中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1389-1398 DOI: 10.7536/PC230113 Previous Articles   Next Articles

• Review •

Metal-Organic Framework-Based Nanozymes for Clinical Applications

Wenhao Luo1,2, Rui Yuan1,2, Jinyuan Sun1,2, Lianqun Zhou3, Xiaohe Luo1,4(), Yang Luo1,5()   

  1. 1 School of Medicine, Chongqing University,Chongqing 400044, China
    2 College of Bioengineering, Chongqing University,Chongqing 400044, China
    3 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences,Suzhou 215163, China
    4 Chongqing University Three Gorges Hospital,Chongqing 400044, China
    5 College of Life Science and Laboratory Medicine, Kunming Medical University,Kunming 650050, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: Luoy@cqu.edu.cn(Yang Luo); xiaoheluo@163.com(Xiaohe Luo)
  • Supported by:
    The National Key Research and Development Program of China(2022YFC2009600); The National Key Research and Development Program of China(2022YFC2009603); The National Science Fund for Distinguished Young Scholars(82125022); The National Natural Science Foundation of China(82202633); The National Natural Science Foundation of China(82072383); The Chongqing Higher Education Teaching Reform Research Project(213035)
Richhtml ( 39 ) PDF ( 419 ) Cited
Export

EndNote

Ris

BibTeX

Enzymes are considered as natural biocatalysts, which catalyze many biochemical reactions with good catalytic efficiency, biocompatibility, and substrate specificity. The intrinsic limitations of natural enzymes such as low stability, high cost, and storage difficulty have led to the introduction of artificial enzymes that imitate the activity of natural enzymes. With the rapid development of nanomaterials in the recent decade, novel enzyme-mimicking nanomaterials (nanozymes) have attracted considerable attention from researchers. Nanozymes are defined as a class of artificial nanomaterials possessing intrinsic enzymes-like activities, which have the advantages of simple preparation processes, low cost and some environmental tolerance. However, most of them are limited by their low activity and relatively poor stability, leading to many difficulties in the application of biochemical analysis. Among them, metal-organic framework nanozymes (MOFs) have demonstrated a wide range of uses because of their evident favorable circumstances, including the large surface area and porosity for functionalization, uniform active sites, high catalytic activity and stability, simple and controllable synthesis and low cost. In this review, we provide a summary of the clinical detection application of MOFs in nucleic acid, protein and small molecules based on their different activity classification (peroxidase, oxidase, catalase, superoxide dismutase, and hydrolase). Finally, we look forward to the opportunities and challenges that MOFs will face in clinical detection, promoting their clinical application transformation.

Contents

1 Introduction

2 Classification of MOF nanozymes

2.1 Peroxidase

2.2 Oxidase

2.3 Catalase

2.4 Superoxide dismutase

2.5 Hydrolase

3 Application of MOF nanozymes in clinical detection

3.1 Application of MOF nanozymes in nucleic acid detection

3.2 Application of MOF nanozymes in protein detection

3.3 Application of MOF nanozymes in the detection of small molecule

4 Conclusion and outlook

4.1 Strengthening environmental stability

4.2 Enhancing substrate specificity

4.3 Enhancing the enzymes-like catalytic activity

Table 1 The main classification of MOF nanozymes[8,11???????????? ~24]
Fig.1 Application of MOF nanozymes in nucleic acid detection.(A)ZIF-8 nanozymes triggered cascade catalytic reaction for miRNA-21 detection[54];(B)MOF cascade nucleic acid circuit for circulating miRNA analyzing in serum[57];(C)multifunctional iron-based metal-organic framework (PdNPs@Fe-MOFs) for miRNA-122 identification[58];(D)MOF nanozymes assisted homogeneous electrochemical system for miRNA discrimination[59]
Fig.2 Application of MOF nanozymes in protein detection. (A)peroxidase mimic Fe-MIL-88A for thrombin detection[62];(B)MOF-818 synthesized with the surface of carbon cloth fiber for the identification of thrombin[63];(C)Peroxidase mimic two-dimensional MOF for Alkaline Phosphatase determination[68];(D)MIL53 (Fe) / G4-hemin for the discrimination of alkaline phosphatase[69]
Fig.3 Application of MOF nanozymes in the Detection of small molecules.(A)Fe-MOF-Gox cascade catalysis for glucose detection[74];(B)MOF nanozymes for the detection of glucose and Cysteine[75];(C)MOF nanozymes for the Determination of aflatoxin B1 in ELISA[78];(D)Hemin@BSA@ZIF-8 for H2O2 and bisphenol Aidentification[81]
[1]
Wang Q, Astruc D. Chem. Rev., 2020, 120(2): 1438.

