(9): 8740.

doi: 10.1021/acsami.8b16363
[28]
Yang K K, Yang Z Q, Yu G C, Nie Z H, Wang R B, Chen X Y. Adv. Mater., 2022, 34(6): 2107434.

doi: 10.1002/adma.v34.6
[29]
Lin C, Liang Y X, Guo M Y, Saw P E, Xu X D. Mater. Today Adv., 2022, 15: 100266.
[30]
Yang M, Ding H Q, Zhu Y X, Ge Y X, Li L B. Colloids Surf. B Biointerfaces, 2019, 175: 126.

doi: 10.1016/j.colsurfb.2018.11.086
[31]
Zhao D J, Wu J L, Li C X, Zhang H Y, Li Z H, Luan Y X. Colloids Surf. B Biointerfaces, 2017, 155: 51.

doi: 10.1016/j.colsurfb.2017.03.056
[32]
Lee S M, O’Halloran T V, Nguyen S T. J. Am. Chem. Soc., 2010, 132(48): 17130.

doi: 10.1021/ja107333g
[33]
Wang Y P, Qian J M, Yang M, Xu W J, Wang J L, Hou G H, Ji L J, Suo A L. Carbohydr. Polym., 2019, 225: 115206.

doi: 10.1016/j.carbpol.2019.115206
[34]
Solomevich S O, Aharodnikau U E, Dmitruk E I, Nikishau P A, Bychkovsky P M, Salamevich D A, Jiang G H, Pavlov K I, Sun Y F, Yurkshtovich T L. Int. J. Biol. Macromol., 2023, 228: 273.

doi: 10.1016/j.ijbiomac.2022.12.243 pmid: 36581023
[35]
Zhang Y, Wang F, Li M Q, Yu Z Q, Qi R G, Ding J X, Zhang Z Y, Chen X S. Adv. Sci., 2018, 5(5): 1700821.

doi: 10.1002/advs.v5.5
[36]
Zhao H, Zhao Y B, Xu J B, Feng X, Liu G Y, Zhao Y B, Yang X L. Chem. Eng. J., 2020, 398: 125614.

doi: 10.1016/j.cej.2020.125614
[37]
de Lázaro I, Mooney D J. Nat. Mater., 2021, 20(11): 1469.

doi: 10.1038/s41563-021-01047-7 pmid: 34226688
[38]
Jeong J H, Kim S W, Park T G. Prog. Polym. Sci., 2007, 32(11): 1239.

doi: 10.1016/j.progpolymsci.2007.05.019
[39]
Mintzer M A, Simanek E E. Chem. Rev., 2009, 109(2): 259.

doi: 10.1021/cr800409e
[40]
Xu C N, Tian H Y, Chen X S. Sci. China Chem., 2017, 60(3): 319.

doi: 10.1007/s11426-016-0466-x
[41]
Cheng Y Y. Acta Polym. Sin., 2017, 8: 1234.
(程义云. 高分子学报, 2017, 8: 1234.).
[42]
Liu Y, Yin L C. Adv. Drug Deliv. Rev., 2021, 171: 139.

doi: 10.1016/j.addr.2020.12.007
[43]
Huang X G, Kong N, Zhang X C, Cao Y H, Langer R, Tao W. Nat. Med., 2022, 28(11): 2273.

doi: 10.1038/s41591-022-02061-1
[44]
Dilliard S A, Siegwart D J. Nat. Rev. Mater., 2023, 8(4): 282.

doi: 10.1038/s41578-022-00529-7
[45]
Liu S H, Guo Y B, Huang R Q, Li J F, Huang S X, Kuang Y Y, Han L, Jiang C. Biomaterials, 2012, 33(19): 4907.

doi: 10.1016/j.biomaterials.2012.03.031
[46]
Jia H Z, Chen S, Zhuo R X, Feng J, Zhang X Z. Sci. China Chem., 2016, 59(11): 1397.

doi: 10.1007/s11426-016-0230-9
[47]
Xie B, Yi J P, Peng J, Zhang X, Lei L, Zhao D P, Lei Z X, Nie H M. J. Mater. Sci. Technol., 2017, 33(8): 807.

doi: 10.1016/j.jmst.2017.05.005
[48]
Liu J, He J L, Zhang M Z, Xu G Q, Ni P H. J. Mater. Chem. B, 2018, 6(20): 3262.

doi: 10.1039/C8TB00746B
[49]
Lin J T, Chen H, Wang D, Xiong L, Li J Z, Chen G H, Chen G B. Colloids Surf. B Biointerfaces, 2019, 183: 110440.

