中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1154-1167 DOI: 10.7536/PC230111 Previous Articles   Next Articles

• Review •

Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation

Hao Zhang1, Yanhui Wu1,2()   

  1. 1 School of Chemical Science and Engineering, Tongji University,Shanghai 200092, China
    2 Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: *email:wuyanhui@tongji.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2019YFC0408200); National Natural Science Foundation of China(22078249)
Richhtml ( 47 ) PDF ( 610 ) Cited
Export

EndNote

Ris

BibTeX

Pervaporation is a membrane separation technology with the advantages of low energy consumption and easy operation. At present, the traditional polymer pervaporation membrane still lacks in separation performance and stability. Metal-organic framework (MOF) is a crystalline porous material formed by self-assembly of metal ions and organic ligands. It has unique properties such as selective adsorption of target molecules and molecular sieving effect. In recent years, many studies have shown that the introduction of MOF as a filler into the polymer matrix to construct mixed matrix membranes (MMMs) has a good effect on its pervaporation performance. Starting from different series of MOF, this paper discusses the types of MOF suitable for pervaporation mixed matrix membrane, analyzes the preparation methods and modification strategies of MOF-polymer mixed matrix membrane, and reviews the application progress of this kind of mixed matrix membrane in pervaporation (dehydration of organic solvent, recovery of organic matter from dilute solution, separation of organic mixture). The challenges in the research of MOF-polymer mixed matrix membrane for pervaporation are summarized, and its future development is prospected.

Contents

1 Introduction

2 Different series of MOFs for pervaporation

2.1 Introduction of different series of MOFs

2.2 Selection of MOF fillers

3 Preparation and modification strategies of MOF based MMMs

3.1 Preparation methods of MOF based MMMs

3.2 Modification strategies of MOF based MMMs

4 Application of MOF based MMMs in pervaporation

4.1 Solvent dehydration

4.2 Recovery of organic compounds from diluted aqueous solutions

4.3 Organic-organic mixture separation

5 Conclusion and outlook

Fig.1 The principle of pervaporation
Fig.2 Structure diagram of different types of MOFs
Table 1 Main features of IRMOF series
Table 2 Main features of ZIF series
Table 3 Main features of MIL series
Table 4 Main features of PCN series
Table 5 Main features of UiO series
Fig.3 Preparation of MMMs by ILs modified MIL-101[94]. Copyright 2021, J. Membr. Sci.
Fig.4 ZIF-L based MMMs for pervaporation[118]. Copyright 2019, J. Membr. Sci.
[1]
Brennecke J F, Freeman B. Science, 2020, 369(6501): 254.

doi: 10.1126/science.abd1307 pmid: 32675363
[2]
Li H, Zhao Z Y, Xiouras C, Stefanidis G D, Li X G, Gao X. Renew. Sustain. Energy Rev., 2019, 114: 109316.

doi: 10.1016/j.rser.2019.109316
[3]
Li X, Shen S T, Xu Y Y, Guo T, Dai H L, Lu X W. Sci. Total Environ., 2021, 767: 144346.

doi: 10.1016/j.scitotenv.2020.144346
[4]
Seo H, Koh D Y. Science, 2022, 376(6597): 1053.

doi: 10.1126/science.abq3186
[5]
Yang C, Long M Y, Ding C T, Zhang R N, Zhang S Y, Yuan J Q, Zhi K D, Yin Z Y, Zheng Y, Liu Y W, Wu H, Jiang Z Y. Nat. Commun., 2022, 13: 7334.

doi: 10.1038/s41467-022-35105-8
[6]
Ismail N, Venault A, Mikkola J P, Bouyer D, Drioli E, Kiadeh N T H. J. Membr. Sci., 2020, 597: 117601.

doi: 10.1016/j.memsci.2019.117601
[7]
Xu L H, Li S H, Mao H, Li Y, Zhang A S, Wang S, Liu W M, Lv J, Wang T, Cai W W, Sang L, Xie W W, Pei C, Li Z Z, Feng Y N, Zhao Z P. Science, 2022, 378(6617): 308.

doi: 10.1126/science.abo5680 pmid: 36264816
[8]
Zhu T Y, Xu S, Yu F, Yu X, Wang Y. J. Membr. Sci., 2020, 598: 117681.

doi: 10.1016/j.memsci.2019.117681
[9]
Kouser S, Hezam A, Khadri M J N, Khanum S A. J. Porous Mater., 2022, 29(3): 663.

