中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1199-1213 DOI: 10.7536/PC221215 Previous Articles   Next Articles

• Review •

Structure Design and Tailoring Strategy of Polymeric Materials for Fabrication of Nanofiltration Membranes via Phase Inversion

Tao Liu, Junping Miao, Longlong Wang, Yunxia Hu()   

  1. State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University,Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yunxiahu@tiangong.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21978215)
Richhtml ( 25 ) PDF ( 417 ) Cited
Export

EndNote

Ris

BibTeX

The non-solvent induced phase separation (NIPS) method has significant advantages including easy processing and tailorable membrane structure in the preparation of nanofiltration membranes with high-flux and selectivity. Increasing attention has been drawn from the membrane field to further improve the precise separation and permeability of the membrane. In this review, the effects of the thermodynamics and kinetics on the membrane structure and properties during the NIPS process are systematically described, and the research progress is summarized to illustrate how the polymeric membrane materials including polysulfone and polyethersulfone affect the membrane structure and separation performance. Furthermore, the characteristics of amphiphilic block copolymer materials and their outstanding advantages in the fabrication of high-flux nanofiltration membranes are comprehensively reviewed. Finally, the potential research focus is proposed to inspire the membrane community to develop high-performance nanofiltration membranes via NIPS in the future.

Contents

1 Introduction

2 Research progress of nanofiltration membrane prepared by phase inversion

2.1 Formation mechanism of nanofiltration membrane prepared by phase inversion

2.2 Materials for preparation of nanofiltration membrane by phase inversion

2.3 Optimization of nanofiltration membrane structure and separation performance

3 Amphiphilic block copolymers and the fabricated nanofiltration membranes

3.1 Amphiphilic block copolymer membrane materials and their characteristics

3.2 Research progress of block copolymer nanofiltration membrane

4 Conclusion and outlook

Fig.1 Schematic representation of a ternary phase diagram of the polymer/solvent/nonsolvent system[13]. Copyright 2011, American Chemical Society
Fig.2 The membrane structure formed by phase inversion of the different casting solution components: (Ⅰ,Ⅵ) Dense structure; (Ⅱ) Sponge structure; (Ⅲ) Bi-continuous or lacy structure; (IV) Nodules (yellow represents polymer rich phase and green represents polymer lean phase)[27]. Copyright 1990, Elsevier
Fig.3 Non-solvent/solvent exchange process in the NIPS process[13]. Copyright 2011, American Chemical Society
Fig.4 Effects of PSf concentration (shown in the upper corner) on the formation of macro-voids[46]. Copyright 2008, Elsevier
Fig.5 Cross-sectional morphology of hollow fiber membranes with different PES/SPSf blend ratios (in wt%)[47]. Copyright 2017, Elsevier
Fig.6 The phase diagrams of the PSf, P84, and CA polymer systems. The miscibility gap and thermodynamic stability of casting solution made of CA are the largest, followed by P84 and PSf the weakest[46]. Copyright 2008, Elsevier
Fig.7 (a) Outer skin layer morphology of the CA membranes at different heat-treatment temperatures: CA-#1(untreated), CA-#2 (60 ℃) and CA-#3 (90 ℃), (b) cross-section, inner surface and outer surface morphology of the CA-#3 membrane[72]. Copyright 2010, Elsevier
Table 1 Main information (material, MWCO/pore size, water permeance and rejection) of NF membranes prepared through a phase inversion process
Fig.8 Formation of the PAEK-COOH-PEI nanofiltration membrane with positive charge via the electrostatic interaction during the phase inversion process[119]. Copyright 2017, Elsevier
Fig.9 Schematic of A-B amphiphilic block copolymers[123]. Copyright 2012, The American Association for the Advancement of Science
Fig.10 (a) Equilibrium morphologies of AB diblock copolymers in bulk, (b) theoretical phase diagram of AB diblocks predicted by the self-consistent mean-field theory; (c) experimental phase diagram of polyisoprene-block-polystyrene copolymers[130]. Copyright 2012, Royal Society of Chemistry
Fig.11 The difference of membrane structure between block copolymers and traditional materials by phase inversion[122]. Copyright 2020, American Chemical Society
Fig.12 Porosity and separation layer thickness of the membrane formed by PSf-b-PEG, PSf and PSf/PEG mixture[31]. Copyright 2020, Elsevier
Fig.13 The preparation of a PS-b-P4VP membrane with controlled pore sizes through electroless gold deposition: (a) gold decoration on a single micelle of PS-b-P4VP and (b) pore evolution of the PS-b-P4VP membrane with gold deposition[152]. Copyright 2014, Wiley
Fig.14 Schematic representation, chemical structure and SEM images of (a) the PS-b-P(HTMB-r-I) membrane I0, (b) the sulfonated membrane SM. (c) Comparison of water permeance of the pristine membrane I0 and the sulfonated membrane SM under trans-membrane pressure of 1 bar. (d) The separation behavior of small organic molecules (i.e. orange II and reactive green 19) using the membranes I0 and SM[154]. Copyright 2020, Royal Society of Chemistry
Fig.15 (a) The different molecular weight PEG rejection profile, (b) the pore size distribution and (c) the water permeance and the CR / salts rejections of the PSf-b-PEG membrane[30]. Copyright 2021, Elsevier
[1]
Ahmad N N R, Ang W L, Teow Y H, Mohammad A W, Hilal N. J. Water Process. Eng., 2022, 45: 102478.

