中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1214-1228 DOI: 10.7536/PC230109 Previous Articles   Next Articles

• Review •

Rare Earth Based Neutron and Gamma Composite Shielding Materials

Yidong Lu1,2, Zhipeng Huo1(), Guoqiang Zhong1, Hong Zhang1, Liqun Hu1   

  1. 1 Hefei Institutes of Physical Science, Chinese Academy of Sciences,Hefei 230031, China
    2 University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail : zhipeng.huo@ipp.ac.cn
  • Supported by:
    Comprehensive Research Facility for Fusion Technology Program of China(2018-000052-73-01-001228); Institute of Energy, Hefei Comprehensive National Science Center(21KZL401); Institute of Energy, Hefei Comprehensive National Science Center(21KHH105); Institute of Energy, Hefei Comprehensive National Science Center(21KZS205)
Richhtml ( 8 ) PDF ( 216 ) Cited
Export

EndNote

Ris

BibTeX

With the development of aerospace, nuclear technology and the wide use of nuclear energy, the requirement for the performance of nuclear radiation shielding materials have gradually increased. Since the high energy and strong penetrating ability of neutrons and gamma rays produced by nuclear reactions, they are of great harm to human beings and the environment. Therefore, the research on neutron and gamma radiation shielding materials has become a hot research topic of radiation protection. Rare earth elements have been gradually attracted considerable academic attention, and applied to research and development of neutron and gamma radiation shielding materials owing to their high neutron absorption cross section and high atomic numbers. This paper briefly introduces the application of rare earth materials in radiation shielding materials, and introduces the interaction mechanisms of rare earth elements with neutrons and gamma rays. According to the different types of substrate materials, the rare earth based neutron and gamma composite shielding materials can be divided into three categories: rare earth metal based, rare earth polymer based and rare earth glass based materials. The research progress of these three kinds of rare earth based radiation shielding materials is introduced respectively, and the possible problems and prospects of rare earth materials for neutron and gamma shielding radiation are analyzed.

Contents

1 Introduction

2 Interaction of neutron and gamma with rare earth elements

2.1 Interaction of neutron with rare earth elements

2.2 Interaction of γ-ray with rare earth elements

3 Research progress of rare earth composite shielding materials

3.1 Rare earth metal based composite shielding materials

3.2 Rare earth polymer based composite shielding materials

3.3 Rare earth glass based composite shielding materials

4 Conclusion and outlook

Fig.1 The neutron total cross-section of Gd, Eu, Sm, B
Table 1 Thermal neutron total cross-section of elements obtained from Fig.1
Fig.2 The relationship of three interactions with energy and atomic number[28]
Fig.3 The schematic of (a) photoelectric, (b) compton scattering and (c) electron pair effect[29]
Fig.4 Relationship between macroscopic neutron absorption cross section and the product of tensile strength and elongation of shielding materials[41????~46]. Copyright 2019, Elsevier
Table 2 Chemical composition of 316L alloy[50]
Table 3 Typical metal-based rare earth composite shielding materials and their performance parametersa)
Fig.5 Thermal neutron and gamma linear attenuation coefficients of Sm2O3 polyethylene composite shielding materials[67]
Fig.6 Flexible radiation shielding materials (a) WO3/Gd2O3/RTV, (b) WO3/Gd2O3/CTS/RTV[13]
Table 4 Typical polymer-based rare earth shielding materials and their performance parameters a)
Fig.7 Al(0.1-x)Bi1.8B0.6O3Y2x glass samples[90]. Copyright 2020, Elsevier
Fig.8 (a) Theoretical and experimental values of shielding parameters of Gd 17.5 glass at different γ-ray energy; (b) shielding parameters of WGB glass at 0.662 MeV photon energy; (c) half value layer of WGB glass and standard shielding materials at 0.662 MeV photon energy[97]. Copyright 2022, Elsevier
Fig.9 (a) TBLC glass samples, (b) transmittance spectra of TBLC glass[103]. Copyright 2022, Elsevier
Fig.10 (a) Transmission spectrum of sample 1, (b) transmission spectrum of sample 2[109]
Table 5 Typical glass-based rare earth shielding materials and their performance parameters a)
[1]
Xu Y, Kang J J, Yuan J H. Sustainability, 2018, 10(6): 2086.