doi: 10.1007/s10934-021-01184-z
[10]
Ong Y K, Shi G M, Le N L, Tang Y P, Zuo J, Nunes S P, Chung T S. Prog. Polym. Sci., 2016, 57: 1.

doi: 10.1016/j.progpolymsci.2016.02.003
[11]
Diestel L, Wang N Y, Schwiedland B, Steinbach F, Giese U, Caro J. J. Membr. Sci., 2015, 492: 181.

doi: 10.1016/j.memsci.2015.04.069
[12]
Ge L, Zhou W, Rudolph V, Zhu Z H. J. Mater. Chem. A, 2013, 1(21): 6350.

doi: 10.1039/c3ta11131h
[13]
Yan B Y, Li X F, Huang W Q, Wang X Y, Zhang Z, Zhu B. Progress in Chemistry, 2022, 34(11): 2417.
(闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 化学进展, 2022, 34(11): 2417.).

doi: 10.7536/PC220302
[14]
Chen L Z, Gong Q B, Chen Z. Prog. Chem., 2021, 33(8): 1280.
(陈立忠, 龚巧彬, 陈哲. 化学进展, 2021, 33(8): 1280.).

doi: 10.7536/PC200774
[15]
Takamizawa S, Saito T, Akatsuka T, Nakata E. Inorg. Chem. 2005, 44(5): 1421.

pmid: 15732982
[16]
Takamizawa S, Kachi-Terajima C, Kohbara M A, Akatsuka T, Jin T. Chem. Asian J., 2007, 2(7): 837.

doi: 10.1002/(ISSN)1861-471X
[17]
Basu S, Cano-Odena A, Vankelecom I F J. J. Membr. Sci., 2010, 362(1/2): 478.

doi: 10.1016/j.memsci.2010.07.005
[18]
Xu X, Nikolaeva D, Hartanto Y, Luis P. Sep. Purif. Technol., 2021, 278: 119233.

doi: 10.1016/j.seppur.2021.119233
[19]
Erucar I, Keskin S. Ind. Eng. Chem. Res., 2011, 50(22): 12606.

doi: 10.1021/ie201885s
[20]
Keskin S, Sholl D S. Energy Environ. Sci., 2010, 3(3): 343.

doi: 10.1039/b923980b
[21]
Liu X W, Sun T J, Hu J L, Wang S D. J. Mater. Chem. A, 2016, 4(10): 3584.

doi: 10.1039/C5TA09924B
[22]
Mai Z H, Liu D X. Cryst. Growth Des., 2019, 19(12): 7439.

doi: 10.1021/acs.cgd.9b00879
[23]
Cheng X, Liao Y, Lei Z, Li J, Fan X L, Xiao X. J. Membr. Sci., 2023, 672: 121430.

doi: 10.1016/j.memsci.2023.121430
[24]
Gulcay-Ozcan E, Erucar I. Ind. Eng. Chem. Res., 2019, 58(8): 3225.

doi: 10.1021/acs.iecr.8b04084
[25]
Lahoz-Martín F D, Calero S, GutiÉrrez-Sevillano J J, Martin-Calvo A. Microporous Mesoporous Mater., 2017, 248: 40.

doi: 10.1016/j.micromeso.2017.04.009
[26]
Naik P V, Wee L H, Meledina M, Turner S, Li Y B, van Tendeloo G, Martens J A, Vankelecom I F J. J. Mater. Chem. A, 2016, 4(33): 12790.

doi: 10.1039/C6TA04700A
[27]
Wang X L, Chen J X, Fang M Q, Wang T, Yu L X, Li J D. Sep. Purif. Technol., 2016, 163: 39.

doi: 10.1016/j.seppur.2016.02.040
[28]
Zhang H, Wang Y. Aiche J., 2016, 62(5): 1728.

doi: 10.1002/aic.v62.5
[29]
Zhang H F, James J, Zhao M, Yao Y, Zhang Y S, Zhang B Q, Lin Y S. J. Membr. Sci., 2017, 532: 1.

doi: 10.1016/j.memsci.2017.01.065
[30]
Zhu T Y, Zhao X X, Yi M, Xu S, Wang Y. Adv. Compos. Hybrid Mater., 2022, 5(1): 91.

doi: 10.1007/s42114-021-00218-z
[31]
Ebrahimi M, Mansournia M. Mater. Lett., 2017, 189: 243.

