中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 997-1004 DOI: 10.7536/PC221231   Next Articles

• Review •

Micro-/Nanorobots for Enhanced Antibacterial Treatment

Ting Liu1,2, Shiyao Pang1,2, Xiaohui Yan1,2()   

  1. 1 State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University,Xiamen 361005, China
    2 Shenzhen Research Institute of Xiamen University,Shenzhen 518057, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: xhyan@xmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82001845); Guangdong Provincial Key Lab of Robotics and Intelligent System(XDHT2019588A); Shenzhen Science and Technology Program(JCYJ20190809163407481)
Richhtml ( 60 ) PDF ( 560 ) Cited
Export

EndNote

Ris

BibTeX

Bacterial infections, becoming the second leading cause of death in the worldwide, pose a serious threat to public health. Plenty of therapeutic strategies, such as antibiotic therapy, photothermal therapy, photodynamic therapy and sonodynamic therapy, etc., have been developed to treat bacterial infections. However, how to improve the efficiency of antibacterial therapy is still a great challenge. Micro-/nanorobots, as miniaturized robots with active motion properties, are promising to provide new therapeutic strategies for effective antibacterial. On the one hand, micro-/nanorobots can accurately deliver antibacterial media to the micro area of the lesion through their controllable directional movement. On the other hand, the motion of swarms of micro-/nanorobots can also cause mechanical effect and fluid stirring effects, which mechanically damage the pathogen and at the same time, promote the full reaction between pathogens and antibacterial media, so as to enhance the antibacterial efficiency synergistically. In this review, we summarize the important research advances of micro-/nanorobots in the field of antibacterial applications, and start from the driving mode of antibacterial micro-/nanorobots, systematically expounding the mechanism of action and application advantages in various antibacterial treatments. Finally, we discuss the potential challenges faced by micro-/nanorobots in antibacterial therapy and prospect the main directions of future research in this field.

Contents

1 Introduction

2 Driving mode of antibacterial micro-/nanorobots

3 Micro-/nanorobots in antibacterial application

3.1 Antibacterial agent delivery

3.2 Enhanced photothermal therapy

3.3 Enhanced photodynamic therapy

3.4 Mechanical disruption

3.5 Synergistic strategies

4 Conclusion and outlook

Fig.1 (A) Urease-powered Janus platelet micromotors[25]. Copyright 2020, The American Association for the Advancement of Science; (B) rotifer based microrobots for enzymatic biodegradation of E. coli[32]. Copyright 2019, John Wiley and Sons; (C) magnetic powered helical nanorobots[44]. Copyright 2017, John Wiley and Sons; (D) light-driven ZnO:Ag micromotors[39]. Copyright 2021, John Wiley and Sons; (E) ultrasound-driven gold nanowire motors[42]. Copyright 2013, American Chemical Society
Fig.2 (A) Microalgea robots for antibiotic delivery[30]. Copyright 2020, John Wiley and Sons; (B) antimicrobial peptide-modified microrobots for the eradication of MRSA biofilms[45]. Copyright 2022, John Wiley and Sons; (C) PEDOT/MnO2 tubular micromotors for enhanced antibacterial[26]. Copyright 2020, The Royal Society of Chemistry
Fig.3 Magnetic Spirulina microrobots for enhanced photothermal antibacterial[57]. Copyright 2020, American Chemical Society
Fig.4 (A) Urea-propelled magnetic micromotors for targeted photodynamic antibacterial[14]. Copyright 2019, John Wiley and Sons; (B) TiO2/CdS microrobots for E. coli biofilm eradication[48]. Copyright 2022, John Wiley and Sons
Fig.5 (A) Magnetic liquid metals micromotors for biofilm treatment[49]. Copyright 2020, American Chemical Society; (B) magnetic sunflower pollen microrobots for biofilm eradication[50]. Copyright 2022, John Wiley and Sons
Fig.6 (A) Janus nanomotors for killing bacteria with PTT and PDT[63]. Copyright 2022, The Royal Society of Chemistry; (B) magnetic antibacterial robots for removal of biofilm with mechanical force in collaboration with ROS and drug[64]. Copyright 2019, The American Association for the Advancement of Science
[1]
Huang H Y, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z Y, Guo B, Xu J. Adv. Drug Deliv. Rev., 2023, 192: 114634.