doi: 10.1021/acs.chemrev.9b00223 pmid: 31246430
[2]
Arcus V L, van der Kamp M W, Pudney C R, Mulholland A J. Curr. Opin. Struct. Biol., 2020, 65: 96.

doi: 10.1016/j.sbi.2020.06.001
[3]
Zhang Y, Ge J, Liu Z. ACS Catal., 2015, 5(8): 4503.

doi: 10.1021/acscatal.5b00996
[4]
Liang M, Yan X. Acc. Chem. Res., 2019, 52(8): 2190.

doi: 10.1021/acs.accounts.9b00140
[5]
Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. J. Nanobiotechnology, 2022, 20(1): 92.
[6]
Wang S, McGuirk C M, d'Aquino A, Mason J A, Mirkin C A. Adv. Mater., 2018, 30(37): 1800202.

doi: 10.1002/adma.v30.37
[7]
Wang L, Wang K, Wang X, Niu R, Chen X, Zhu Y, Sun Z, Yang J, Liu G, Luo Y. ACS Appl. Mater. Interfaces, 2023, 15(3): 3826.

doi: 10.1021/acsami.2c20024
[8]
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Chem. Comm., 2020, 56(77): 11338.

doi: 10.1039/D0CC04890A
[9]
Wang D, Jana D, Zhao Y. Acc. Chem. Res., 2020, 53(7): 1389.

doi: 10.1021/acs.accounts.0c00268
[10]
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Coord. Chem. Rev., 2021, 449: 214216.

doi: 10.1016/j.ccr.2021.214216
[11]
Shu Y, Ye Q, Tan J, Lv H, Liu Z, Mo Q. ACS Appl. Nano Mater., 2022, 5(12): 17909.

doi: 10.1021/acsanm.2c03871
[12]
Wang J, Zhou Y, Zeng M, Zhao Y, Zuo X, Meng F, Lv F, Lu Y. Environ. Res., 2022, 203: 111818.

doi: 10.1016/j.envres.2021.111818
[13]
Mao Z, Chen J, Wang Y, Xia J, Zhang Y, Zhang W, Zhu H, Hu X, Chen H. Nanoscale, 2022, 14(26): 9474.

doi: 10.1039/D2NR01673G
[14]
Zandieh M, Liu J. Langmuir, 2022, 38(12): 3617.

doi: 10.1021/acs.langmuir.2c00070
[15]
Xia Y, Zhou J, Liu Y, Liu Y, Huang K, Yu H, Jiang X, Xiong X. Analyst, 2022, 147(23): 5355.

doi: 10.1039/d2an01420c pmid: 36373378
[16]
Han M, Ren M, Li Z, Qu L, Yu L. New J. Chem., 2022, 46(22): 10682.

doi: 10.1039/D2NJ00876A
[17]
Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Chem. Soc. Rev., 2019, 48(14): 3683.

doi: 10.1039/C8CS00718G
[18]
Xu D, Wu L, Yao H, Zhao L. Small, 2022, 18(37): 2203400.

doi: 10.1002/smll.v18.37
[19]
Wang D, Zhao Y. Chem, 2021, 7(10): 2635.

doi: 10.1016/j.chempr.2021.08.020
[20]
Li L, Li H, Shi L, Shi L, Li T. Langmuir, 2022, 38(23): 7272.