doi: 10.1016/j.matlet.2016.12.025
[32]
Stephenson C J, Hupp J T, Farha O K. Inorg. Chem. Front., 2015, 2(5): 448.

doi: 10.1039/C5QI00010F
[33]
Bhattacharjee S, Lee Y R, Ahn W S. CrystEngComm, 2015, 17(12): 2575.

doi: 10.1039/C4CE02555E
[34]
Zhou T T, Sang Y T, Wang X X, Wu C Y, Zeng D W, Xie C S. Sens. Actuat. B Chem., 2018, 258: 1099.

doi: 10.1016/j.snb.2017.12.024
[35]
Kasik A, James J, Lin Y S. Ind. Eng. Chem. Res., 2016, 55(10): 2831.

doi: 10.1021/acs.iecr.6b00236
[36]
An H, Park S, Kwon H T, Jeong H K, Lee J S. J. Membr. Sci., 2017, 526: 367.

doi: 10.1016/j.memsci.2016.12.053
[37]
Qiao Z H, Liang Y Y, Zhang Z Q, Mei D H, Wang Z, Guiver M D, Zhong C L. Adv. Mater., 2020, 32(34): 2002165.

doi: 10.1002/adma.v32.34
[38]
Rodenas T, van Dalen M, Serra-Crespo P, Kapteijn F, Gascon J. Microporous Mesoporous Mater., 2014, 192: 35.

doi: 10.1016/j.micromeso.2013.08.049
[39]
Nuhnen A, Klopotowski M, Jeazet H B T, Sorribas S, Zornoza B, TÉllez C, Coronas J, Janiak C. Dalton Trans., 2020, 49(6): 1822.

doi: 10.1039/C9DT03222C
[40]
Rodenas T, van Dalen M, García-PÉrez E, Serra-Crespo P, Zornoza B, Kapteijn F, Gascon J. Adv. Funct. Mater., 2014, 24(2): 249.

doi: 10.1002/adfm.v24.2
[41]
Jeazet H B T, Staudt C, Janiak C. Chem. Commun., 2012, 48(15): 2140.

doi: 10.1039/c2cc16628c
[42]
Peng J J, Sun Y W, Wu Y, Lv Z Q, Li Z. Ind. Eng. Chem. Res., 2019, 58(19): 8290.

doi: 10.1021/acs.iecr.9b00183
[43]
Peng Y G, Zhang Y X, Huang H L, Zhong C L. Chem. Eng. J., 2018, 333: 678.

doi: 10.1016/j.cej.2017.09.138
[44]
Siwaipram S, Bopp P A, Keupp J, Pukdeejorhor L, Soetens J C, Bureekaew S, Schmid R. J. Phys. Chem. C, 2021, 125(23): 12837.

doi: 10.1021/acs.jpcc.1c01033
[45]
Huang S, Yang K L, Liu X F, Pan H, Zhang H, Yang S. RSC Adv., 2017, 7(10): 5621.

doi: 10.1039/C6RA26469G
[46]
Wickenheisser M, Jeremias F, Henninger S K, Janiak C. Inorganica Chimica Acta, 2013, 407: 145.

doi: 10.1016/j.ica.2013.07.024
[47]
Mahdipoor H R, Halladj R, Ganji Babakhani E, Amjad-Iranagh S, Sadeghzadeh Ahari J. RSC Adv., 2021, 11(9): 5192.

doi: 10.1039/d0ra09292d pmid: 35424434
[48]
Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. Dalton Trans., 2018, 47(18): 6394.

doi: 10.1039/C8DT00572A
[49]
Yang W J, Liang W B, O’Dell L A, Toop H D, Maddigan N, Zhang X M, Kochubei A, Doonan C J, Jiang Y J, Huang J. JACS Au, 2021, 1(12): 2172.

doi: 10.1021/jacsau.1c00226
[50]
Chen Y W, Qiao Z W, Huang J L, Wu H X, Xiao J, Xia Q B, Xi H X, Hu J, Zhou J, Li Z. ACS Appl. Mater. Interfaces, 2018, 10(44): 38638.

doi: 10.1021/acsami.8b14400
[51]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angewandte Chemie Int. Ed., 2012, 51(41): 10307.

doi: 10.1002/anie.201204475
[52]
Bonnett B L, Smith E D, de La Garza M, Cai M, Haag J V IV, Serrano J M, Cornell H D, Gibbons B, Martin S M, Morris A J. ACS Appl. Mater. Interfaces, 2020, 12(13): 15765.