doi: 10.1016/j.addr.2022.114634
[2]
Egusquiaguirre S P, Igartua M, Hernández R M, Pedraz J L. Clin. Transl. Oncol., 2012, 14(2): 83.

doi: 10.1007/s12094-012-0766-6 pmid: 22301396
[3]
Hochvaldova L, Vecerova R, Kolar M, Prucek R, Kvitek L, Lapcik L, Panacek A. Nanotechnol. Rev., 2022, 11: 1115.

doi: 10.1515/ntrev-2022-0059
[4]
Chang R, Zhao D H, Zhang C, Liu K Y, He Y M, Guan F X, Yao M H. Int. J. Biol. Macromol., 2023, 226: 870.

doi: 10.1016/j.ijbiomac.2022.12.116
[5]
He Y M, Liu K Y, Guo S, Chang R, Zhang C, Guan F X, Yao M H. Acta Biomater., 2023, 155: 199.

doi: 10.1016/j.actbio.2022.11.023
[6]
Wang B, Xu Y, Shao D H, Li L J, Ma Y Q, Li Y H, Zhu J W, Shi X C, Li W L. Front. Bioeng. Biotechnol., 2022, 10: 1047598.

doi: 10.3389/fbioe.2022.1047598
[7]
Mussini A, Uriati E, Hally C, Nonell S, Bianchini P, Diaspro A, Pongolini S, Delcanale P, Abbruzzetti S, Viappiani C. Bioconjugate Chem., 2022, 33(4): 666.

doi: 10.1021/acs.bioconjchem.2c00067 pmid: 35266706
[8]
Reynoso E, Durantini A M, Solis C A, Macor L P, Otero L A, Gervaldo M A, Durantini E N, Heredia D A. RSC Adv., 2021, 11(38): 23519.

doi: 10.1039/D1RA03417K
[9]
Wei Z X, Teng S Y, Fu Y, Zhou Q, Yang W S. Prog. Org. Coat., 2022, 164: 106703.
[10]
Wang M Y, Wang X, Liu B, Lang C Y, Wang W, Liu Y, Wang X,. J. Pharm. Sci., 2023, 112(1): 336.
[11]
Medina-Sánchez M, Schmidt O G. Nature, 2017, 545(7655): 406.

doi: 10.1038/545406a
[12]
Yan M, Liu T Y, Li X F, Zhou S, Zeng H, Liang Q R, Liang K, Wei X B, Wang J Q, Gu Z, Jiang L, Zhao D Y, Kong B. J. Am. Chem. Soc., 2022, 144(17): 7778.

doi: 10.1021/jacs.2c01096
[13]
Li J X, Esteban-Fernández de Ávila B, Gao W, Zhang L F, Wang J. Sci. Robot., 2017, 2(4): eaam6431.

doi: 10.1126/scirobotics.aam6431
[14]
Xu D D, Zhou C, Zhan C, Wang Y, You Y Q, Pan X, Jiao J P, Zhang R, Dong Z J, Wang W, Ma X. Adv. Funct. Mater., 2019, 29(17): 1807727.

doi: 10.1002/adfm.v29.17
[15]
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. J. Magn. Magn. Mater., 2019, 479: 74.

doi: 10.1016/j.jmmm.2019.02.004
[16]
Li J H, Shen H, Zhou H J, Shi R, Wu C T, Chu P K. Mater. Sci. Eng. R Rep., 2023, 152: 100712.