doi: 10.1021/acs.langmuir.2c00778
[21]
Wu T, Huang S, Yang H, Ye N, Tong L, Chen G, Zhou Q, Ouyang G. ACS Mater. Lett., 2022, 4(4): 751.
[22]
Li S, Zhou Z, Tie Z, Wang B, Ye M, Du L, Cui R, Liu W, Wan C, Liu Q, Zhao S, Wang Q, Zhang Y, Zhang S, Zhang H, Du Y, Wei H. Nat. Commun., 2022, 13(1): 827.

doi: 10.1038/s41467-022-28344-2
[23]
Dai S, Simms C, Dovgaliuk I, Patriarche G, Tissot A, Parac-Vogt T N, Serre C. Chem. Mater., 2021, 33(17): 7057.

doi: 10.1021/acs.chemmater.1c02174
[24]
Ly H G T, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt T N. J. Am. Chem. Soc., 2018, 140(20): 6325.

doi: 10.1021/jacs.8b01902
[25]
Thakur B, Karve V V, Sun D T, Semrau A L, Weiß L J K, Grob L, Fischer R A, Queen W L, Wolfrum B. Adv. Mater. Technol., 2021, 6(5): 2001048.

doi: 10.1002/admt.v6.5
[26]
Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. ACS Nano, 2019, 13(5): 5222.

doi: 10.1021/acsnano.8b09501
[27]
Yuan A, Lu Y, Zhang X, Chen Q, Huang Y. J. Mater. Chem. B, 2020, 8(40): 9295.

doi: 10.1039/d0tb01598a pmid: 32959035
[28]
Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. Anal. Bioanal. Chem., 2022, 414(9): 2971.

doi: 10.1007/s00216-022-03985-w pmid: 35234980
[29]
Cheng X, Zhou X, Zheng Z, Kuang Q. Chem. Eng. J., 2022, 430: 133079.

doi: 10.1016/j.cej.2021.133079
[30]
Lee J, Liao H, Wang Q, Han J, Han J H, Shin H E, Ge M, Park W, Li F. Exploration, 2022, 2(1): 20210086.

doi: 10.1002/exp2.v2.1
[31]
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Small Methods, 2022, 6(11): 2200997.

doi: 10.1002/smtd.v6.11
[32]
Kandathil V, Patil S A. Adv. Colloid Interface Sci., 2021, 294: 102485.

doi: 10.1016/j.cis.2021.102485
[33]
Loosen A, Simms C, Smolders S, De Vos D E, Parac-Vogt T N. ACS Appl. Nano Mater., 2021, 4(6): 5748.

doi: 10.1021/acsanm.1c00546
[34]
Wang F, Chen L, Liu D, Ma W, Dramou P, He H. Trends Analyt. Chem., 2020, 133: 116080.

doi: 10.1016/j.trac.2020.116080
[35]
Chen G, Yu Y, Fu X, Wang G, Wang Z, Wu X, Ren J, Zhao Y. J. Colloid Interface Sci., 2022, 607(2): 1382.

doi: 10.1016/j.jcis.2021.09.016
[36]
Abdelhamid H N, Sharmoukh W. Microchem. J., 2021, 163: 105873.

doi: 10.1016/j.microc.2020.105873
[37]
He Z, Huang X, Wang C, Li X, Liu Y, Zhou Z, Wang S, Zhang F, Wang Z, Jacobson O, Zhu J J, Yu G, Dai Y, Chen X. Angew. Chem. Int. Ed., 2019, 58(26): 8752.

doi: 10.1002/anie.v58.26
[38]
Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C W, Liu Q, Lin Y W, Du Y, Butch C J, Wei H. Sci. Adv., 2020, 6(29): eabb2695.

doi: 10.1126/sciadv.abb2695
[39]
Lewandowski Ł, Kepinska M, Milnerowicz H. Eur. J. Clin. Invest., 2019, 49(1): e13036.

doi: 10.1111/eci.2019.49.issue-1
[40]
Zhang X, Li G, Chen G, Wu D, Wu Y, James T D. Adv. Funct. Mater., 2021, 31(50): 2106139.