doi: 10.1021/acsami.0c04349
[53]
Chen Y W, Qiao Z W, Wu H X, Lv D F, Shi R F, Xia Q B, Zhou J, Li Z. Chem. Eng. Sci., 2018, 175: 110.
[54]
Zhang Y M, Yang X Y, Zhou H C. Dalton Trans., 2018, 47(34): 11806.

doi: 10.1039/C8DT01508B
[55]
Feng D W, Wang K C, Su J, Liu T F, Park J, Wei Z W, Bosch M, Yakovenko A, Zou X D, Zhou H C. Angewandte Chemie Int. Ed., 2015, 54(1): 149.

doi: 10.1002/anie.v54.1
[56]
Zhang H Y, Meng Q, Li H J, Wu G G, Li K, Xu J H, Wang L L, Wu J, Meng X R, Hou H W. CrystEngComm, 2022, 24(43): 7611.

doi: 10.1039/D2CE01109C
[57]
Anjum M W, Vermoortele F, Laeeq Khan A, Bueken B, de Vos D E, Vankelecom I F J. ACS Appl. Mater. Interfaces, 2015, 7(45): 25193.

doi: 10.1021/acsami.5b08964
[58]
Zhang M M, Sun Q, Wang Y J, Shan W J, Lou Z N, Xiong Y. Chem. Eng. J., 2021, 421: 129748.

doi: 10.1016/j.cej.2021.129748
[59]
Jiang Y Z, Liu C Y, Caro J, Huang A S. Microporous Mesoporous Mater., 2019, 274: 203.

doi: 10.1016/j.micromeso.2018.08.003
[60]
Friebe S, Geppert B, Steinbach F, Caro J. ACS Appl. Mater. Interfaces, 2017, 9(14): 12878.

doi: 10.1021/acsami.7b02105
[61]
Kim S, Lee H E, Suh J M, Lim M H, Kim M. Inorg. Chem., 2020, 59(23): 17573.

doi: 10.1021/acs.inorgchem.0c02809
[62]
Lin S Y, Ravari A K, Zhu J, Usov P M, Cai M, Ahrenholtz S R, Pushkar Y, Morris A J. ChemSusChem, 2018, 11(2): 464.

doi: 10.1002/cssc.v11.2
[63]
Wang N X, Zhang G J, Wang L, Li J, An Q F, Ji S L. Sep. Purif. Technol., 2017, 186: 20.

doi: 10.1016/j.seppur.2017.05.046
[64]
Min J, Qu X L, Yan B. Anal., 2021, 146(9): 3052.

doi: 10.1039/D0AN02467H
[65]
Li Y H, Liu M Y, Wei Y W, Wang C C, Wang P. Environ. Sci.: Nano, 2023, 10(2): 672.
[66]
Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

doi: 10.1039/C8CS00268A
[67]
Zhu X, Tian C C, Do-Thanh C L, Dai S. ChemSusChem, 2017, 10(17): 3304.

doi: 10.1002/cssc.v10.17
[68]
Cheng Y D, Wang X R, Jia C K, Wang Y X, Zhai L Z, Wang Q, Zhao D. J. Membr. Sci., 2017, 539: 213.

doi: 10.1016/j.memsci.2017.06.011
[69]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7(1): 1901514.

doi: 10.1002/admi.v7.1
[70]
Yao A Y, Hua D, Zhao F G, Zheng D Y, Pan J Y, Hong Y P, Liu Y, Rao X P, Zhou S F, Zhan G W. Sep. Purif. Technol., 2022, 282: 120022.

doi: 10.1016/j.seppur.2021.120022
[71]
Dong X L, Lin Y S. Chem. Commun., 2013, 49(12): 1196.

doi: 10.1039/c2cc38512k
[72]
Wang C, Zhou D D, Gan Y W, Zhang X W, Ye Z M, Zhang J P. Natl. Sci. Rev., 2021, 8: nwaa094.

doi: 10.1093/nsr/nwaa094
[73]
Wu G R, Li Y L, Geng Y Z, Lu X Y, Jia Z Q. J. Chem. Technol. Biotechnol., 2019, 94(3): 973.
[74]
Zheng H A, Wang D R, Sun X, Jiang S Y, Liu Y, Zhang D Q, Zhang L Z. Chem. Eng. J., 2021, 411: 128524.