doi: 10.1016/j.mser.2022.100712
[17]
Zhang Z F, Wang L, Chan T K F, Chen Z G, Ip M, Chan P K S, Sung J J Y, Zhang L. Adv. Healthc. Mater., 2022, 11(6): 2101991.

doi: 10.1002/adhm.v11.6
[18]
Liu T Y, Xie L, Price C A H, Liu J, He Q, Kong B. Chem. Soc. Rev., 2022, 51(24): 10083.

doi: 10.1039/D2CS00432A
[19]
Zhou H J, Dong G Z, Gao G, Du R, Tang X Y, Ma Y N, Li J H. Cyborg Bionic Syst., 2022, 2022: 9852853.
[20]
Gao S, Hou J W, Zeng J, Richardson J J, Gu Z, Gao X, Li D W, Gao M, Wang D W, Chen P, Chen V, Liang K, Zhao D Y, Kong B. Adv. Funct. Mater., 2019, 29(18): 1808900.

doi: 10.1002/adfm.v29.18
[21]
Lin Z H, Gao C Y, Wang D L, He Q. Angew. Chem. Int. Ed., 2021, 60(16): 8750.

doi: 10.1002/anie.v60.16
[22]
Wavhale R D, Dhobale K D, Rahane C S, Chate G P, Tawade B V, Patil Y N, Gawade S S, Banerjee S S. Commun. Chem., 2021, 4: 159.

doi: 10.1038/s42004-021-00598-9
[23]
Liu X X, Sun X, Peng Y X, Wang Y, Xu D D, Chen W J, Wang W, Yan X H, Ma X. ACS Nano, 2022, 16(9): 14666.

doi: 10.1021/acsnano.2c05295
[24]
Schmidt C K, Medina-Sánchez M, Edmondson R J, Schmidt O G. Nat. Commun., 2020, 11: 5618.

doi: 10.1038/s41467-020-19322-7
[25]
Tang S S, Zhang F Y, Gong H, Wei F N, Zhuang J, Karshalev E, de Ávila B E F, Huang C Y, Zhou Z D, Li Z X, Yin L, Dong H F, Fang R H, Zhang X J, Zhang L F, Wang J. Sci. Robot., 2020, 5(43): eaba6137.

doi: 10.1126/scirobotics.aba6137
[26]
Liu W J, Ge H B, Ding X Y, Lu X L, Zhang Y N, Gu Z W. Nanoscale, 2020, 12(38): 19655.

doi: 10.1039/D0NR06281B
[27]
Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S. ACS Nano, 2017, 11(10): 9968.

doi: 10.1021/acsnano.7b04128 pmid: 28933815
[28]
Chen C Y, Chen C F, Yi Y, Chen L J, Wu L F, Song T. Biomed. Microdevices, 2014, 16(5): 761.

doi: 10.1007/s10544-014-9880-2
[29]
Shchelik I S, Molino J V D, Gademann K. Acta Biomater., 2021, 136: 99.

doi: 10.1016/j.actbio.2021.09.048 pmid: 34601106
[30]
Shchelik I S, Sieber S, Gademann K. Chem. Eur. J., 2020, 26(70): 16644.

doi: 10.1002/chem.v26.70
[31]
Zhang F Y, Zhuang J, Li Z X, Gong H, de Ávila B E F, Duan Y O, Zhang Q Z, Zhou J R, Yin L, Karshalev E, Gao W W, Nizet V, Fang R H, Zhang L F, Wang J. Nat. Mater., 2022, 21(11): 1324.

doi: 10.1038/s41563-022-01360-9
[32]
Soto F, Lopez-Ramirez M A, Jeerapan I, de Avila B E F, Mishra R K, Lu X L, Chai I, Chen C R, Kupor D, Nourhani A, Wang J. Adv. Funct. Mater., 2019, 29(22): 1900658.

doi: 10.1002/adfm.v29.22
[33]
Carlsen R W, Sitti M. Small, 2014, 10(19): 3831.

