中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1136-1153 DOI: 10.7536/PC221223 Previous Articles   Next Articles

• Review •

Research and Application of Materials and Micro/Nano Structures for Light Manipulation

Sainan Zhang1, Cuixia Wu1,2, Junhui He1(), Mingxian Wang3, Shuangzhi Qin3   

  1. 1 Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Xuri Plastic,Yuxi 653100, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jhhe@mail.ipc.ac.cn
  • Supported by:
    National Key Research and Development Program of China(No.2019Q(Y)Y)0503); National Natural Science Foundation of China(91963104); Technical Institute of Physics and Chemistry and Joint R&D Laboratory for Functional Agriculture Films.
Richhtml ( 51 ) PDF ( 436 ) Cited
Export

EndNote

Ris

BibTeX

Solar energy, as one of the cleanest energy sources, is a precious resource endowed by nature to humanity. The solar spectrum and radiation intensity have a direct impact on human production and life, and how to utilize sunlight more efficiently has always been a goal pursued by scientists. This review systematically introduces the materials that can be used for light regulation, as well as their synthesis methods, and optical properties, including static light manipulation materials (such as UV shielding agents, visible light regulation materials, and infrared light regulation materials), stimulus responsive intelligent light manipulation materials (photoluminescence materials, intelligent color changing materials, etc.), and biomimetic micro/nanostructure materials. And further summarized the effects of light manipulation (including light wavelength, light intensity, and light propagation direction) that can be achieved using different types of light manipulation materials (micro nano structures). Finally, the current application status and development prospects of light manipulation materials and technologies in energy-saving buildings (including smart windows), agricultural films, solar photovoltaic power generation, and other fields were comprehensively summarized.

Contents

1 Introduction

2 Classification and optical properties of light manipulation materials

2.1 Static light manipulation materials

2.2 Stimulation-responsive intelligent light manipulation materials

2.3 Biomimetic micro/nano structural materials

3 Application of light manipulation materials and technology

3.1 Energy-saving building

3.2 Agricultural film

3.3 Photovoltaic power generation

4 Conclusion and outlook

Fig.1 Schematic diagram of solar radiation energy density distribution
Fig.2 (a) Benzophenone UV absorbers; (b) benzotriazole UV absorbers; (c) triazine UV absorbers; (d) salicylate UV absorbers
Fig.3 (a) Comparison of structure of carbon dots and semiconductor quantum dots[64], Copyright 2021, American Chemical Society; (b) classification of fluorescent nanodots[66], Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;(c) schematic diagram of carbon fiber cutting through chemical oxidation to synthesize CD (top-down)[69], Copyright 2012, American Chemical Society; (d) schematic diagram of CD synthesis by aldol condensation reaction from bottom to top[74], Copyright 2021, American Chemical Society
Fig.4 (a) Photograph of the adult Philosamia cynthia ricini and SEM images of its moth-eye structure at different magnifications[106], Copyright 2016, American Chemical Society; (b) schematic diagram of bionic moth eye nanostructure coating (inset), reflectance of the coating and the corresponding refractive index distribution curve[110], Copyright 2017, American Chemical Society; (c) SEM images of ultrastructure of Sapphirina metallina (the tightly packed hexagonal crystals and the alternating layers of guanine crystals and cytoplasm beneath the procuticle)[116], Copyright 2015, American Chemical Society; (d) Schematic illustration of the preparation and mechanism of thermochromic smart windows[117], Copyright 2021, American Chemical Society
Fig.5 (a) Schematic diagram of perfect windows for summer (ⅰ) and winter (ⅱ)[123], Copyright 2014, American Chemical Society; (b) designing scheme of the CsxWO3/PAM-PNIPAM smart window (ⅰ), a) scheme of the fabrication of CsxWO3/PAM-PNIPAM window, b) hydrodynamic diameter of PNIPAM microgels with temperature, c) hydrodynamic diameter distribution curve of the PNIPAM microgels in aqueous dispersion (Inset: the SEM image of the PNIPAM microgels) (ⅱ)[130], Copyright 2018, American Chemical Society
Fig.6 (a) (ⅰ) Synthetic schemes of the triphenyl acrylonitrile luminous agent, (ⅱ) luminescent properties and fluorescence quantum yields of the six luminescent agents in solvent, solid and PVC films respectively[141], Copyright 2018, American Chemical Society; (b) schematic diagram of the stability and application of CaS:Eu2+,CaBr2,CaF2 composite phosphor[144], Copyright 2021, American Chemical Society; (c) schematic diagram of synthesis and spectral conversion performance of the core-shell structured CaS:Eu2+,Pb2+@CaZnOS:Pb2+[145], Copyright 2022, American Chemical Society
Fig.7 (a) Schematic diagram of the film with micro-dome structure; (b) cross-section schematic of the phototransfer-doped film with micro-dome structure; (c) forward spectral irradiance of light transfer films with and without micro-dome structure and ordinary films[153], Copyright 2022, Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
Fig.8 (a) AM1.5G solar energy distribution (black curve), ideal panchromatic absorption spectrum (green curve); (b) Operational mechanism of dye-sensitized solar cells[160], Copyright 2019, American Chemical Society; (c) Schematic diagram of down conversion layer in perovskite solar cells[166], Copyright 2022 The Authors. Solar RRL published by Wiley-VCH GmbH; (d) J-V curve of optimized PbSe QD device (inset: (ⅰ) “one-step” direct synthesis of PbSe QD inks), (ⅱ) scheme of the device architecture with PbSe QD inks[174], Copyright 2020, American Chemical Society; (e) the SEM images of 2D IOP-1000 photonic film (inset: the digital photo of the IOP-1000 film), J-V characteristics of the SCs based on the IOP-500 and IOP-1000 MAPbI3 films[181], Copyright 2016, American Chemical Society
[1]
Turkson C, Acquaye A, Liu W B, Papadopoulos T. J. Environ. Manag., 2020, 264: 110464.