doi: 10.1016/j.colsurfb.2019.110440
[50]
Martínez-JimÉnez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. Nat. Rev. Cancer, 2020, 20(10): 555.

doi: 10.1038/s41568-020-0290-x pmid: 32778778
[51]
Li J M, Wang Y Y, Zhao M X, Tan C P, Li Y Q, Le X Y, Ji L N, Mao Z W. Biomaterials, 2012, 33(9): 2780.

doi: 10.1016/j.biomaterials.2011.12.035
[52]
Cao N, Cheng D, Zou S Y, Ai H, Gao J M, Shuai X T. Biomaterials, 2011, 32(8): 2222.

doi: 10.1016/j.biomaterials.2010.11.061
[53]
Cheng D, Cao N, Chen J F, Yu X S, Shuai X T. Biomaterials, 2012, 33(4): 1170.

doi: 10.1016/j.biomaterials.2011.10.057 pmid: 22061491
[54]
Han L, Tang C, Yin C H. Biomaterials, 2015, 60: 42.

doi: 10.1016/j.biomaterials.2015.05.001 pmid: 25982552
[55]
Liu C, Tang C, Yin C H. Carbohydr. Polym., 2022, 283: 119097.

doi: 10.1016/j.carbpol.2022.119097
[56]
Cheng Q, Du L L, Meng L W, Han S C, Wei T, Wang X X, Wu Y D, Song X Y, Zhou J H, Zheng S Q, Huang Y Y, Liang X J, Cao H Q, Dong A J, Liang Z C. ACS Appl. Mater. Interfaces, 2016, 8(7): 4347.

doi: 10.1021/acsami.5b11789
[57]
Li G, Meng F Y, Lu T C, Wei L Y, Pan X, Nong Z Z, Wei M, Liao C A, Li X H. J. Pharm. Pharmacol., 2021, 73(8): 1128.

doi: 10.1093/jpp/rgab059
[58]
Chen S B, Li D D, Du X J, He X Y, Huang M W, Wang Y, Yang X Z, Wang J. Nano Today, 2020, 35: 100924.

doi: 10.1016/j.nantod.2020.100924
[59]
Dai X, Tan C. Adv. Drug Deliv. Rev., 2015, 81: 184.

doi: 10.1016/j.addr.2014.09.010
[60]
Yao C, Liu J Y, Wu X, Tai Z G, Gao Y, Zhu Q G, Li J F, Zhang L J, Hu C L, Gu F F, Gao J, Gao S. J. Control. Release, 2016, 232: 203.

doi: 10.1016/j.jconrel.2016.04.034
[61]
Salzano G, Costa D F, Sarisozen C, Luther E, Mattheolabakis G, Dhargalkar P P, Torchilin V P. Small, 2016, 12(35): 4837.

doi: 10.1002/smll.v12.35
[62]
Chen L, Zhan M S, Li J, Cao L, Sun H X, Laurent R, Mignani S, Caminade A M, Majoral J P, Shi X Y. J. Mater. Chem. B, 2023, 11(24): 5483.

doi: 10.1039/D2TB02114E
[63]
Fang R H, Jiang Y, Fang J C, Zhang L F. Biomaterials, 2017, 128: 69.

doi: 10.1016/j.biomaterials.2017.02.041
[64]
Li R X, He Y W, Zhang S Y, Qin J, Wang J X. Acta Pharm. Sin. B, 2018, 8(1): 14.

doi: 10.1016/j.apsb.2017.11.009
[65]
Xuan M J, Shao J X, Li J B. Natl. Sci. Rev., 2019, 6(3): 551.

doi: 10.1093/nsr/nwz037
[66]
Chen X Y, Cui S H, Du S, Zhang S B. Chin. J. Mod. Appl. Pharm., 2022, 39(22): 3024.
(陈星妍, 崔韶晖, 杜桑, 张树彪. 中国现代应用药学, 2022, 39(22): 3024.).
[67]
Liu Y, Sukumar U K, Kanada M, Krishnan A, Massoud T F, Paulmurugan R. Adv. Funct. Mater., 2021, 31(41): 2103600.

doi: 10.1002/adfm.v31.41
[68]
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Pharmacol. Res., 2016, 111: 619.

doi: 10.1016/j.phrs.2016.07.007
[69]
Tsafa E, Bentayebi K, Topanurak S, Yata T, Przystal J, Fongmoon D, Hajji N, Waramit S, Suwan K, Hajitou A. Int. J. Mol. Sci., 2020, 21(21): 7867.