doi: 10.3390/su10062086
[2]
Thomas G A, Symonds P. Clin. Oncol., 2016, 28(4): 231.

doi: 10.1016/j.clon.2016.01.007
[3]
Lalkovčiová M. Neural Regen. Res., 2022, 17(9): 1885.

doi: 10.4103/1673-5374.335137
[4]
Francis E B, Nguyen T M N, Lee H C, Deokjung L. Nucl. Eng. Technol., 2022, 54(8): 3073.

doi: 10.1016/j.net.2022.03.001
[5]
Sun W Q, Hu G, Yu X H, Shi J, Xu H, Wu R J, He C, Yi Q, Hu H S. Materials, 2021, 14(22): 7004.

doi: 10.3390/ma14227004
[6]
Zan Y N. Doctoral Dissertation of University of Science and Technology of China, 2020
(昝宇宁. 中国科学技术大学博士论文, 2020.).
[7]
Abdullah M A H, Rashid R S M, Amran M, Hejazii F, Azreen N M, Fediuk R, Lei Voo Y, Vatin N I, Idris M I. Polymers, 2022, 14(14): 2830.

doi: 10.3390/polym14142830
[8]
Konefał A, Bieniasiewicz M, Wendykier J, Adamczyk S, Wrońska A. Radiat. Phys. Chem., 2021, 185: 109513.
[9]
Gan B, Liu S C, He Z, Chen F C, Niu H X, Cheng J C, Tan B, Yu B. Acta Metall. Sin. Engl. Lett., 2021, 34(12): 1609.
[10]
Piotrowski T. Constr. Build. Mater., 2021, 277: 122238.
[11]
Mehelli O, Derradji M, Belgacemi R, Abdous S. Radiat. Phys. Chem., 2022, 193: 109510.
[12]
Zhu X G, Zhang X L, Guo S Y. Nanoscale, 2022, 14(29): 10581.

doi: 10.1039/D2NR02385G
[13]
Chen W. Master Dissertation of Nanjing University of Aeronautics and Astronautics, 2017.
(陈威. 南京航空航天大学硕士论文, 2017.).
[14]
Liao Y C. Doctoral Dissertation of China Academy of Engineering Physics, 2018.
(廖益传. 中国工程物理研究院博士论文, 2018.).
[15]
Chen Y, Chen Y C, Zhai H Y, Wang F F, Wang M L, Chen Z, Zhong S Y, Li X F, Wang H W. Intermetallics, 2022, 148: 107630.
[16]
Yang X Y. Doctoral Dissertation of University of Science and Technology of China, 2022.
(杨新异. 中国科学技术大学博士论文, 2022. ).
[17]
Deliormanlı A M, Ensoylu M, Issa S A M, Rammah Y S, ALMisned G, Tekin H O. Appl. Phys. A, 2022, 128(4): 266.

doi: 10.1007/s00339-022-05408-0
[18]
Zhao S. Master Dissertation of University of Science and Technology of China, 2021.
(赵盛. 中国科学技术大学硕士论文, 2021.).
[19]
Mansouri E, Mesbahi A, Malekzadeh R, Ghasemi Janghjoo A, Okutan M. Int. J. Radiat. Res., 2020, 18(4): 611.

doi: 10.52547/ijrr.18.4.611
[20]
Fu X L, Ji Z B, Lin W, Yu Y F, Wu T. Sci. Technol. Nucl. Installations, 2021, 2021: 5541047.
[21]
Zhou Y C. Master Dissertation of Harbin Institute of Technology, 2019.
(周玉超. 哈尔滨工业大学硕士论文, 2019.).
[22]
Li J L. Master Dissertation of Southwest University of Science and Technology, 2021.
(李佳乐. 西南科技大学硕士论文, 2021.).
[23]
Yuan L L. Doctoral Dissertation of University of Science and Technology Beijing, 2016.
(元琳琳. 北京科技大学博士论文, 2016.).
[24]
Issa S A M, Sayyed M I, Zaid M H M, Matori K A. J. Spectrosc., 2017, 2017: 9792816.
[25]
Jia X B. Master Dissertation of Southwest University of Science and Technology, 2016.
(贾夏冰. 西南科技大学硕士论文, 2016.).
[26]
Acevedo-Del-Castillo A, Águila-Toledo E, Maldonado-Magnere S, Aguilar-Bolados H. Int. J. Mol. Sci., 2021, 22(16): 9079.