doi: 10.1016/j.jenvman.2020.110464
[2]
Green M A. Prog. Photovolt: Res. Appl., 2012, 20(8): 954.

doi: 10.1002/pip.1156
[3]
Shen L H, Yin X B. Nano Converg., 2022, 9(1): 36.

doi: 10.1186/s40580-022-00327-5
[4]
Wu B S, Rufyikiri A S, Orsat V, Lefsrud M G. Plant Sci., 2019, 289: 110272.

doi: 10.1016/j.plantsci.2019.110272
[5]
Liu Y, Gui Z G, Liu J L. Polymers, 2022, 14(5): 851.

doi: 10.3390/polym14050851
[6]
Qian D F, Li Y F, Niu F X, O'Neill Z. Energy Convers. Manag., 2019, 188: 1.

doi: 10.1016/j.enconman.2019.03.035
[7]
Cui Y, Xu Y, Yao H F, Bi P Q, Hong L, Zhang J Q, Zu Y F, Zhang T, Qin J Z, Ren J Z, Chen Z H, He C, Hao X T, Wei Z X, Hou J H. Adv. Mater., 2021, 33(41): 2102420.

doi: 10.1002/adma.v33.41
[8]
Torabi N, Behjat A, Zhou Y H, Docampo P, Stoddard R J, Hillhouse H W, Ameri T. Mater. Today Energy, 2019, 12: 70.
[9]
LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A. Nature, 2022, 604(7905): 287.

doi: 10.1038/s41586-022-04473-y
[10]
Jia Y T, Alva G, Fang G Y. Renew. Sustain. Energy Rev., 2019, 102: 249.

doi: 10.1016/j.rser.2018.12.030
[11]
Saifullah M, Gwak J, Yun J H. J. Mater. Chem. A, 2016, 4(22): 8512.

doi: 10.1039/C6TA01016D
[12]
Gorjian S, Bousi E, Özdemir Ö E, Trommsdorff M, Kumar N M, Anand A, Kant K, Chopra S S. Renew. Sustain. Energy Rev., 2022, 158: 112126.

doi: 10.1016/j.rser.2022.112126
[13]
Su K S, Tao Y Y, Zhang J. J. Mater. Sci., 2021, 56(30): 17353.

doi: 10.1007/s10853-021-06408-w
[14]
MacKie R M. Prog. Biophys. Mol. Biol., 2006, 92(1): 92.

doi: 10.1016/j.pbiomolbio.2006.02.008
[15]
Forsthuber B, Schaller C, Grüll G. Wood Sci. Technol., 2013, 47(2): 281.

doi: 10.1007/s00226-012-0487-6
[16]
Aloui F, Ahajji A, Irmouli Y, George B, Charrier B, Merlin A. Appl. Surf. Sci., 2007, 253(8): 3737.

doi: 10.1016/j.apsusc.2006.08.029
[17]
Carstensen L, Beil S, Börnick H, Stolte S. J. Hazard. Mater., 2022, 430: 128495.

doi: 10.1016/j.jhazmat.2022.128495
[18]
Kumasaka R, Kikuchi A, Yagi M. Photochem. Photobiol., 2014, 90: 727.

doi: 10.1111/php.12257 pmid: 24571426
[19]
Santos B A M C, da Silva A C P, Bello M L, Gonçalves A S, Gouvêa T A, Rodrigues R F, Cabral L M, Rodrigues C R. J. Photochem. Photobiol. A Chem., 2018, 356: 219.

doi: 10.1016/j.jphotochem.2017.12.036
[20]
Li L, Mang Y, Jin D, Chen L G. J. Heterocyclic Chem., 2015, 52(1): 201.

doi: 10.1002/jhet.v52.1
[21]
Arct J, Dul M, Rabek J F, Ranby B. Eur. Polym. J., 1981, 17(10): 1041.

doi: 10.1016/0014-3057(81)90025-2
[22]
Malshe V C, Elango S. Surf. Coat. Int. B Coat. Trans., 2004, 87(4): 277.

doi: 10.1007/BF02699677
[23]
Fukuchi S, Yagi M, Oguchi-Fujiyama N, Kang J, Kikuchi A. Photochem. Photobiol. Sci., 2019, 18(6): 1556.

doi: 10.1039/c9pp00104b
[24]
Oda H. Color. Technol., 2012, 128(2): 108.