doi: 10.3390/ijms21217867
[70]
Jiang Y F, Xu X, Fang X, Cai S X, Wang M, Xing C, Lu C H, Yang H H. Anal. Chem., 2020, 92(17): 11779.

doi: 10.1021/acs.analchem.0c01895
[71]
Wang Q, Ma Y X, Lu Z W, Yu H Y, Li Z. ACS Appl. Nano Mater., 2022, 5(1): 101.

doi: 10.1021/acsanm.1c03295
[72]
Szabo C. Nat. Rev. Drug Discov., 2016, 15(3): 185.

doi: 10.1038/nrd.2015.1
[73]
Yu L D, Hu P, Chen Y. Adv. Mater., 2018, 30(49): 1801964.

doi: 10.1002/adma.v30.49
[74]
Chen L C, Zhou S F, Su L C, Song J B. ACS Nano, 2019, 13(10): 10887.

doi: 10.1021/acsnano.9b04954
[75]
Wang Y S, Yang T, He Q J. Natl. Sci. Rev., 2020, 7(9): 1485.

doi: 10.1093/nsr/nwaa034
[76]
Hu J M, Fang Y M, Huang X M, Qiao R R, Quinn J F, Davis T P. Adv. Drug Deliv. Rev., 2021, 179: 114005.

doi: 10.1016/j.addr.2021.114005
[77]
Fang Y M, Cheng J, Shen Z Q, You T, Ding S G, Hu J M. Macromol. Rapid Commun., 2022, 43(14): 2100814.

doi: 10.1002/marc.v43.14
[78]
Wang K W, Jiang M L, Zhou J L, Liu Y, Zong Q Y, Yuan Y Y. ACS Nano, 2022, 16(1): 721.

doi: 10.1021/acsnano.1c08232
[79]
Fan J, He Q J, Liu Y, Zhang F W, Yang X Y, Wang Z, Lu N, Fan W P, Lin L S, Niu G, He N Y, Song J B, Chen X Y. ACS Appl. Mater. Interfaces, 2016, 8(22): 13804.

doi: 10.1021/acsami.6b03737
[80]
Huang Y Y, Zhang J N, Zhang Y, Shi L, Qin X R, Lu B, Ding Y, Wang Y, Chen T T, Yao Y. Mater. Des., 2021, 211: 110160.

doi: 10.1016/j.matdes.2021.110160
[81]
Ding Z L, He K W, Duan Y T, Shen Z Q, Cheng J, Zhang G Y, Hu J M. J. Mater. Chem. B, 2020, 8(31): 7009.

doi: 10.1039/D0TB00817F
[82]
Ding Y, Ma Y X, Du C, Wang C W, Chen T T, Wang Y, Wang J, Yao Y, Dong C M. Acta Biomater., 2021, 123: 335.

doi: 10.1016/j.actbio.2021.01.015 pmid: 33476826
[83]
Wigerup C, Påhlman S, Bexell D. Pharmacol. Ther., 2016, 164: 152.

doi: 10.1016/j.pharmthera.2016.04.009
[84]
Halder J, Pradhan D, Kar B, Ghosh G, Rath G. Nanomed. Nanotechnol. Biol. Med., 2022, 40: 102494.

doi: 10.1016/j.nano.2021.102494
[85]
Zhang X J, He C C, Sun Y, Liu X G, Chen Y, Chen C, Yan R C, Fan T, Yang T, Lu Y, Luo J, Ma X, Xiang G Y. Acta Pharm. Sin. B, 2021, 11(11): 3608.

doi: 10.1016/j.apsb.2021.04.021
[86]
Yang G L, Tian J, Chen C, Jiang D W, Xue Y D, Wang C C, Gao Y, Zhang W A. Chem. Sci., 2019, 10(22): 5766.

doi: 10.1039/C9SC00985J
[87]
Zhang S D, Li Z H, Wang Q B, Liu Q, Yuan W, Feng W, Li F Y. Adv. Mater., 2022, 34(29): 2201978.

doi: 10.1002/adma.v34.29
[88]
Loboda A, Jozkowicz A, Dulak J. Vasc. Pharmacol., 2015, 74: 11.

doi: 10.1016/j.vph.2015.09.004
[89]
Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti G M, Penacho N, Seth P, Sukhatme V, Ahmed A, Pandolfi P P, Helczynski L, Bjartell A, Persson J L, Otterbein L E. Cancer Res., 2013, 73(23): 7009.