doi: 10.3390/ijms22169079
[27]
Bijanu A, Arya R, Agrawal V, Tomar A S, Gowri V S, Sanghi S K, Mishra D, Salammal S T. J. Polym. Res., 2021, 28(10): 392.

doi: 10.1007/s10965-021-02751-3
[28]
Liu L P. Master Dissertation of Southwest University of Science and Technology, 2018.
(刘立苹. 西南科技大学硕士论文, 2018.).
[29]
Zhao S, Huo Z P, Zhong G Q, Zhang H, Hu L Q. J. Funct. Mater., 2021, 52(3): 3001.
(赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 功能材料, 2021, 52(3): 3001.).

doi: 10.3969/j.issn.1001-9731.2021.03.001
[30]
Gul A O, Kavaz E, Basgoz O, Guler O, ALMisned G, Bahceci E, Albayrak M G, Tekin H O. Intermetallics, 2022, 146: 107593.
[31]
Kavaz E, Gul A O, Basgoz O, Guler O, ALMisned G, Bahceci E, Guler S H, Tekin H O. Appl. Phys. A, 2022, 128(8): 694.

doi: 10.1007/s00339-022-05813-5
[32]
Usta M, Tozar A. Radiat. Phys. Chem., 2020, 177: 109086.
[33]
Windsor C G, Marshall J M, Morgan J G, Fair J, Smith G D W, Rajczyk-Wryk A, TarragÓ J M. Nucl. Fusion, 2018, 58(7): 076014.
[34]
Kim H, Lim J, Kim J, Lee J, Seo Y. Adv. Eng. Mater., 2020, 22(6): 1901448.
[35]
Ekinci N, El-Agawany F I, Mahmoud K A, Karabulut A, Aygun B, Yousef E, Rammah Y S. Radiat. Phys. Chem., 2021, 186: 109483.
[36]
Dewen T, Shuliang Z, Liang Y. J. Alloys Compd., 2019, 803: 466.

doi: 10.1016/j.jallcom.2019.06.061
[37]
Saad M, Almohiy H, Alqahtani M S, Alshihri A A, Shalaby R M. Radiat. Eff. Defects. Solids., 2022, 177(5/6): 545.

doi: 10.1080/10420150.2022.2063125
[38]
Kaur T, Vermani Y K, Al-Buriahi M S, Alzahrani J S, Singh T. Phys. Scr., 2022, 97(5): 055009.
[39]
Wu X G, Huang Y H, Zha D, Liu Y, Chen J, Luo L, Zhang X M, Luo D F. Mater. Today Commun., 2022, 33: 104521.
[40]
Hu C, Huang Q Y, Zhai Y T. RSC Adv., 2021, 11(63): 40148.

doi: 10.1039/D1RA07500D
[41]
Jiang L T, Xu Z G, Fei Y K, Zhang Q, Qiao J, Wu G H. Compos. B Eng., 2019, 168: 183.

doi: 10.1016/j.compositesb.2018.12.087
[42]
Chen H S, Wang W X, Li Y L, Zhang P, Nie H H, Wu Q C. J. Alloys Compd., 2015, 632: 23.

doi: 10.1016/j.jallcom.2015.01.048
[43]
Chen H S, Wang W X, Li Y L, Zhou J, Nie H H, Wu Q C. Mater. Des., 2016, 94: 360.

doi: 10.1016/j.matdes.2016.01.030
[44]
Zhang P, Li Y L, Wang W X, Gao Z P, Wang B D. J. Nucl. Mater., 2013, 437(1/3): 350.

doi: 10.1016/j.jnucmat.2013.02.050
[45]
Li Y L, Wang W X, Zhou J, Chen H S, Zhang P. J. Nucl. Mater., 2017, 487: 238.

doi: 10.1016/j.jnucmat.2017.02.020
[46]
Park J J, Hong S M, Lee M K, Rhee C K, Rhee W H. Nucl. Eng. Des., 2015, 282: 1.