doi: 10.1016/j.jwpe.2021.102478
[2]
Zhang W, Zhang X. J. Membr. Sci., 2021, 632: 119358.

doi: 10.1016/j.memsci.2021.119358
[3]
Oatley-Radcliffe D L, Walters M, Ainscough T J, Williams P M, Mohammad A W, Hilal N. J. Water Process. Eng., 2017, 19: 164.

doi: 10.1016/j.jwpe.2017.07.026
[4]
Yao Z K, Guo H, Yang Z, Qing W H, Tang C Y. Desalination, 2018, 445: 115.

doi: 10.1016/j.desal.2018.07.023
[5]
Nghiem L D, Hawkes S. Desalination, 2009, 236(1/3): 273.

doi: 10.1016/j.desal.2007.10.077
[6]
Gong G H, Wang P, Zhou Z Y, Hu Y X. ACS Appl. Mater. Interfaces, 2019, 11(7): 7349.

doi: 10.1021/acsami.8b18719
[7]
Li S L, Shan X Y, Zhao Y F, Hu Y X. ACS Appl. Mater. Interfaces, 2019, 11(45): 42846.

doi: 10.1021/acsami.9b15811
[8]
He M B, Li T, Hu M L, Chen C, Liu B C, Crittenden J, Chu L Y, Ng H Y. Sep. Purif. Technol., 2020, 230: 115855.

doi: 10.1016/j.seppur.2019.115855
[9]
Wang J, Zhang S, Wu P F, Shi W X, Wang Z, Hu Y X. ACS Appl. Mater. Interfaces, 2019, 11(12): 12043.

doi: 10.1021/acsami.8b21572
[10]
Strathmann H, Kock K. Desalination, 1977, 21(3): 241.

doi: 10.1016/S0011-9164(00)88244-2
[11]
Li P, Xie H X, Bi Y F, Miao C C, Chen K, Xie T T, Zhao S C, Sun H X, Yang X J, Hou Y F, Jason Niu Q. Appl. Surf. Sci., 2023, 618: 156650.

doi: 10.1016/j.apsusc.2023.156650
[12]
Wang Z Y, Feng R, Wang W J, Sun Y X, Tao S N, Wang Y M, Chen Y F, Fu Z J, Cao X L, Sun S P, Xing W H. Adv. Membr., 2021, 1: 100007.
[13]
Guillen G R, Pan Y J, Li M H, Hoek E M V. Ind. Eng. Chem. Res., 2011, 50(7): 3798.

doi: 10.1021/ie101928r
[14]
Tan L, Gong L, Wang S Y, Zhu Y Z, Zhang F, Zhang Y T, Jin J. ACS Appl. Mater. Interfaces, 2020, 12(34): 38778.

doi: 10.1021/acsami.0c10272
[15]
Han G, Feng Y N, Chung T S, Weber M, Maletzko C. Environ. Sci. Technol., 2017, 51(24): 14254.

doi: 10.1021/acs.est.7b05340
[16]
Peng N, Widjojo N, Sukitpaneenit P, Teoh M M, Lipscomb G G, Chung T S, Lai J Y. Prog. Polym. Sci., 2012, 37(10): 1401.

doi: 10.1016/j.progpolymsci.2012.01.001
[17]
Gao J, Wang K Y, Chung T S. J. Membr. Sci., 2020, 603: 118022.

doi: 10.1016/j.memsci.2020.118022
[18]
Cervellere M R, Qian X H, Ford D M, Carbrello C, Giglia S, Millett P C. J. Membr. Sci., 2021, 619: 118779.

doi: 10.1016/j.memsci.2020.118779
[19]
Sadrzadeh M, Bhattacharjee S. J. Membr. Sci., 2013, 441: 31.