doi: 10.1002/smll.201400384 pmid: 24895215
[34]
Xie H, Sun M M, Fan X J, Lin Z H, Chen W N, Wang L, Dong L X, He Q. Sci. Robot., 2019, 4(28): eaav8006.

doi: 10.1126/scirobotics.aav8006
[35]
Hong Y Y, Diaz M, CÓrdova-Figueroa U M, Sen A. Adv. Funct. Mater., 2010, 20(10): 1568.

doi: 10.1002/adfm.v20:10
[36]
de Avila B E F, Angell C, Soto F, Lopez-Ramirez M A, Báez D F, Xie S B, Wang J, Chen Y. ACS Nano, 2016, 10(5): 4997.

doi: 10.1021/acsnano.6b01415
[37]
Wang L C, Meng Z Y, Chen Y, Zheng Y Y. Adv. Intell. Syst., 2021, 3(7): 2000267.

doi: 10.1002/aisy.v3.7
[38]
Cui T T, Wu S, Sun Y H, Ren J S, Qu X G. Nano Lett., 2020, 20(10): 7350.

doi: 10.1021/acs.nanolett.0c02767
[39]
Ussia M, Urso M, Dolezelikova K, Michalkova H, Adam V, Pumera M. Adv. Funct. Mater., 2021, 31(27): 2101178.

doi: 10.1002/adfm.v31.27
[40]
Xie L, Yan M, Liu T Y, Gong K, Luo X, Qiu B L, Zeng J, Liang Q R, Zhou S, He Y J, Zhang W, Jiang Y L, Yu Y, Tang J Y, Liang K, Zhao D Y, Kong B. J. Am. Chem. Soc., 2022, 144(4): 1634.

doi: 10.1021/jacs.1c10391
[41]
Xu T L, Gao W, Xu L P, Zhang X J, Wang S T. Adv. Mater., 2017, 29(9): 1603250.

doi: 10.1002/adma.201603250
[42]
Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F, Wang J. ACS Nano, 2013, 7(10): 9232.

doi: 10.1021/nn403851v pmid: 23971861
[43]
de Avila B E F, Angsantikul P, Ramírez-Herrera D E, Soto F, Teymourian H, Dehaini D, Chen Y J, Zhang L F, Wang J. Sci. Robot., 2018, 3(18): eaat0485.

doi: 10.1126/scirobotics.aat0485
[44]
Li J X, Angsantikul P, Liu W J, de Avila B E F, Chang X C, Sandraz E, Liang Y Y, Zhu S Y, Zhang Y, Chen C R, Gao W W, Zhang L F, Wang J. Adv. Mater., 2018, 30(2): 1704800.

doi: 10.1002/adma.v30.2
[45]
Milosavljevic V, Kosaristanova L, Dolezelikova K, Adam V, Pumera M. Adv. Funct. Mater., 2022, 32(43): 2112935.

doi: 10.1002/adfm.v32.43
[46]
Zheng C, Li Z Q, Xu T T, Chen L, Fang F, Wang D, Dai P Q, Wang Q T, Wu X Y, Yan X H. Appl. Mater. Today, 2021, 22: 100962.
[47]
Gong D, Celi N, Xu L, Zhang D, Cai J. Mater. Today Chem., 2022, 23: 100694.
[48]
Villa K, Sopha H, Zelenka J, Motola M, Dekanovsky L, Beketova D C, Macak J M, Ruml T, Pumera M. Small, 2022, 18(36): 2106612.

doi: 10.1002/smll.v18.36
[49]
Elbourne A, Cheeseman S, Atkin P, Truong N P, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville C F, Dickey M D, Crawford R J, Kalantar-Zadeh K, Chapman J, Daeneke T, Truong V K. ACS Nano, 2020, 14(1): 802.