doi: 10.1016/j.nucengdes.2014.10.020
[47]
Cong S, Ran G, Li Y P, Chen Y. Powder Technol., 2020, 369: 127.

doi: 10.1016/j.powtec.2020.05.029
[48]
Ahn J H, Jung H D, Im J H, Jung K H, Moon B M. Mater. Sci. Eng. A, 2016, 658: 255.

doi: 10.1016/j.msea.2016.02.005
[49]
Lee S W, Ahn J H, Moon B M, Kim D, Oh S, Kim Y J, Jung H D. Mater. Des., 2020, 194: 108906.
[50]
Yang X Y, Song L L, Chang B, Yang Q, Mao X D, Huang Q Y. Nucl. Mater. Energy, 2020, 23: 100739.
[51]
Zhang P, Jia C P, Li J, Wang W X. Mater. Lett., 2020, 276: 128082.
[52]
Zhang P, Li J, Wang W X, Tan X Y, Xie L, Guo F Y. Vacuum, 2019, 162: 92.

doi: 10.1016/j.vacuum.2019.01.004
[53]
Wang H, Wang T, Peng J. Phys. Metals Metallogr., 2021, 122(14): 1640.

doi: 10.1134/S0031918X21140246
[54]
Mesbahi A, Verdipoor K, Zolfagharpour F, Alemi A. Pol. J. Med. Phys. Eng., 2019, 25(4): 211.
[55]
Li X M, Wu J Y, Tang C Y, He Z K, Yuan P, Sun Y, Lau W M, Zhang K, Mei J, Huang Y H. Compos. B Eng., 2019, 159: 355.

doi: 10.1016/j.compositesb.2018.10.003
[56]
Zhang Q P, Liang D M, Zhu W F, Liu J H, Wu Y, Xu D G, Bai X Y, Wei M, Zhou Y L. J. Solid State Chem., 2019, 269: 594.

doi: 10.1016/j.jssc.2018.10.043
[57]
Cheraghi E, Chen S Y, Yeow J T W. IEEE Nanotechnol. Mag., 2021, 15(3): 8.
[58]
Li J L, Zhang Q P, Liu X, Chen R C, Xu W D, Sun N, Li Y T, Yang W B, Xu D G, Zhou Y L. J. Appl. Polym. Sci., 2021, 138(31): 50774.

doi: 10.1002/app.v138.31
[59]
Fan J H, Wu J Y, Ma Y. Int. J. Mod. Phys. B, 2020, 34(7): 2050046.
[60]
Lou L, He Z Y, Li Y J, Li Y S, Zhou Y L, Lin C M, Yang Z J, Fan J H, Zhang K, Yang W B. Int. J. Energy Res., 2020, 44(9): 7674.

doi: 10.1002/er.v44.9
[61]
Poltabtim W, Thumwong A, Wimolmala E, Rattanapongs C, Tokonami S, Ishikawa T, Saenboonruang K. Polymers, 2022, 14(21): 4481.

doi: 10.3390/polym14214481
[62]
Saenboonruang K, Poltabtim W, Thumwong A, Pianpanit T, Rattanapongs C. Polymers, 2021, 13(12): 1930.

doi: 10.3390/polym13121930
[63]
Bo S, Shuquan C, Bin K, Hongxu Z, Yaodong D. Adv. Mat. Res., 2014, 900: 209.
[64]
İrim Ş G, Alchekh Wis A, Keskin M A, Baykara O, Ozkoc G, Avcı A, Doğru M, Karakoç M. Radiat. Phys. Chem., 2018, 144: 434.

doi: 10.1016/j.radphyschem.2017.10.007
[65]
Wan S P, Wang W X, Chen H S, Zhou J, Zhang Y Y, Liu R F, Feng R Y. Vacuum, 2020, 176: 109304.
[66]
Huo Z P, Zhao S, Zhong G Q, Zhang H, Hu L Q. Nucl. Mater. Energy, 2021, 29: 101095.
[67]
Toyen D, Paopun Y, Changjan D, Wimolmala E, Mahathanabodee S, Pianpanit T, Anekratmontree T, Saenboonruang K. Polymers, 2021, 13(19): 3390.

doi: 10.3390/polym13193390
[68]
Li R, Gu Y Z, Yang Z J, Li M, Hou Y W, Zhang Z G. Mater. Des., 2017, 124: 121.