doi: 10.1016/j.cej.2021.128524
[75]
Rajati H, Navarchian A H, Tangestaninejad S. Chem. Eng. Sci., 2018, 185: 92.

doi: 10.1016/j.ces.2018.04.006
[76]
Sánchez-Laínez J, Pardillos-Ruiz A, Carta M, Malpass-Evans R, McKeown N B, TÉllez C, Coronas J. Sep. Purif. Technol., 2019, 224: 456.

doi: 10.1016/j.seppur.2019.05.035
[77]
Chen K, Xu K, Xiang L, Dong X, Han Y, Wang C Q, Sun L B, Pan Y C. J. Membr. Sci., 2018, 563: 360.

doi: 10.1016/j.memsci.2018.06.007
[78]
Knebel A, Bavykina A, Datta S J, Sundermann L, Garzon-Tovar L, Lebedev Y, Durini S, Ahmad R, Kozlov S M, Shterk G, Karunakaran M, Daniela Carja I, Simic D, Weilert I, Klüppel M, Giese U, Cavallo L, Rueping M, Eddaoudi M, Caro J, Gascon J. Nat. Mater., 2020, 19(12): 1346.

doi: 10.1038/s41563-020-0764-y
[79]
Zhao C, Ji S L, Wang N X, Shu L, Liu H X, Li J R. Membr. Sci. Technol., 2017, 37(6): 32.
(赵翠, 纪树兰, 王乃鑫, 束伦, 刘红霞, 李建荣. 膜科学与技术, 2017, 37(6): 32.).
[80]
Askari M, Chung T S. J. Membr. Sci., 2013, 444: 173.

doi: 10.1016/j.memsci.2013.05.016
[81]
Chen X Y, Hoang V T, Rodrigue D, Kaliaguine S. RSC Adv., 2013, 3(46): 24266.

doi: 10.1039/c3ra43486a
[82]
Wang Z G, Tian Y Y, Fang W X, Shrestha B B, Huang M H, Jin J. ACS Appl. Mater. Interfaces, 2021, 13(2): 3166.

doi: 10.1021/acsami.0c19554
[83]
Han Z T, Zhao Y X, Jiang H J, Sheng A, Li H, Jia H, Yun Z Y, Wei Z, Wang H Y. ACS Appl. Nano Mater., 2022, 5(1): 183.

doi: 10.1021/acsanm.1c02523
[84]
Si Z H, Li J F, Ma L, Cai D, Li S F, Baeyens J, Degrève J, Nie J, Tan T W, Qin P Y. Angewandte Chemie Int. Ed., 2019, 58(48): 17175.

doi: 10.1002/anie.v58.48
[85]
Hao L, Li P, Yang T X, Chung T S. J. Membr. Sci., 2013, 436: 221.

doi: 10.1016/j.memsci.2013.02.034
[86]
Zhang X, Tong Z W, Liu C, Ye L, Zhou Y W, Meng Q, Zhang G L, Gao C J. ACS Omega, 2022, 7(18): 15786.

doi: 10.1021/acsomega.2c00881 pmid: 35571851
[87]
Ding X L, Li X, Zhao H Y, Wang R, Zhao R Q, Li H, Zhang Y Z. Chin. J. Chem. Eng., 2018, 26: 501.

doi: 10.1016/j.cjche.2017.07.017
[88]
Penkova A V, Kuzminova A I, Dmitrenko M E, Surkova V A, Liamin V P, Markelov D A, Komolkin A V, Poloneeva D Y, Laptenkova A V, Selyutin A A, Mazur A S, Emeline A V, Thomas S, Ermakov S S. Sep. Purif. Technol., 2021, 263: 118370.

doi: 10.1016/j.seppur.2021.118370
[89]
Yin H D, Cay-Durgun P, Lai T M, Zhu G H, Engebretson K, Setiadji R, Green M D, Laura Lind M. Polymer, 2020, 195: 122379.

doi: 10.1016/j.polymer.2020.122379
[90]
Ziaul Mustafa M, bin Mukhtar H, Md Nordin N A H, Mannan H A, Nasir R, Fazil N. Chem. Eng. Technol., 2019, 42(12): 2580.

doi: 10.1002/ceat.v42.12
[91]
Lin R J, Ge L, Diao H, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32041.

doi: 10.1021/acsami.6b11074
[92]
Tang W Y, Lou H, Li Y F, Kong X B, Wu Y H, Gu X H. J. Membr. Sci., 2019, 581: 93.