doi: 10.1111/cote.2012.128.issue-2
[25]
Gerlock J L, Tang W, Dearth M A, Korniski T J. Polym. Degrad. Stab., 1995, 48(1): 121.

doi: 10.1016/0141-3910(95)00027-J
[26]
Fajzulin I, Zhu X M, Möller M. J. Coat. Technol. Res., 2015, 12(4): 617.

doi: 10.1007/s11998-015-9683-2
[27]
Jose S, Joshy D, Narendranath S B, Periyat P. Sol. Energy Mater. Sol. Cells, 2019, 194: 7.

doi: 10.1016/j.solmat.2019.01.037
[28]
Pfaff G. ChemTexts, 2022, 8(3): 15.

doi: 10.1007/s40828-022-00166-1
[29]
Levinson R, Berdahl P, Akbari H. Sol. Energy Mater. Sol. Cells, 2005, 89(4): 319.

doi: 10.1016/j.solmat.2004.11.012
[30]
Chen W Q, Song Y J, Zhang L Y, Liu M, Hu X, Zhang Q C. Angew. Chem. Int. Ed., 2018, 57(21): 6289.

doi: 10.1002/anie.v57.21
[31]
Rosati A, Fedel M, Rossi S. J. Clean. Prod., 2021, 313: 127826.

doi: 10.1016/j.jclepro.2021.127826
[32]
Zhang J, Zhu C X, Lv J, Zhang W C, Feng J. ACS Appl. Mater. Interfaces, 2018, 10(46): 40219.

doi: 10.1021/acsami.8b12567
[33]
Jaoua-Bahloul H, Varieras D, Beyou E. J. Vinyl Addit. Technol., 2019, 25(S1): E188.
[34]
Zhou W W, Liu Y, Sun Q, Ye J Y, Chen L, Wang J, Li G Q, Lin H, Ye Y Q, Chen W F. ACS Sustainable Chem. Eng., 2021, 9(36): 12385.

doi: 10.1021/acssuschemeng.1c04799
[35]
Otanicar T P, DeJarnette D, Hewakuruppu Y, Taylor R A. Adv. Opt. Photon., 2016, 8(3): 541.

doi: 10.1364/AOP.8.000541
[36]
Noguez C. J. Phys. Chem. C, 2007, 111(10): 3806.

doi: 10.1021/jp066539m
[37]
Guerra L F, Muir T W, Yang H. Nano Lett., 2019, 19(8): 5530.

doi: 10.1021/acs.nanolett.9b02066 pmid: 31272153
[38]
Huang X, El-Sayed M A. J. Adv. Res., 2010, 1: 13.

doi: 10.1016/j.jare.2010.02.002
[39]
Fang M M, Yang J, Li Z. Prog. Mater. Sci., 2022, 125: 100914.

doi: 10.1016/j.pmatsci.2021.100914
[40]
Weber W H, Lambe J. Appl. Opt., 1976, 15(10): 2299.

doi: 10.1364/AO.15.002299
[41]
Reisfeld R, Neuman S. Nature, 1978, 274(5667): 144.

doi: 10.1038/274144a0
[42]
Ronda C R, Jüstel T, Nikol H. J. Alloys Compd., 1998, 275-277: 669.
[43]
Liu Y X, Yue X J, Cai K, Deng H D, Zhang M. Energy, 2015, 93: 1413.

doi: 10.1016/j.energy.2015.10.062
[44]
Yang Y G, Wang X P, Liu B. Nano, 2014, 9(1): 1450008.

doi: 10.1142/S1793292014500088
[45]
Nakamura T, Yanagida S, Wada Y J. Res. Chem. Intermed., 2006, 32(3-4): 331.
[46]
Zhou L Y, Shi J X, Gong M L. J. Phys. Chem. Solids, 2007, 68(8): 1471.

doi: 10.1016/j.jpcs.2007.03.014
[47]
Fisher M J, Wang W, Dorhout P K, Fisher E R. J. Phys. Chem. C, 2008, 112(6): 1901.

doi: 10.1021/jp0763782
[48]
Ji H M, Tang X Z, Zhang H Y, Li X L, Qian Y N. Coatings, 2021, 11(4): 383.

doi: 10.3390/coatings11040383
[49]
Li S C, Yu L X, Sun J J, Man X Q. J. Rare Earths, 2017, 35(4): 347.

doi: 10.1016/S1002-0721(17)60918-9
[50]
Moeckli P. Dyes Pigments, 1980, 1(1): 3.

doi: 10.1016/0143-7208(80)80002-7
[51]
Chen C H, Fox J L, Lippert J L. J. Heterocycl. Chem., 1987, 24(4): 931.

doi: 10.1002/jhet.v24:4
[52]
Bai G, Li J F, Li D X, Dong C, Han X Y, Lin P H. Dyes Pigments, 2007, 75(1): 93.

doi: 10.1016/j.dyepig.2006.04.017
[53]
Gunkara O T, Bagdatli E, Ocal N. J. Chem. Res., 2013, 37(4): 227.

doi: 10.3184/174751913X13636169962208
[54]
Natarajan A, Boden E P, Burns A, McCloskey P J, Rishel M J. Tetrahedron Lett., 2014, 55(30): 4222.