doi: 10.1016/j.memsci.2013.04.009
[20]
Li H B, Shi W Y, Zhang Y F, Zhou R, Zhang H X. Appl. Surf. Sci., 2015, 346: 134.

doi: 10.1016/j.apsusc.2015.04.027
[21]
Panda S R, De S. Desalination, 2014, 347: 52.

doi: 10.1016/j.desal.2014.05.030
[22]
Strathmann H, Kock K, Amar P, Baker R W. Desalination, 1975, 16(2): 179.

doi: 10.1016/S0011-9164(00)82092-5
[23]
Albrecht W, Weigel T, Schossig-Tiedemann M, Kneifel K, Peinemann K V, Paul D. J. Membr. Sci., 2001, 192(1/2): 217.

doi: 10.1016/S0376-7388(01)00504-X
[24]
Matsuyama H, Maki T, Teramoto M, Kobayashi K. Sep. Sci. Technol., 2003, 38(14): 3449.

doi: 10.1081/SS-120023408
[25]
Blanco J F, Sublet J, Nguyen Q T, Schaetzel P. J. Membr. Sci., 2006, 283(1/2): 27.

doi: 10.1016/j.memsci.2006.06.011
[26]
Luo L, Chung T S, Weber M, Staudt C, Maletzko C. J. Membr. Sci., 2017, 524: 33.

doi: 10.1016/j.memsci.2016.11.016
[27]
Kimmerle K, Strathmann H. Desalination, 1990, 79(2/3): 283.

doi: 10.1016/0011-9164(90)85012-Y
[28]
Wang D L, Teo W K, Li K. J. Membr. Sci., 2002, 204(1/2): 247.

doi: 10.1016/S0376-7388(02)00047-9
[29]
Ma F, Ye H, Zhang Y Z, Ding X L, Lin L G, Zhao L Z, Li H. Desalination Water Treat., 2014, 52(4/6): 618.

doi: 10.1080/19443994.2013.826411
[30]
Liu Y P, Wang J, Wang Y, Zhu H C, Xu X M, Liu T, Hu Y X. Chem. Eng. J., 2021, 405: 127051.

doi: 10.1016/j.cej.2020.127051
[31]
Wang J, Liu Y P, Liu T, Xu X M, Hu Y X. J. Membr. Sci., 2020, 599: 117851.

doi: 10.1016/j.memsci.2020.117851
[32]
Mousavi S M, Zadhoush A. J. Membr. Sci., 2017, 532: 47.

doi: 10.1016/j.memsci.2017.03.006
[33]
Tan X M, Rodrigue D. Polymers, 2019, 11(7): 1160.

doi: 10.3390/polym11071160
[34]
Mazinani S, Darvishmanesh S, Ehsanzadeh A, Van der Bruggen B. J. Membr. Sci., 2017, 526: 301.

doi: 10.1016/j.memsci.2016.12.031
[35]
Smolders C A, Reuvers A J, Boom R M, Wienk I M. J. Membr. Sci., 1992, 73(2/3): 259.

doi: 10.1016/0376-7388(92)80134-6
[36]
Kim I. J. Membr. Sci., 2004, 230(1/2): 183.

doi: 10.1016/j.memsci.2003.11.002
[37]
Kim S R, Lee K H, Jhon M S. J. Membr. Sci., 1996, 119(1): 59.

doi: 10.1016/0376-7388(96)00113-5
[38]
Zuo D Y, Zhu B K, Cao J H, Xu Y Y. Chin. J. Polym. Sci., 2006, 24(3): 281.

doi: 10.1142/S0256767906001308
[39]
Wei Y Y, Wang Y, Wang L, Yang H, Jin H, Lu P, Li Y S. J. Membr. Sci., 2021, 620: 118829.

doi: 10.1016/j.memsci.2020.118829
[40]
Deshmukh S P, Li K. J. Membr. Sci., 1998, 150(1): 75.

doi: 10.1016/S0376-7388(98)00196-3
[41]
Thuyavan Y L, Anantharaman N, Arthanareeswaran G, Ismail A F. J. Chem. Technol. Biotechnol., 2016, 91(10): 2568.
[42]
Wang X Y, Zhang L, Sun D H, An Q F, Chen H L. J. Appl. Polym. Sci., 2008, 110(3): 1656.

doi: 10.1002/app.v110:3
[43]
Alsari A M, Khulbe K C, Matsuura T. J. Membr. Sci., 2001, 188(2): 279.