doi: 10.1016/j.memsci.2019.03.049
[93]
Zhang A S, Li S H, Ahmad A, Mao H, Xu L H, Zhao Z P. J. Membr. Sci., 2021, 619: 118807.

doi: 10.1016/j.memsci.2020.118807
[94]
Zhang A S, Li S H, Mao H, Xu L H, Lv M Y, Zhao Z P. Adv. Membr., 2021, 1: 100006.
[95]
Li S F, Chen Z, Yang Y H, Si Z H, Li P, Qin P Y, Tan T W. Sep. Purif. Technol., 2019, 215: 163.

doi: 10.1016/j.seppur.2018.12.078
[96]
Xu L H, Li Y, Li S H, Lv M Y, Zhao Z P. J. Membr. Sci., 2022, 656: 120605.

doi: 10.1016/j.memsci.2022.120605
[97]
Zhong H, Xie H R, Ma X H, Xu Z L. Membr. Sci. Technol., 2019, 39(3): 79.
(仲华, 谢浩然, 马晓华, 许振良. 膜科学与技术, 2019, 39(3): 79.).
[98]
Fazlifard S, Mohammadi T, Bakhtiari O. Chem. Eng. Technol., 2017, 40(4): 648.

doi: 10.1002/ceat.v40.4
[99]
Benzaqui M, Semino R, Carn F, Tavares S R, Menguy N, GimÉnez-MarquÉs M, Bellido E, Horcajada P, Berthelot T, Kuzminova A I, Dmitrenko M E, Penkova A V, Roizard D, Serre C, Maurin G, Steunou N. ACS Sustainable Chem. Eng., 2019, 7(7): 6629.

doi: 10.1021/acssuschemeng.8b05587
[100]
Zhang X, Cheng F Y, Zhang H Z, Xu Z L, Xue S M, Ma X H, Xu X R. J. Membr. Sci., 2020, 601: 117916.

doi: 10.1016/j.memsci.2020.117916
[101]
Lin G S, Chen Y R, Chang T H, Huang T C, Zhuang G L, Huang W Z, Liu Y C, Matsuyama H, Wu K C W, Tung K L. J. Membr. Sci., 2021, 621: 118935.

doi: 10.1016/j.memsci.2020.118935
[102]
Shi G M, Yang T X, Chung T S. J. Membr. Sci., 2012, 415-416: 577.
[103]
Hua D, Ong Y K, Wang Y, Yang T X, Chung T S. J. Membr. Sci., 2014, 453: 155.

doi: 10.1016/j.memsci.2013.10.059
[104]
Sorribas S, Kudasheva A, Almendro E, Zornoza B, de la Iglesia Ó, TÉllez C, Coronas J. Chem. Eng. Sci., 2015, 124: 37.

doi: 10.1016/j.ces.2014.07.046
[105]
Xu Y M, Chung T S. J. Membr. Sci., 2017, 531: 16.

doi: 10.1016/j.memsci.2017.02.041
[106]
Su Z B, Chen J H, Sun X, Huang Y H, Dong X F. RSC Adv., 2015, 5(120): 99008.

doi: 10.1039/C5RA21073A
[107]
Zhang W X, Ying Y P, Ma J, Guo X Y, Huang H L, Liu D H, Zhong C L. J. Membr. Sci., 2017, 527: 8.

doi: 10.1016/j.memsci.2017.01.001
[108]
Xu Y M, Japip S, Chung T S. J. Membr. Sci., 2018, 549: 217.

doi: 10.1016/j.memsci.2017.12.001
[109]
Vinu M, Senthil Raja D, Jiang Y C, Liu T Y, Xie Y Y, Lin Y F, Yang C C, Lin C H, Alshehri S M, Ahamad T, Salunkhe R R, Yamauchi Y, Deng Y H, Wu K C W. J. Taiwan Inst. Chem. Eng., 2018, 83: 143.

doi: 10.1016/j.jtice.2017.11.007
[110]
Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. J. Membr. Sci., 2019, 573: 344.

doi: 10.1016/j.memsci.2018.12.017
[111]
Si Z H, Cai D, Li S F, Li G Z, Wang Z, Qin P Y. Sep. Purif. Technol., 2019, 221: 286.

doi: 10.1016/j.seppur.2019.04.004
[112]
Xu L H, Li S H, Mao H, Zhang A S, Cai W W, Wang T, Zhao Z P. J. Mater. Chem. A, 2021, 9(19): 11853.