doi: 10.1002/adfm.v31.50
[41]
Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X. Mater. Horizons, 2019, 6(8): 1682.
[42]
Dou Y, Yang L, Qin L, Dong Y, Zhou Z, Zhang D. J. Solid State Chem., 2021, 293: 121820.

doi: 10.1016/j.jssc.2020.121820
[43]
Fan C, Tang Y, Wang H, Huang Y, Xu F, Yang Y, Huang Y, Rong W, Lin Y. Nanoscale, 2022, 14(22): 7985.

doi: 10.1039/D2NR01213H
[44]
Liu J, Liang J, Xue J, Liang K. Small, 2021, 17(32): 2100300.

doi: 10.1002/smll.v17.32
[45]
Fu T, Xu C, Guo R, Lin C, Huang Y, Tang Y, Wang H, Zhou Q, Lin Y. ACS Appl. Nano Mater., 2021, 4(4): 3345.

doi: 10.1021/acsanm.1c00540
[46]
Chen J, Huang L, Wang Q, Wu W, Zhang H, Fang Y, Dong S. Nanoscale, 2019, 11(13): 5960.

doi: 10.1039/C9NR01093A
[47]
Li S, Liu X, Chai H, Huang Y. Trends Analyt. Chem., 2018, 105: 391.

doi: 10.1016/j.trac.2018.06.001
[48]
Wang X, Wang Y, Ying Y. Trends Analyt. Chem., 2021, 143: 116395.

doi: 10.1016/j.trac.2021.116395
[49]
Chen X, Jia M, Liu L, Qiu X, Zhang H, Yu X, Gu W, Qing G, Li Q, Hu X, Wang R, Zhao X, Zhang L, Wang X, Durkan C, Wang N, Wang G, Luo Y. Small, 2020, 16(40): 2002800.

doi: 10.1002/smll.v16.40
[50]
Boonbanjong P, Treerattrakoon K, Waiwinya W, Pitikultham P, Japrung D. Biosensors, 2022, 12(9): 677.

doi: 10.3390/bios12090677
[51]
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Crit. Rev. Biotechnol., 2022: 1.
[52]
Bao J, Qiu X, Wang D, Yang H, Zhao J, Qi Y, Zhang L, Chen X, Yang M, Gu W, Huo D, Luo Y, Hou C. Adv. Funct. Mater., 2021, 31(14): 2006521.

doi: 10.1002/adfm.v31.14
[53]
Zhao X, Zhang L, Gao W, Yu X, Gu W, Fu W, Luo Y. ACS Appl. Mater. Interfaces, 2020, 12(32): 35958.

doi: 10.1021/acsami.0c10962
[54]
Kong L, Lv S, Qiao Z, Yan Y, Zhang J, Bi S. Biosens. Bioelectron., 2022, 207: 114188.

doi: 10.1016/j.bios.2022.114188
[55]
Li X, Li X, Li D, Zhao M, Wu H, Shen B, Liu P, Ding S. Biosens. Bioelectron., 2020, 168: 112554.

doi: 10.1016/j.bios.2020.112554
[56]
Li Y, Zhang C, He Y, Gao J, Li W, Cheng L, Sun F, Xia P, Wang Q. Biosens. Bioelectron., 2022, 203: 114051.

doi: 10.1016/j.bios.2022.114051
[57]
Zhang S, Xu S, Li X, Ma R, Cheng G, Xue Q, Wang H. Chem. Comm., 2020, 56(31): 4288.

doi: 10.1039/D0CC00856G
[58]
Li Y, Yu C, Yang B, Liu Z, Xia P, Wang Q. Biosens. Bioelectron., 2018, 102: 307.

doi: 10.1016/j.bios.2017.11.047
[59]
Wang Z, Zhang Y, Wang X, Han L. Biosens. Bioelectron., 2022, 206: 114120.

doi: 10.1016/j.bios.2022.114120
[60]
Yadav S, Kashaninejad N, Masud M K, Yamauchi Y, Nguyen N T, Shiddiky M J A. Biosens. Bioelectron., 2019, 139: 111315.