doi: 10.1016/S0376-7388(01)00395-7
[44]
Zhu L F, Wu M Y, Van der Bruggen B, Lei L C, Zhu L Z. Sep. Purif. Technol., 2020, 242: 116770.

doi: 10.1016/j.seppur.2020.116770
[45]
Hegde C, Isloor A M, Padaki M, Wanichapichart P, Yu L D. Desalination, 2011, 265(1/3): 153.

doi: 10.1016/j.desal.2010.07.046
[46]
Peng N, Chung T S, Wang K Y. J. Membr. Sci., 2008, 318(1/2): 363.

doi: 10.1016/j.memsci.2008.02.063
[47]
Gao J, Thong Z, Wang K Y, Chung T S. J. Membr. Sci., 2017, 541: 413.

doi: 10.1016/j.memsci.2017.07.016
[48]
Saniei N, Ghasemi N, Zinatizadeh A A, Zinadini S, Ramezani M, Derakhshan A A. Sep. Purif. Technol., 2020, 241: 116646.

doi: 10.1016/j.seppur.2020.116646
[49]
Wang L, Song X J, Wang T, Wang S Z, Wang Z N, Gao C J. Appl. Surf. Sci., 2015, 330: 118.

doi: 10.1016/j.apsusc.2014.12.183
[50]
Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen B. J. Mater. Chem., 2011, 21(28): 10311.

doi: 10.1039/c1jm11040c
[51]
Zhu J Y, Zhang Y T, Tian M M, Liu J D. ACS Sustainable Chem. Eng., 2015, 3(4): 690.

doi: 10.1021/acssuschemeng.5b00006
[52]
Zhu J Y, Tian M M, Zhang Y T, Zhang H Q, Liu J D. Chem. Eng. J., 2015, 265: 184.

doi: 10.1016/j.cej.2014.12.054
[53]
Park H, Freeman B, Zhang Z B, Sankir M, McGrath J. Angewandte Chemie Int. Ed., 2008, 47(32): 6019.

doi: 10.1002/anie.200800454
[54]
Liu C L, Sun Y X, Chen Z B, Zhang S B. Sep. Purif. Technol., 2019, 212: 465.

doi: 10.1016/j.seppur.2018.11.041
[55]
Zhu J H, Zhang Q F, Zheng J F, Hou S H, Mao H C, Zhang S B. J. Membr. Sci., 2016, 517: 39.

doi: 10.1016/j.memsci.2016.06.023
[56]
Liu Z X, Wang L, Mi Z M, Jin S Z, Wang D M, Zhao X G, Zhou H W, Chen C H. Appl. Surf. Sci., 2019, 490: 7.

doi: 10.1016/j.apsusc.2019.06.063
[57]
Brami M V, Oren Y, Linder C, Bernstein R. Polymer, 2017, 111: 137.

doi: 10.1016/j.polymer.2017.01.048
[58]
Wang F, Hickner M, Kim Y S, Zawodzinski T A, McGrath J E. J. Membr. Sci., 2002, 197(1/2): 231.

doi: 10.1016/S0376-7388(01)00620-2
[59]
Liu C L, Mao H C, Zheng J F, Zhang S B. J. Membr. Sci., 2017, 530: 1.

doi: 10.1016/j.memsci.2017.02.005
[60]
Boussu K, Van der Bruggen B, Volodin A, Van Haesendonck C, Delcour J A, Van der Meeren P, Vandecasteele C. Desalination, 2006, 191(1/3): 245.

doi: 10.1016/j.desal.2005.07.025
[61]
Boussu K, Van der Bruggen B, Vandecasteele C. Desalination, 2006, 200(1/3): 416.

doi: 10.1016/j.desal.2006.03.353
[62]
Thong Z, Gao J, Lim J X Z, Wang K Y, Chung T S. Sep. Purif. Technol., 2018, 192: 483.

doi: 10.1016/j.seppur.2017.10.031
[63]
Fan G Y, Jin X M, Zhou E L, Liu K J. Eur. Polym. J., 1998, 34(2): 277.

doi: 10.1016/S0014-3057(97)00175-4
[64]
Zhang Q F, Zhang S B, Dai L, Chen X S. J. Membr. Sci., 2010, 349(1/2): 217.

doi: 10.1016/j.memsci.2009.11.048
[65]
Zhang Q F, Wang H F, Zhang S B, Dai L. J. Membr. Sci., 2011, 375(1/2): 191.

doi: 10.1016/j.memsci.2011.03.033
[66]
Mehta R, Manna P, Bhattacharya A. J. Macromol. Sci. A, 2016, 53(10): 644.