doi: 10.1016/j.matdes.2017.03.045
[69]
Wang H Q, Huang Q Y, Zhai Y T. Polymers, 2022, 14(3): 638.

doi: 10.3390/polym14030638
[70]
Kiani M A, Ahmadi S J, Outokesh M, Adeli R, Mohammadi A. Radiat. Phys. Chem., 2017, 141: 223.

doi: 10.1016/j.radphyschem.2017.07.013
[71]
Abuali Galehdari N, Kelkar A D. J. Mater. Res., 2017, 32(2): 426.

doi: 10.1557/jmr.2016.494
[72]
Li R, Gu Y Z, Wang Y D, Yang Z J, Li M, Zhang Z G. Mater. Res. Express, 2017, 4(3): 035035.
[73]
Abuibaid A Z A, Iqbal M Z. Heliyon, 2020, 6(3): e03589.
[74]
Zhao S, Huo Z P, Zhong G Q, Zhang H, Hu L Q. Chem. J. Chinese. U., 2022, 43(6): 20220039.
(赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 高等学校化学学报, 2022, 43(6): 20220039.).
[75]
Shang W H, Jiang H. High Perform. Polym., 2020, 32(7): 793.

doi: 10.1177/0954008320902216
[76]
Giang T, Kim J. J. Electron. Mater., 2017, 46(1): 627.

doi: 10.1007/s11664-016-4704-1
[77]
Qu C Y, Tang Y, Wang D Z, Fan X P, Li H F, Liu C W, Su K, Zhao D X, Jing J Q, Zhang X. J. Appl. Polym. Sci., 2021, 138(1): 49640.

doi: 10.1002/app.v138.1
[78]
Valueva M I, Zelenina I V, Zharinov M A, Khaskov M A. Inorg. Mater. Appl. Res., 2021, 12(6): 1581.

doi: 10.1134/S2075113321060290
[79]
Ke H J, Zhao L W, Zhang X H, Qiao Y J, Wang G Y, Wang X D. Polym. Test., 2020, 90: 106746.
[80]
Jiang S H, Uch B, Agarwal S, Greiner A. ACS Appl. Mater. Interfaces, 2017, 9(37): 32308.

doi: 10.1021/acsami.7b11045
[81]
Wang P, Tang X B, Chai H, Chen D, Qiu Y L. Fusion Eng. Des., 2015, 101: 218.

doi: 10.1016/j.fusengdes.2015.09.007
[82]
Baykara O, İrim Ş G, Wis A A, Keskin M A, Ozkoc G, Avcı A, Doğru M. Polym. Adv. Technol., 2020, 31(11): 2466.

doi: 10.1002/pat.v31.11
[83]
Castley D, Goodwin C, Liu J F. Radiat. Phys. Chem., 2019, 165: 108435.
[84]
Kaur P, Singh K J, Thakur S, Sarin N. AIP. Conf. Proc., 2019, 2142(1): 120006.
[85]
Stalin S, Edukondalu A, Boukhris I, Alrowaili Z A, Al-Baradi A M, Olarinoye I O, Gaikwad D K, Al-Buriahi M S. Ceram. Int., 2021, 47(21): 30137.

doi: 10.1016/j.ceramint.2021.07.192
[86]
Halimah M K, Azuraida A, Ishak M, Hasnimulyati L. J. Non Cryst. Solids, 2019, 512: 140.

doi: 10.1016/j.jnoncrysol.2019.03.004
[87]
Elkhoshkhany N, Marzouk S, El-Sherbiny M, Ibrahim H, Burtan-Gwizdala B, Alqahtani M S, Hussien K I, Reben M, Yousef E S. Materials, 2022, 15(15): 5393.

doi: 10.3390/ma15155393
[88]
Boodaghi Malidarre R, Akkurt I. Polym. Compos., 2022, 43(8): 5418.

doi: 10.1002/pc.v43.8
[89]
Vani P, Vinitha G, Sayyed M I, AlShammari M M, Manikandan N. Nucl. Eng. Technol., 2021, 53(12): 4106.

doi: 10.1016/j.net.2021.06.009
[90]
Alatawi A, Alsharari A M, Issa S A M, Rashad M, Darwish A A A, Saddeek Y B, Tekin H O. Ceram. Int., 2020, 46(3): 3534.