doi: 10.1158/0008-5472.CAN-13-1075
[90]
Ji X Y, Wang B H. Acc. Chem. Res., 2018, 51(6): 1377.

doi: 10.1021/acs.accounts.8b00019
[91]
Zheng Y Q, Ji X Y, Yu B C, Ji K L, Gallo D, Csizmadia E, Zhu M Y, Choudhury M R, De La Cruz L K C, Chittavong V, Pan Z X, Yuan Z N, Otterbein L E, Wang B H. Nat. Chem., 2018, 10(7): 787.

doi: 10.1038/s41557-018-0055-2
[92]
Yao J Z, Liu Y, Wang J W, Jiang Q, She D J, Guo H S, Sun N R, Pang Z Q, Deng C H, Yang W L, Shen S. Biomaterials, 2019, 195: 51.

doi: 10.1016/j.biomaterials.2018.12.029
[93]
Yao X X, Yang P, Jin Z K, Jiang Q, Guo R R, Xie R H, He Q J, Yang W L. Biomaterials, 2019, 197: 268.

doi: 10.1016/j.biomaterials.2019.01.026
[94]
Shen Z Y, Song J B, Yung B C, Zhou Z J, Wu A G, Chen X Y. Adv. Mater., 2018, 30(12): 1870084.

doi: 10.1002/adma.v30.12
[127]
Jiang J W, Huang Y J, Zeng Z S, Zhao C S. ACS Nano, 2023, 17(2): 843.

doi: 10.1021/acsnano.2c07607
[128]
Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, Kalia K, Tekade R K. J. Control. Release, 2021, 330: 372.

doi: 10.1016/j.jconrel.2020.12.034
[95]
Zheng B, Yu L L, Dong H Z, Zhu J M, Yang L, Yuan X S. Polymers, 2022, 14(12): 2416.

doi: 10.3390/polym14122416
[96]
Wallace J L. Trends Pharmacol. Sci., 2007, 28(10): 501.

pmid: 17884186
[97]
Khattak S, Rauf M A, Khan N H, Zhang Q Q, Chen H J, Muhammad P, Ansari M A, Alomary M N, Jahangir M, Zhang C Y, Ji X Y, Wu D D. Molecules, 2022, 27(11): 3389.

doi: 10.3390/molecules27113389
[98]
Rong F, Wang T J, Zhou Q, Peng H W, Yang J T, Fan Q L, Li P. Bioact. Mater., 2023, 19: 198.

doi: 10.1016/j.bioactmat.2022.03.043 pmid: 35510171
[99]
Cao X, Ding L, Xie Z Z, Yang Y, Whiteman M, Moore P K, Bian J S. Antioxid. Redox Signal., 2019, 31(1): 1.

doi: 10.1089/ars.2017.7058
[100]
Bos E M, van Goor H, Joles J A, Whiteman M, Leuvenink H G D. Br. J. Pharmacol., 2015, 172(6): 1479.

doi: 10.1111/bph.2015.172.issue-6
[101]
Kang se chan, Sohn E H, Lee S R. Oxidative Med. Cell. Longev., 2020, 2020: 1.
[102]
Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger C M, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A. J. Med. Chem., 2016, 59(10): 4881.

doi: 10.1021/acs.jmedchem.6b00184
[103]
Gazzano E, Buondonno I, Marengo A, Rolando B, Chegaev K, Kopecka J, Saponara S, Sorge M, Hattinger C M, Gasco A, Fruttero R, Brancaccio M, Serra M, Stella B, Fattal E, Arpicco S, Riganti C. Cancer Lett., 2019, 456: 29.

doi: S0304-3835(19)30266-6 pmid: 31047947
[104]
Hu Q W, Yammani R D, Brown-Harding H, Soto-Pantoja D R, Poole L B, Lukesh J C III. Redox Biol., 2022, 53: 102338.

doi: 10.1016/j.redox.2022.102338
[105]
Tian L B, Pei R, Zhang X J, Li K, Zhong Y T, Luo Y G, Zhou S F, Chen L C. Front. Bioeng. Biotechnol., 2022, 10: 934151.

doi: 10.3389/fbioe.2022.934151
[106]
Long K Q, Yang Y, Du Z F, Kang W R, Lv W, Li Y F, Xie Y S, Sun H Y, Zhan C Y, Wang W P. Adv. Therap., 2022, 5(9): 2200044.