doi: 10.1021/acsnano.9b07861 pmid: 31922722
[50]
Sun M M, Chan K F, Zhang Z F, Wang L, Wang Q L, Yang S H, Chan S M, Chiu P W Y, Sung J J Y, Zhang L. Adv. Mater., 2022, 34(34): 2201888.

doi: 10.1002/adma.v34.34
[51]
Bhuyan T, Simon A T, Maity S, Singh A K, Ghosh S S, Bandyopadhyay D. ACS Appl. Mater. Interfaces, 2020, 12(39): 43352.

doi: 10.1021/acsami.0c08444
[52]
de Avila B E F, Angsantikul P, Li J X, Angel Lopez-Ramirez M, Ramírez-Herrera D E, Thamphiwatana S, Chen C R, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L F, Wang J. Nat. Commun., 2017, 8: 272.

doi: 10.1038/s41467-017-00309-w
[53]
Yu Q L, Deng T, Lin F C, Zhang B, Zink J I. ACS Nano, 2020, 14(5): 5926.

doi: 10.1021/acsnano.0c01336
[54]
Bhuyan T, Singh A K, Ghosh S S, Bandyopadhyay D. Bull. Mater. Sci., 2020, 43(1): 111.

doi: 10.1007/s12034-020-2076-x
[55]
Qi C Y, Zhang Y P, Tu J. Biochem. Eng. J., 2022, 186: 108569.

doi: 10.1016/j.bej.2022.108569
[56]
Lin X, Cao Y B, Li J, Zheng D Y, Lan S Y, Xue Y N, Yu F Q, Wu M, Zhu X J. Biomater. Sci., 2019, 7(7): 2996.

doi: 10.1039/C9BM00276F
[57]
Xie L S, Pang X, Yan X H, Dai Q X, Lin H R, Ye J, Cheng Y, Zhao Q L, Ma X, Zhang X Z, Liu G, Chen X Y. ACS Nano, 2020, 14(3): 2880.

doi: 10.1021/acsnano.9b06731
[58]
Yuan H X, Li Z L, Wang X Y, Qi R L. Polymers, 2022, 14(17): 3657.

doi: 10.3390/polym14173657
[59]
Cheeseman S, Elbourne A, Kariuki R, Ramarao A V, Zavabeti A, Syed N, Christofferson A J, Kwon K Y, Jung W, Dickey M D, Kalantar-Zadeh K, McConville C F, Crawford R J, Daeneke T, Chapman J, Truong V K. J. Mater. Chem. B, 2020, 8(47): 10776.

doi: 10.1039/d0tb01655a pmid: 33155005
[60]
Gu H, Lee S W, Carnicelli J, Zhang T, Ren D C. Nat. Commun., 2020, 11: 2211.

doi: 10.1038/s41467-020-16055-5
[61]
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. Nanomed. Nanotechnol. Biol. Med., 2017, 13(2): 363.

doi: 10.1016/j.nano.2016.08.021
[62]
Daima H K, Selvakannan P R, Kandjani A E, Shukla R, Bhargava S K, Bansal V. Nanoscale, 2014, 6(2): 758.

doi: 10.1039/C3NR03806H
[63]
Liu X, Liu H X, Zhang J Z, Hao Y J, Yang H N, Zhao W B, Mao C. Biomater. Sci., 2022, 10(19): 5608.

doi: 10.1039/D2BM00845A
[64]
Hwang G, Paula A J, Hunter E E, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H. Sci. Robot., 2019, 4(29): eaaw2388.

doi: 10.1126/scirobotics.aaw2388
[65]
Xu D D, Hu J, Pan X, Sánchez S, Yan X H, Ma X. ACS Nano, 2021, 15(7): 11543.

doi: 10.1021/acsnano.1c01573
[66]
Lu B T, Hu E L, Xie R Q, Yu K, Lu F, Bao R, Wang C H, Lan G Q, Dai F Y. ACS Appl. Mater. Interfaces, 2021, 13(19): 22225.

doi: 10.1021/acsami.1c04330
No related articles found!