doi: 10.1016/j.tetlet.2014.05.124
[55]
Li R H, Fan Y Y, Li J C, Tang B, Fan J T, He J, Ren J J, Wang J, Zhang L. J. Phys. Chem. C, 2011, 115(18): 9176.

doi: 10.1021/jp200596g
[56]
Wang H, Ji X F, Li Z T, Huang F H. Adv. Mater., 2017, 29(14): 1606117.

doi: 10.1002/adma.v29.14
[57]
Li B, He T, Shen X, Tang D T, Yin S C. Polym. Chem., 2019, 10(7): 796.

doi: 10.1039/C8PY01396A
[58]
Ma H H, Song Q S, Xu Y H, Yao W. Pigment. Resin Technol., 2013, 42(6): 388.

doi: 10.1108/PRT-08-2012-0057
[59]
Huang L, Wang J, Zhang H P, Zu G N, Wang Z T, Fu Y H. J. Rare Earths, 2023, 41(1): 60.

doi: 10.1016/j.jre.2022.01.022
[60]
Gu Q Y, Yuan M W, Ma S L, Sun G B. J. Lumin., 2017, 192: 1211.

doi: 10.1016/j.jlumin.2017.08.059
[61]
Yang W Q, Li X H, Fei L L, Liu W Z, Liu X L, Xu H Y, Liu Y C. Green Chem., 2022, 24(2): 675.

doi: 10.1039/D1GC02964A
[62]
Liu N, Tang M. J. Hazard. Mater., 2020, 399: 122606.

doi: 10.1016/j.jhazmat.2020.122606
[63]
Wang B Y, Lu S Y. Matter, 2022, 5(1): 110.

doi: 10.1016/j.matt.2021.10.016
[64]
Wareing T C, Gentile P, Phan A N. ACS Nano, 2021, 15(10): 15471.

doi: 10.1021/acsnano.1c03886 pmid: 34559522
[65]
Li S, Li L, Tu H Y, Zhang H, Silvester D S, Banks C E, Zou G Q, Hou H S, Ji X B. Mater. Today, 2021, 51: 188.

doi: 10.1016/j.mattod.2021.07.028
[66]
Xia C L, Zhu S J, Feng T L, Yang M X, Yang B. Adv. Sci., 2019, 6(23): 1901316.

doi: 10.1002/advs.v6.23
[67]
Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1): 362.

doi: 10.1039/C4CS00269E
[68]
Shi W Q, Han Q R, Wu J J, Ji C Y, Zhou Y Q, Li S H, Gao L P, Leblanc R M, Peng Z L. Int. J. Mol. Sci., 2022, 23(3): 1456.

doi: 10.3390/ijms23031456
[69]
Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L H, Song L, Alemany L B, Zhan X B, Gao G H, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J, Ajayan P M. Nano Lett., 2012, 12(2): 844.

doi: 10.1021/nl2038979
[70]
Zhao D L, Chung T S. Water Res., 2018, 147: 43.

doi: 10.1016/j.watres.2018.09.040
[71]
Choi Y, Choi Y, Kwon O H, Kim B S. Chem. Asian J., 2018, 13(6): 586.

doi: 10.1002/asia.v13.6
[72]
Li W, Wu S S, Zhang H R, Zhang X J, Zhuang J L, Hu C F, Liu Y L, Lei B F, Ma L, Wang X J. Adv. Funct. Mater., 2018, 28(44): 1804004.

doi: 10.1002/adfm.v28.44
[73]
Sendão R, del Valle Martínez de Yuso M, Algarra M, Esteves da Silva J C G, Pinto da Silva L. J. Clean. Prod., 2020, 254: 120080.

doi: 10.1016/j.jclepro.2020.120080
[74]
Li L, Li Y T, Ye Y, Guo R T, Wang A N, Zou G Q, Hou H S, Ji X B. ACS Nano, 2021, 15(4): 6872.

doi: 10.1021/acsnano.0c10624
[75]
Lang F P, Wang H, Zhang S J, Liu J B, Yan H. Int. J. Thermophys., 2017, 39(1): 1.

doi: 10.1007/s10765-017-2325-4
[76]
Bin Ahmad Kayani A, Kuriakose S, Monshipouri M, Khalid F A, Walia S, Sriram S, Bhaskaran M. Small, 2021, 17(32): 2100621.

doi: 10.1002/smll.v17.32
[77]
Cheng Y, Zhang X, Fang C, Chen J, Wang Z. J. Mater. Sci. Technol., 2018, 34: 2225.

doi: 10.1016/j.jmst.2018.05.016
[78]
Wang X J, Narayan S. Front. Energy Res., 2021, 9: 800382.

doi: 10.3389/fenrg.2021.800382
[79]
Crosby P H N, Netravali A N. Adv. Sustain. Syst., 2022, 6(9): 2200208.

doi: 10.1002/adsu.v6.9
[80]
Wen R T, Arvizu M A, Niklasson G A, Granqvist C G. Surf. Coat. Technol., 2016, 290: 135.

doi: 10.1016/j.surfcoat.2016.02.031
[81]
Sun J W, Chen Y N, Liang Z Q. Adv. Funct. Mater., 2016, 26(17): 2783.