doi: 10.1002/adtp.v5.9
[107]
Wang X B, Du J B, Cui H. Life Sci., 2014, 98(2): 63.

doi: 10.1016/j.lfs.2013.12.027
[108]
Li S H, Liu R, Jiang X X, Qiu Y, Song X R, Huang G M, Fu N Y, Lin L S, Song J B, Chen X Y, Yang H H. ACS Nano, 2019, 13(2): 2103.
[109]
Shen W, Liu W G, Yang H L, Zhang P, Xiao C S, Chen X S. Biomaterials, 2018, 178: 706.

doi: S0142-9612(18)30089-9 pmid: 29433753
[110]
An L, Zhang P, Shen W, Yi X, Yin W T, Jiang R H, Xiao C S. Bioact. Mater., 2021, 6(5): 1365.
[111]
Vejpongsa P, Yeh E T H. J. Am. Coll. Cardiol., 2014, 64(9): 938.

doi: 10.1016/j.jacc.2014.06.1167 pmid: 25169180
[112]
Macedo A, Rodrigues A N, Costa R B, Ribeiro A L P. J. Clin. Oncol., 2018, 36(15): 10072.

doi: 10.1200/JCO.2018.36.15_suppl.10072
[113]
Eekhoudt C R, Bortoluzzi T, Varghese S S, Cheung D Y C, Christie S, Eastman S, Mittal I, Alejandro Austria J, Aukema H M, Ravandi A, Thliveris J, Singal P K, Jassal D S. Curr. Oncol., 2022, 29(5): 2941.

doi: 10.3390/curroncol29050241 pmid: 35621631
[114]
Guerriero E, Sorice A, Capone F, Storti G, Colonna G, Ciliberto G, Costantini S. Int. J. Oncol., 2017, 50(2): 468.

doi: 10.3892/ijo.2017.3835 pmid: 28101573
[115]
Xiong C, Wu Y Z, Zhang Y, Wu Z X, Chen X Y, Jiang P, Guo H C, Xie K R, Wang K X, Su S W. Oncol. Lett., 2018, 15(4): 5721.

doi: 10.3892/ol.2018.8020 pmid: 29552206
[116]
Wu Y Z, Zhang L, Wu Z X, Shan T T, Xiong C. Oxidative Med. Cell. Longev., 2019, 2019: 1.
[117]
Chen B, Zhang J P. Phytomedicine, 2022, 101: 154130.

doi: 10.1016/j.phymed.2022.154130
[118]
Mei S B, Hong L, Cai X Y, Xiao B, Zhang P, Shao L. Toxicol. Lett., 2019, 307: 41.

doi: 10.1016/j.toxlet.2019.02.013
[119]
Yousefian M, Shakour N, Hosseinzadeh H, Hayes A W, Hadizadeh F, Karimi G. Phytomedicine, 2019, 55: 200.

doi: S0944-7113(18)30267-8 pmid: 30668430
[120]
Yousefian M, Hosseinzadeh H, Hayes A W, Hadizadeh F, Karimi G. J Pharm Pharmacol, 2022, 74(3): 351.

doi: 10.1093/jpp/rgab109
[121]
Sangweni N F, van Vuuren D, Mabasa L, Gabuza K, Huisamen B, Naidoo S, Barry R, Johnson R. Front. Cardiovasc. Med., 2022, 9: 907266.

doi: 10.3389/fcvm.2022.907266
[122]
Wang H, Hu Y L, Wang Y Y, Lu J H, Lu H. Giant, 2021, 5: 100040.

doi: 10.1016/j.giant.2020.100040
[123]
Chao Y, Liu Z. Nat. Rev. Bioeng., 2023, 1(2): 125.

doi: 10.1038/s44222-022-00004-6
[124]
Yang H, Duan Z Z, Liu F B, Zhao Z Y, Liu S M. ACS Macro Lett., 2023, 12(2): 295.

doi: 10.1021/acsmacrolett.2c00763 pmid: 36779651
[125]
Ma R J, Shi L Q. Giant, 2021, 8: 100074.

doi: 10.1016/j.giant.2021.100074
[126]
Jia W F, Wang Y S, Liu R, Yu X R, Gao H L. Adv. Funct. Mater., 2021, 31(18): 2009765.

doi: 10.1002/adfm.v31.18
[1] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[2] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[3] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[4] Jie Tang, Renfa Liu, Zhifei Dai*. Multifunctional Liposomal Drug Delivery Technology [J]. Progress in Chemistry, 2018, 30(11): 1669-1680.
[5] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.