doi: 10.1016/j.ceramint.2019.10.069
[91]
Gomaa H M, Saudi H A, Yahia I S, Zahran H Y. J. Mater. Sci. Mater. Electron., 2022, 33(6): 3284.

doi: 10.1007/s10854-021-07529-3
[92]
Kavaz E, Tekin H O, Agar O, Altunsoy E E, Kilicoglu O, Kamislioglu M, Abuzaid M M, Sayyed M I. Ceram. Int., 2019, 45(12): 15348.

doi: 10.1016/j.ceramint.2019.05.028
[93]
Kinno M, Kimura K I, Ishikawa T, Miura T, Ishihama S, Hayasaka N, Nakamura T. J. Nucl. Sci. Technol., 2002, 39(3): 215.

doi: 10.1080/18811248.2002.9715178
[94]
Kilic G, Issa S A M, Ilik E, Kilicoglu O, Tekin H O. Ceram. Int., 2021, 47(2): 2572.

doi: 10.1016/j.ceramint.2020.09.103
[95]
Saudi H A, Abd-Allah W M, Shaaban K S. J. Mater. Sci. Mater. Electron., 2020, 31(9): 6963.

doi: 10.1007/s10854-020-03261-6
[96]
Mariselvam K. Optik, 2021, 230: 166319.
[97]
Kaewnuam E, Wantana N, Tanusilp S, Kurosaki K, Limkitjaroenporn P, Kaewkhao J. Radiat. Phys. Chem., 2022, 190: 109805.
[98]
Juhim F, Chee F P, Awang A, Duinong M, Rasmidi R, Rumaling M I. ECS J. Solid State Sci. Technol., 2022, 11(7): 076006.
[99]
Alzahrani J S, Eke C, Alrowaili Z A, Boukhris I, Mutuwong C, Bourham M A, Al-Buriahi M S. Solid State Sci., 2022, 129: 106902.
[100]
Lakshminarayana G, Kumar A, Lira A, Dahshan A, Hegazy H H, Kityk I V, Lee D E, Yoon J, Park T. Radiat. Phys. Chem., 2020, 170: 108633.
[101]
El-Agawany F I, Kavaz E, Perişanoğlu U, Al-Buriahi M, Rammah Y S. Appl. Phys. A, 2019, 125(12): 838.

doi: 10.1007/s00339-019-3129-0
[102]
Kozlovskiy A L, Shlimas D I, Zdorovets M V. J. Mater. Sci. Mater. Electron., 2021, 32(9): 12111.

doi: 10.1007/s10854-021-05839-0
[103]
Ilik E, Kilic G, Issever U G, Issa S A M, Zakaly H M H, Tekin H O. Ceram. Int., 2022, 48(1): 1152.

doi: 10.1016/j.ceramint.2021.09.200
[104]
Rammah Y S, Özpolat Ö F, Alım B, Şakar E, El-Mallawany R, El-Agawany F I. Radiat. Phys. Chem., 2020, 176: 109069.
[105]
Saad M, Elhouichet H. J. Alloys Compd., 2019, 806: 1403.

doi: 10.1016/j.jallcom.2019.06.353
[106]
Tekin H O, ALMisned G, Rammah Y S, Susoy G, Ali F T, Baykal D S, Elshami W, Zakaly H M H, Issa S A M. Appl. Phys. A, 2022, 128(6): 470.

doi: 10.1007/s00339-022-05620-y
[107]
Saddeek Y B, Issa S A M, Altunsoy Guclu E E, Kilicoglu O, Susoy G, Tekin H O. Ceram. Int., 2020, 46(10): 16781.

doi: 10.1016/j.ceramint.2020.03.254
[108]
Saudi H A, Hassaan M Y, Tarek E, Borham E. J. Opt., 2020, 49(4): 438.

doi: 10.1007/s12596-020-00652-0
[109]
Luo Q. Master Dissertation of Southwest University of Science and Technology, 2017.
(罗庆. 西南科技大学硕士论文, 2017.).
[110]
Suresh A A, Vinothkumar P, Mohapatra M, Dhavamurthy M, Murugasen P. Radiat. Phys. Chem., 2022, 193: 109941.
[111]
Sayyed M I, Dong M G, Tekin H O, Lakshminarayana G, Mahdi M A. Mater. Chem. Phys., 2018, 215: 183.