doi: 10.1002/adfm.v26.17
[82]
Guo Q Q, Zhang X X. Compos. B Eng., 2021, 227: 109434.

doi: 10.1016/j.compositesb.2021.109434
[83]
Ishijima Y, Imai H, Oaki Y. Chem, 2017, 3(3): 509.

doi: 10.1016/j.chempr.2017.05.013
[84]
Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N. Science, 2007, 318(5857): 1750.

pmid: 18079396
[85]
Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P. Nat. Phys., 2013, 9(10): 661.

doi: 10.1038/nphys2733
[86]
Xu F, Cao X, Luo H J, Jin P. J. Mater. Chem. C, 2018, 6(8): 1903.

doi: 10.1039/C7TC05768G
[87]
Lan S D, Chang C J, Huang C F, Chen J K. RSC Adv., 2015, 5(90): 73742.

doi: 10.1039/C5RA11202H
[88]
Zhou Y, Cai Y F, Hu X, Long Y. J. Mater. Chem. A, 2015, 3(3): 1121.

doi: 10.1039/C4TA05035E
[89]
Wheeler L M, Moore D T, Ihly R, Stanton N J, Miller E M, Tenent R C, Blackburn J L, Neale N R. Nat. Commun., 2017, 8: 1722.

doi: 10.1038/s41467-017-01842-4 pmid: 29170470
[90]
Liu S, Du Y W, Tso C Y, Lee H H, Cheng R, Feng S P, Yu K M. Adv. Funct. Mater., 2021, 31(26): 2010426.

doi: 10.1002/adfm.v31.26
[91]
Yang G J, Zhang Y M, Cai Y R, Yang B G, Gu C, Zhang S X A. Chem. Soc. Rev., 2020, 49(23): 8687.

doi: 10.1039/D0CS00317D
[92]
Deb S K. Sol. Energy Mater. Sol. Cells, 2008, 92(2): 245.

doi: 10.1016/j.solmat.2007.01.026
[93]
Lee S H, Deshpande R, Parilla P A, Jones K M, To B, Mahan A H, Dillon A C. Adv. Mater., 2006, 18(6): 763.

doi: 10.1002/(ISSN)1521-4095
[94]
Zhang S L, Cao S, Zhang T R, Yao Q F, Fisher A, Lee J Y. Mater. Horiz., 2018, 5(2): 291.

doi: 10.1039/C7MH01128H
[95]
Wang J L, Lu Y R, Li H H, Liu J W, Yu S H. J. Am. Chem. Soc., 2017, 139: 9921.

doi: 10.1021/jacs.7b03227
[96]
Teng Neo W, Ye Q, Chua S J, Xu J W. J. Mater. Chem. C, 2016, 4(31): 7364.

doi: 10.1039/C6TC01150K
[97]
Chua M H, Zhu Q, Shah K W, Xu J W. Polymers, 2019, 11(1): 98.

doi: 10.3390/polym11010098
[98]
Dey T, Invernale M A, Ding Y J, Buyukmumcu Z, Sotzing G A. Macromolecules, 2011, 44(8): 2415.

doi: 10.1021/ma102580x
[99]
Chen X H, Qiao W Q, Wang Z Y. RSC Adv., 2017, 7(25): 15521.

doi: 10.1039/C7RA01828B
[100]
Tadepalli S, Slocik J M, Gupta M K, Naik R R, Singamaneni S. Chem. Rev., 2017, 117(20): 12705.

doi: 10.1021/acs.chemrev.7b00153
[101]
Dou S L, Xu H B, Zhao J P, Zhang K, Li N, Lin Y P, Pan L, Li Y. Adv. Mater., 2021, 33(6): 2000697.

doi: 10.1002/adma.v33.6
[102]
Pavarini E, Andreani L, Soci C, Galli M, Marabelli F, Comoretto D. Phys. Rev. B, 2005, 72(4): 045102.

doi: 10.1103/PhysRevB.72.045102
[103]
Saito A, Nakajima M, Miyamura Y, Sogo K, Ishikawa Y, Hirai Y. Rroc. SPIE, 2006, 63270Z.
[104]
O'Brien P G, Yang Y, Chutinan A, Mahtani P, Leong K, Puzzo D P, Bonifacio L D, Lin C W, Ozin G A, Kherani N P. Sol. Energy Mater. Sol. Cells, 2012, 102: 173.

doi: 10.1016/j.solmat.2012.03.005
[105]
Han Z W, Wang Z, Feng X M, Li B, Mu Z Z, Zhang J Q, Niu S C, Ren L Q. Biosurf. Biotribol., 2016, 2(4): 137.

doi: 10.1016/j.bsbt.2016.11.002
[106]
Kuo W K, Hsu J J, Nien C K, Yu H H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32021.

doi: 10.1021/acsami.6b10960
[107]
Mizoshita N, Tanaka H. ACS Appl. Mater. Interfaces, 2016, 8(45): 31330.

doi: 10.1021/acsami.6b10624
[108]
Vijselaar W, Elbersen R, Tiggelaar R M, Gardeniers H, Huskens J. Adv. Energy Mater., 2017, 7(7): 1601497.