doi: 10.1039/D1TA01736E
[113]
Li J, Wang N X, Yan H, Ji S L, Zhang G J. RSC Adv., 2014, 4(104): 59750.

doi: 10.1039/C4RA10655E
[114]
Li Y B, Wee L H, Martens J A, Vankelecom I F J. J. Mater. Chem. A, 2014, 2(26): 10034.

doi: 10.1039/C4TA00316K
[115]
Liu S N, Liu G P, Zhao X H, Jin W Q. J. Membr. Sci., 2013, 446: 181.

doi: 10.1016/j.memsci.2013.06.025
[116]
Liu S N, Liu G P, Shen J, Jin W Q. Sep. Purif. Technol., 2014, 133: 40.

doi: 10.1016/j.seppur.2014.06.034
[117]
Li Q Q, Cheng L, Shen J, Shi J Y, Chen G N, Zhao J, Duan J G, Liu G P, Jin W Q. Sep. Purif. Technol., 2017, 178: 105.

doi: 10.1016/j.seppur.2017.01.024
[118]
Mao H, Zhen H G, Ahmad A, Li S H, Liang Y, Ding J F, Wu Y, Li L Z, Zhao Z P. J. Membr. Sci., 2019, 582: 307.

doi: 10.1016/j.memsci.2019.04.022
[119]
Liu W, Ban Y J, Liu J Y, Wang Y C, Hu Z Y, Wang Y H, Li Q M, Yang W S. Sep. Purif. Technol., 2021, 276: 119085.

doi: 10.1016/j.seppur.2021.119085
[120]
Jin H, Liu X L, Ban Y J, Peng Y, Jiao W M, Wang P, Guo A, Li Y S, Yang W S. Chem. Eng. J., 2016, 305: 12.

doi: 10.1016/j.cej.2015.10.115
[121]
Mao H, Li S H, Zhang A S, Xu L H, Lu H X, Lv J, Zhao Z P. Sep. Purif. Technol., 2021, 272: 118813.

doi: 10.1016/j.seppur.2021.118813
[122]
Xu X, Hartanto Y, Nikolaeva D, He Z R, Chergaoui S, Luis P. Sep. Purif. Technol., 2022, 293: 121085.

doi: 10.1016/j.seppur.2022.121085
[123]
Zhu H P, Li R H, Liu G Z, Pan Y, Li J H, Wang Z G, Guo Y N, Liu G P, Jin W Q. J. Membr. Sci., 2022, 652: 120473.

doi: 10.1016/j.memsci.2022.120473
[124]
Knozowska K, Thür R, Kujawa J, Kolesnyk I, Vankelecom I F J, Kujawski W. Sep. Purif. Technol., 2021, 264: 118315.

doi: 10.1016/j.seppur.2021.118315
[125]
Msahel A, Galiano F, Pilloni M, Russo F, Hafiane A, Castro-Muñoz R, Kumar V B, Gedanken A, Ennas G, Porat Z, Scano A, Ben Hamouda S, Figoli A. Membranes, 2021, 11(1): 65.

doi: 10.3390/membranes11010065
[126]
Yu S N, Jiang Z Y, Li W D, Mayta J Q, Ding H, Song Y M, Li Z, Dong Z W, Pan F S, Wang B Y, Zhang P, Cao X Z. Chem. Eng. Process. Process. Intensif., 2018, 123: 12.

doi: 10.1016/j.cep.2017.11.001
[127]
Shi W Y, Han X L, Bai F, Hua C, Cao X Z. Sep. Purif. Technol., 2021, 272: 118924.

doi: 10.1016/j.seppur.2021.118924
[128]
Gao G K, Wang Y R, Zhu H J, Chen Y F, Yang R X, Jiang C, Ma H Y, Lan Y Q. Adv. Sci., 2020, 7(24): 2002190.

doi: 10.1002/advs.v7.24
[1] Wenhao Luo, Rui Yuan, Jinyuan Sun, Lianqun Zhou, Xiaohe Luo, Yang Luo. Metal-Organic Framework-Based Nanozymes for Clinical Applications [J]. Progress in Chemistry, 2023, 35(9): 1389-1398.
[2] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[3] Qingping Li, Tao Li, Chenchen Shao, Wei Liu. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(7): 1053-1064.
[4] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[5] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[6] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[7] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[8] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[9] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[10] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[11] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[12] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[13] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.