doi: 10.1016/j.matchemphys.2018.04.106
[112]
Divina R, Sathiyapriya G, Marimuthu K, Askin A, Sayyed M I. J. Non Cryst. Solids, 2020, 545: 120269.
[113]
Issa S A M, Ali A M, Tekin H O, Saddeek Y B, Al-Hajry A, Algarni H, Susoy G. Nucl. Eng. Technol., 2020, 52(6): 1297.

doi: 10.1016/j.net.2019.11.017
[114]
Aladailah M W, Tashlykov O L, Marashdeh M W, Akhdar H. Radiat. Eff. Defects Solids, 2022, 177(5/6): 455.

doi: 10.1080/10420150.2022.2043320
[1] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[2] Qian Cheng, Jiaming Yu, Xinzhu Huo, Yumeng Shen, Shouxin Liu. Enhancement Luminescence and Applications of Rare Earth Fluoride [J]. Progress in Chemistry, 2019, 31(12): 1681-1695.
[3] Chunyan Dou, Zheng Li, Guidong He, Jixian Gong, Xiuming Liu, Jianfei Zhang. Preparation and Application of γ-Polyglutamic Acid Hydrogel [J]. Progress in Chemistry, 2018, 30(8): 1161-1171.
[4] Jiang Ling, Que Yaping, Ding Yong, Hu Linhua, Zhang Changneng, Dai Songyuan. Applications of the Up and Down Conversion in Dye Sensitized Solar Cells [J]. Progress in Chemistry, 2016, 28(5): 637-646.
[5] Wei Junnan, Tang Xing, Sun Yong, Zeng Xianhai, Lin Lu. Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone [J]. Progress in Chemistry, 2016, 28(11): 1672-1681.
[6] Yan Hong, Zhu Chen. Ring Openings of tert-Cyclobutanols: New Strategy towards the Synthesis of γ-Substituted Ketones via C—C Bond Cleavage [J]. Progress in Chemistry, 2016, 28(1): 1-8.
[7] Shao Yuegang, Liu Ji, Chen Xiangqian, Jin Peiyu, Tang Hongding. Platinum Complexes Catalyzed Hydrosilylation of Trichlorosilane and Allyl Chloride [J]. Progress in Chemistry, 2015, 27(9): 1182-1190.
[8] Li Longfei, Bai Yinna, Lei Ming, Liu Li. Progress in Rubber Vulcanization Accelerator [J]. Progress in Chemistry, 2015, 27(10): 1500-1508.
[9] Tang Xing, Hu Lei, Sun Yong, Zeng Xianhai, Lin Lu. Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid [J]. Progress in Chemistry, 2013, 25(11): 1906-1914.
[10] Wang Meng, Hui Yonghai, Zhang Xuehua, Wei Yana, Shi Minshan, Wang Jide*. Oxidation of Tetrahydrofuran [J]. Progress in Chemistry, 2013, 25(07): 1158-1165.
[11] Zhao Chuanqi, Qu Xiaogang*. Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes [J]. Progress in Chemistry, 2013, 25(04): 539-544.
[12] Yang Xiaofeng Dong xiangting Wang Jinxian Liu Guixia. Preparation Methods of Inorganic Nano Rare Earth Luminescent Materials [J]. Progress in Chemistry, 2009, 21(6): 1179-1186.
[13] Zhang Yi Zhou Xinxin Zhang Yujie. Ti-Based Anodes with Metal Oxide Coatings [J]. Progress in Chemistry, 2009, 21(09): 1827-1831.
[14] Zhang Jinchao Wang Peng Sun Jing Liu Cuilian Chen Hua Huang Jian. Viewing Safety of Rare-Earths-Based Drugs from Effect of Rare Earth on Bone Metabolism [J]. Progress in Chemistry, 2009, 21(05): 919-928.
[15] Geng Jie Yu Haijia Zhang Haiyuan Xu Haixia Qu Xiaogang. Interactions of Rare Earth-Amino Acid Complexes with Nucleic Acids [J]. Progress in Chemistry, 2009, 21(05): 866-872.