doi: 10.1002/aenm.v7.7
[109]
De Nicola F, Hines P, De Crescenzi M, Motta N. Carbon, 2016, 108: 262.

doi: 10.1016/j.carbon.2016.07.011
[110]
Jin B B, He J H. ACS Photonics, 2017, 4(1): 188.

doi: 10.1021/acsphotonics.6b00888
[111]
Ren T T, He J H. ACS Appl. Mater. Interfaces, 2017, 9(39): 34367.

doi: 10.1021/acsami.7b11116
[112]
Lin S, Bai X P, Wang H Y, Wang H L, Song J N, Huang K, Wang C, Wang N, Li B, Lei M, Wu H. Adv. Mater., 2017, 29(41): 1703238.

doi: 10.1002/adma.v29.41
[113]
Seyyedi M, Rostami A, Mirtagioglu H. Opt. Quantum Electron., 2022, 54(8): 494.

doi: 10.1007/s11082-022-03856-9
[114]
Clough J M, Weder C, Schrettl S. Macromol. Rapid Commun., 2021, 42(1): 2000528.

doi: 10.1002/marc.v42.1
[115]
Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41(8): 3297.

doi: 10.1039/c2cs15267c
[116]
Gur D, Leshem B, Pierantoni M, Farstey V, Oron D, Weiner S, Addadi L. J. Am. Chem. Soc., 2015, 137(26): 8408.

doi: 10.1021/jacs.5b05289
[117]
Sun Z Q, Xie X M, Xu W L, Chen K, Liu Y H, Chu X X, Niu Y Z, Zhang S H, Ren C G. ACS Sustainable Chem. Eng., 2021, 9(38): 12949.

doi: 10.1021/acssuschemeng.1c04413
[118]
Li T, Zhu M W, Yang Z, Song J W, Dai J Q, Yao Y G, Luo W, Pastel G, Yang B, Hu L B. Adv. Energy Mater., 2016, 6(22): 1601122.

doi: 10.1002/aenm.v6.22
[119]
Sklar L R, Almutawa F, Lim H W, Hamzavi I. Photochem. Photobiol. Sci., 2013, 12(1): 54.

doi: 10.1039/c2pp25152c
[120]
Wang S C, Zhou Y, Jiang T Y, Yang R G, Tan G, Long Y. Nano Energy, 2021, 89: 106440.

doi: 10.1016/j.nanoen.2021.106440
[121]
Ke Y J, Zhou C Z, Zhou Y, Wang S C, Chan S H, Long Y. Adv. Funct. Mater., 2018, 28(22): 1800113.

doi: 10.1002/adfm.v28.22
[122]
Shaik S, Gorantla K, Venkata Ramana M, Mishra S, Kulkarni K S. Constr. Build. Mater., 2020, 263: 120155.

doi: 10.1016/j.conbuildmat.2020.120155
[123]
Long L S, Ye H. Sci. Rep., 2014, 4: 6427.

doi: 10.1038/srep06427
[124]
Jelle B P, Hynd A, Gustavsen A, Arasteh D, Goudey H, Hart R. Sol. Energy Mater. Sol. Cells, 2012, 96: 1.

doi: 10.1016/j.solmat.2011.08.010
[125]
Takeda H, Adachi K. J. Am. Ceram. Soc., 2007, 90: 4059.
[126]
Wu S, Zhao Q N, Miao D K, Dong Y H. J. Rare Earths, 2010, 28: 189.
[127]
Aburas M, Soebarto V, Williamson T, Liang R Q, Ebendorff-Heidepriem H, Wu Y P. Appl. Energy, 2019, 255: 113522.

doi: 10.1016/j.apenergy.2019.113522
[128]
Jung K H, Yun S J, Slusar T, Kim H T, Roh T M. Appl. Surf. Sci., 2022, 589: 152962.

doi: 10.1016/j.apsusc.2022.152962
[129]
Lee H Y, Cai Y F, Velioglu S, Mu C Z, Chang C J, Chen Y L, Song Y J, Chew J W, Hu X M. Chem. Mater., 2017, 29(16): 6947.

doi: 10.1021/acs.chemmater.7b02402
[130]
Wu M C, Shi Y, Li R Y, Wang P. ACS Appl. Mater. Interfaces, 2018, 10(46): 39819.

doi: 10.1021/acsami.8b15574
[131]
Liu S, Li Y, Wang Y, Yu K M, Huang B L, Tso C Y. Adv. Sci., 2022, 9(14): 2106090.

doi: 10.1002/advs.v9.14
[132]
Ke Y J, Yin Y, Zhang Q T, Tan Y T, Hu P, Wang S C, Tang Y C, Zhou Y, Wen X L, Wu S F, White T J, Yin J, Peng J Q, Xiong Q H, Zhao D Y, Long Y. Joule, 2019, 3(3): 858.

doi: 10.1016/j.joule.2018.12.024
[133]
Lei Z Y, Wu B H, Wu P Y. Research, 2021, 2021: 4515164.
[134]
Chiang C, Bånkestad D, Hoch G. Agronomy, 2021, 11(4): 755.

doi: 10.3390/agronomy11040755
[135]
Xiao L R, Shibuya T, Kato K, Nishiyama M, Kanayama Y. Sci. Hortic., 2022, 300: 111076.