doi: 10.1016/j.bios.2019.111315
[61]
Ma Y, Song M, Li L, Lao X, Wong M C, Hao J. Exploration, 2022, 2(6): 20210216.

doi: 10.1002/exp2.v2.6
[62]
Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F. Biosens. Bioelectron., 2016, 86: 432.

doi: 10.1016/j.bios.2016.06.036
[63]
Jiang J, Wang Y, Kan X. Microchem. J., 2022, 172: 106965.

doi: 10.1016/j.microc.2021.106965
[64]
Jiang J, Cai Q, Deng M. Front. Chem., 2022, 9: 1194.
[65]
Zeng Y, Wang M, Sun Z, Sha L, Yang J, Li G. J. Mater. Chem. B, 2022, 10(3): 450.

doi: 10.1039/D1TB02192C
[66]
Feng J, Wang H, Ma Z. Microchim. Acta, 2020, 187(1): 95.

doi: 10.1007/s00604-019-4075-4
[67]
Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X J A C A. Anal. Chim. Acta., 2020, 1121: 26.

doi: 10.1016/j.aca.2020.04.073
[68]
Wang X, Jiang X, Wei H. J. Mater. Chem. B, 2020, 8(31): 6905.

doi: 10.1039/C9TB02542A
[69]
Mao X, He F, Qiu D, Wei S, Luo R, Chen Y, Zhang X, Lei J, Monchaud D, Mergny J L, Ju H, Zhou J. Anal. Chem., 2022, 94(20): 7295.

doi: 10.1021/acs.analchem.2c00600
[70]
Zhou X, Wang M, Wang M, Su X. ACS Appl. Nano Mater., 2021, 4(8): 7888.

doi: 10.1021/acsanm.1c01220
[71]
Evans E H, Pisonero J, Smith C M M, Taylor R N. J. Anal. At Spectrom., 2020, 35(5): 830.

doi: 10.1039/D0JA90015J
[72]
Vargas Medina D A, Pereira dos Santos N G, da Silva Burato J S, Borsatto J V B, Lanças F M. J. Chromatogr. A, 2021, 1641: 461989.

doi: 10.1016/j.chroma.2021.461989
[73]
Adeel M, Asif K, Rahman M M, Daniele S, Canzonieri V, Rizzolio F. Adv. Funct. Mater., 2021, 31(52): 2106023.

doi: 10.1002/adfm.v31.52
[74]
Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. ACS Appl. Mater. Interfaces, 2019, 11(25): 22096.

doi: 10.1021/acsami.9b03004
[75]
Wang L, Ling Y, Han L, Zhou J, Sun Z, Li N B, Luo H Q. Anal. Chim. Acta, 2020, 1131: 118.

doi: S0003-2670(20)30789-3 pmid: 32928472
[76]
Hu H, Li P, Wang Z, Du Y, Kuang G, Feng Y, Jia S, Cui J. J. Agric. Food Chem., 2022, 70(12): 3785.

doi: 10.1021/acs.jafc.2c01639
[77]
Zeng X, Yan S, Liu B F. Microporous Mesoporous Mater., 2022, 335: 111826.

doi: 10.1016/j.micromeso.2022.111826
[78]
Xu Z, Long L L, Chen Y Q, Chen M L, Cheng Y H. Food Chem., 2021, 338: 128039.

doi: 10.1016/j.foodchem.2020.128039
[79]
Zhang Z, Liu Y, Huang P, Wu F Y, Ma L. Talanta, 2021, 232: 122411.

doi: 10.1016/j.talanta.2021.122411
[80]
Wang L, Chen Y. ACS Appl. Mater. Interfaces, 2020, 12(7): 8351.

doi: 10.1021/acsami.9b22537
[81]
Zhu N, Liu C, Liu R, Niu X, Xiong D, Wang K, Yin D, Zhang Z. Anal. Chem., 2022, 94(11): 4821.

doi: 10.1021/acs.analchem.2c00058
[1] Hao Zhang, Yanhui Wu. Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation [J]. Progress in Chemistry, 2023, 35(8): 1154-1167.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[7] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[12] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[13] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[14] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[15] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.