doi: 10.1016/j.scienta.2022.111076
[136]
Bergstrand K J, Mortensen L M, Suthaparan A, Gislerød H R. Sci. Hortic., 2016, 204: 1.

doi: 10.1016/j.scienta.2016.03.035
[137]
Qi Y P, Wang Y T, Yu Y J, Liu Z Y, Zhang Y, Qi Y, Zhou C T. J. Mater. Chem. C, 2016, 4(47): 11291.

doi: 10.1039/C6TC04215E
[138]
Chen X. Jilin Agriculture, 1995, 5: 20.
(陈华湘. 吉林农业, 1995, 5: 20.).
[139]
Li S. Rural Applied Technology and Information, 1994, 4: 13.
(利双. 农村实用技术与信息, 1994, 4: 13.).
[140]
Kim K W, Kim G H, Kwon S H, Yoon H I, Son J E, Choi J H. Dyes Pigments, 2018, 158: 353.

doi: 10.1016/j.dyepig.2018.05.065
[141]
Wang Y T, Yu Y J, Liu W J, Ren L T, Ge G X. J. Agric. Food Chem., 2018, 66(50): 13295.

doi: 10.1021/acs.jafc.8b05453
[142]
Wu W B, Zhang Z B, Dong R Y, Xie G N, Zhou J X, Wu K J, Zhang H N, Cai Q P, Lei B F. J. Rare Earths, 2020, 38(5): 539.

doi: 10.1016/j.jre.2020.01.020
[143]
Wang D, Wang H Y, Qian B F, Zou H F, Zheng K Y, Zhou X Q, Song Y H, Sheng Y. J. Lumin., 2020, 219: 116844.

doi: 10.1016/j.jlumin.2019.116844
[144]
Wang X F, Ke J B, Wang Y F, Liang Y P, He J L, Song Z R, Lian S X, Qiu Z X. ACS Agric. Sci. Technol., 2021, 1(2): 55.

doi: 10.1021/acsagscitech.0c00062
[145]
Liang Y P, He J L, Song Z R, Han Y, Qiu Z X, Zhou W L, Zhang J L, Yu L P, Lian S X. ACS Appl. Mater. Interfaces, 2022, 14(1): 1413.

doi: 10.1021/acsami.1c19762
[146]
Xi P, Gu X H, Huang X G. J. Macromol. Sci. B, 2006, 45(4): 525.

doi: 10.1080/00222340600769956
[147]
Wang D M, Yu Y L, Ai X, Pan H W, Zhang H L, Dong L S. Polym. Adv. Technol., 2019, 30(1): 203.
[148]
Yu Y L, Xu P F, Jia S L, Pan H W, Zhang H L, Wang D M, Dong L S. Int. J. Biol. Macromol., 2019, 127: 210.

doi: 10.1016/j.ijbiomac.2019.01.044
[149]
Shoji S, Saito H, Jitsuyama Y, Tomita K, Qiang H Y, Sakurai Y, Okazaki Y, Aikawa K, Konishi Y, Sasaki K, Fushimi K, Kitagawa Y, Suzuki T, Hasegawa Y. Sci. Rep., 2022, 12: 17155.

doi: 10.1038/s41598-022-21427-6
[150]
He J L, He Y L, Zhuang J L, Zhang H R, Lei B F, Liu Y L. Opt. Mater., 2016, 62: 458.

doi: 10.1016/j.optmat.2016.10.036
[151]
Xie Y, Geng X, Gao J, Shi W, Zhou Z J, Wang H, Zhang D, Deng B, Yu R J. J. Alloys Compd., 2021, 873: 159663.

doi: 10.1016/j.jallcom.2021.159663
[152]
Shen L H, Lou R N, Park Y, Guo Y N, Stallknecht E J, Xiao Y Z, Rieder D, Yang R G, Runkle E S, Yin X B. Nat. Food, 2021, 2(6): 434.

doi: 10.1038/s43016-021-00307-8
[153]
Lou R, Shen L, Yin X. Opt. Express, 2022, 30: 4642.

doi: 10.1364/OE.449835
[154]
Liu Y Q, Li Y J, Wu Y L, Yang G T, Mazzarella L, Procel-Moya P, Tamboli A C, Weber K, Boccard M, Isabella O, Yang X B, Sun B Q. Mater. Sci. Eng. R Rep., 2020, 142: 100579.
[155]
Mehmood H, Tauqeer T, Hussain S. Int. J. Electron., 2018, 105(9): 1568.

doi: 10.1080/00207217.2018.1477191
[156]
Mamta , Maurya K, Singh V. Coatings, 2022, 12(3): 405.

doi: 10.3390/coatings12030405
[157]
Murakami T N, Koumura N. Adv. Energy Mater., 2019, 9(23): 1802967.

doi: 10.1002/aenm.v9.23
[158]
Yun S N, Qin Y, Uhl A R, Vlachopoulos N, Yin M, Li D D, Han X G, Hagfeldt A. Energy Environ. Sci., 2018, 11(3): 476.

doi: 10.1039/C7EE03165C
[159]
Bicer Y, Dincer I, Zamfirescu C. Int. J. Hydrog. Energy, 2016, 41(19): 7935.

doi: 10.1016/j.ijhydene.2015.11.184
[160]
Cole J M, Pepe G, Al Bahri O K, Cooper C B. Chem. Rev., 2019, 119(12): 7279.

doi: 10.1021/acs.chemrev.8b00632
[161]
Liu X J, Chen T Q, Gong Y Y, Li C, Niu L Y, Xu S Q, Xu X T, Pan L K, Shapter J G, Yamauchi Y, Na J, Eguchi M. J. Photochem. Photobiol. C Photochem. Rev., 2021, 47: 100404.

doi: 10.1016/j.jphotochemrev.2021.100404
[162]
Li D Y, Ågren H, Chen G Y. Dalton Trans., 2018, 47(26): 8526.

doi: 10.1039/C7DT04461E
[163]
Yao N N, Huang J Z, Fu K, Deng X L, Ding M, Shao M H, Xu X J. Electrochim. Acta, 2015, 154: 273.

doi: 10.1016/j.electacta.2014.12.095
[164]
Ali Shah S A, Sayyad M H, Sun J H, Guo Z Y. J. Rare Earths, 2022, 40(11): 1651.

doi: 10.1016/j.jre.2021.12.001
[165]
de la Mora M B, Amelines-Sarria O, Monroy B M, Hernández-PÉrez C D, Lugo J E. Sol. Energy Mater. Sol. Cells, 2017, 165: 59.

doi: 10.1016/j.solmat.2017.02.016
[166]
Datt R, Bishnoi S, Hughes D, Mahajan P, Singh A, Gupta R, Arya S, Gupta V, Tsoi W C. Sol. RRL, 2022, 6(8): 2200266.

doi: 10.1002/solr.v6.8
[167]
Wu J H, Xie G X, Lin J M, Lan Z, Huang M L, Huang Y F. J. Power Sources, 2010, 195(19): 6937.

doi: 10.1016/j.jpowsour.2010.04.081
[168]
Chen S Y, Lin J M, Wu J H. Appl. Surf. Sci., 2014, 293: 202.

doi: 10.1016/j.apsusc.2013.12.134
[169]
Wu J H, Wang J L, Lin J M, Xiao Y M, Yue G T, Huang M L, Lan Z, Huang Y F, Fan L Q, Yin S, Sato T. Sci. Rep., 2013, 3: 2058.

doi: 10.1038/srep02058
[170]
Cui J, Li P F, Chen Z F, Cao K, Li D, Han J B, Shen Y, Peng M Y, Fu Y Q, Wang M K. Appl. Phys. Lett., 2016, 109(17): 171103.

doi: 10.1063/1.4965838
[171]
Pan Z X, Rao H S, Mora-SerÓ I, Bisquert J, Zhong X H. Chem. Soc. Rev., 2018, 47(20): 7659.

doi: 10.1039/C8CS00431E
[172]
Gao N X, Huang L B, Li T Y, Song J H, Hu H W, Liu Y, Ramakrishna S. J. Appl. Polym. Sci., 2020, 137(10): 48443.

doi: 10.1002/app.v137.10
[173]
Urbani M, Ragoussi M E, Nazeeruddin M K, Torres T. Coord. Chem. Rev., 2019, 381: 1.

doi: 10.1016/j.ccr.2018.10.007
[174]
Liu Y, Li F, Shi G Z, Liu Z K, Lin X F, Shi Y, Chen Y F, Meng X, Lv Y, Deng W, Pan X Q, Ma W L. ACS Energy Lett., 2020, 5(12): 3797.

doi: 10.1021/acsenergylett.0c02011
[175]
Rezaei B, Irannejad N, Ensafi A A, Kazemifard N. Sol. Energy, 2019, 182: 412.

doi: 10.1016/j.solener.2019.02.072
[176]
AlGhamdi J M, AlOmar S, Gondal M A, Moqbel R, Dastageer M A. Sol. Energy, 2020, 209: 108.

doi: 10.1016/j.solener.2020.08.091
[177]
Zheng X Z, Zhang L W. Energy Environ. Sci., 2016, 9(8): 2511.

doi: 10.1039/C6EE01182A
[178]
Liu D W, Cheng I C, Chen J Z, Chen H W, Ho K C, Chiang C C. Opt. Express, 2012, 20(S2): A168.

doi: 10.1364/OE.20.00A168
[179]
Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y. ACS Nano, 2014, 8(4): 3302.

doi: 10.1021/nn500222q pmid: 24593128
[180]
Nishimura S, Abrams N, Lewis B A, Halaoui L I, Mallouk T E, Benkstein K D, van de Lagemaat J, Frank A J. J. Am. Chem. Soc., 2003, 125(20): 6306.

pmid: 12785864
[181]
Meng K, Gao S S, Wu L L, Wang G, Liu X, Chen G, Liu Z, Chen G,. Nano Lett., 2016, 16(7): 4166.

doi: 10.1021/acs.nanolett.6b01046 pmid: 27267266
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[4] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[5] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[6] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[7] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[8] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[9] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[10] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[11] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[12] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[13] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.
[14] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[15] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.