doi: 10.1080/10601325.2016.1212312
[67]
Duarte A P, Cidade M T, Bordado J C. J. Appl. Polym. Sci., 2006, 100(5): 4052.

doi: 10.1002/(ISSN)1097-4628
[68]
Fei P F, Liao L, Meng J Q, Cheng B W, Hu X Y, Song J. Cellulose, 2018, 25(10): 5967.

doi: 10.1007/s10570-018-1990-1
[69]
Vatanpour V, Pasaoglu M E, Barzegar H, Teber O O, Kaya R, Bastug M, Khataee A, Koyuncu I. Chemosphere, 2022, 295: 133914.

doi: 10.1016/j.chemosphere.2022.133914
[70]
Yasmeen E, Sayed M E, Amel E, Shaker E. Polym. Eng. Sci., 2020, 60(11): 2852.

doi: 10.1002/pen.v60.11
[71]
Nguyen T P N, Yun E T, Kim I C, Kwon Y N. J. Membr. Sci., 2013, 433: 49.

doi: 10.1016/j.memsci.2013.01.027
[72]
Su J C, Yang Q, Teo J F, Chung T S. J. Membr. Sci., 2010, 355(1/2): 36.

doi: 10.1016/j.memsci.2010.03.003
[73]
Loeb S, Sourirajan S. Saline Water Conversion-Ⅱ, ACS Publications, 1962. 158. DOI:10.1021/ba-1963-0038.choll

doi: 10.1021/ba-1963-0038.choll
[74]
Haddada R, Ferjani E, Roudesli M S, Deratani A. Desalination, 2004, 167: 403.

doi: 10.1016/j.desal.2004.06.154
[75]
Shenvi S S, Isloor A M, Ismail A F. Desalination, 2015, 368: 10.

doi: 10.1016/j.desal.2014.12.042
[76]
Sprick C, Chede S, Oyanedel-Craver V, Escobar I C. J. Environ. Chem. Eng., 2018, 6(2): 2480.

doi: 10.1016/j.jece.2018.03.044
[77]
Shafiq M, Sabir A, Islam A, Khan S M, Gull N, Hussain S N, Butt M T Z. Carbohydr. Polym., 2018, 186: 367.

doi: 10.1016/j.carbpol.2018.01.070
[78]
Ahmad A, Waheed S, Khan S M, E-Gul S, Shafiq M, Farooq M, Sanaullah K, Jamil T. Desalination, 2015, 355: 1.

doi: 10.1016/j.desal.2014.10.004
[79]
Choi H G, Yoon S H, Son M, Celik E, Park H, Choi H. Desalination Water Treat., 2016, 57(16): 7545.

doi: 10.1080/19443994.2015.1025582
[80]
Ebrahim S, Mosry A, Kanawy E, Abdel-Fattah T, Kandil S. Desalination Water Treat., 2015, 57(44): 20738.
[81]
Worthley C H, Constantopoulos K T, Ginic-Markovic M, Pillar R J, Matisons J G, Clarke S. J. Membr. Sci., 2011, 385-386: 30.
[82]
Ruan H M, Guo C M, Yu H W, Shen J N, Gao C J, Sotto A, Van der Bruggen B. Ind. Eng. Chem. Res., 2016, 55(46): 12099.

doi: 10.1021/acs.iecr.6b03201
[83]
Wang T, Zhao C, Li P, Li Y, Wang J. J. Membr. Sci., 2015, 477: 74.

doi: 10.1016/j.memsci.2014.12.038
[84]
Huang J, Zhang K S. Desalination, 2011, 282: 19.

doi: 10.1016/j.desal.2011.09.045
[85]
Jiang G S, Zhang S X, Zhu Y Z, Gao S J, Jin H L, Luo L Q, Zhang F, Jin J. J. Mater. Chem. A, 2018, 6(7): 2927.

doi: 10.1039/C7TA09898G
[86]
Vandezande P, Gevers L, Paul J, Vankelecom I, Jacobs P. J. Membr. Sci., 2005, 250(1/2): 305.

doi: 10.1016/j.memsci.2004.11.002
[87]
Wang Y C, Wang W J, Wang Q, Wang Z Y, Yan X Y, Zhao L L, Cao X L, Sun S P. Sep. Purif. Technol., 2022, 285: 120322.

doi: 10.1016/j.seppur.2021.120322
[88]
Cheng X Q, Zhang Y L, Wang Z X, Guo Z H, Bai Y P, Shao L. Adv. Polym. Technol., 2014, 33(S1): 21455.
[89]
See Toh Y H, Lim F W, Livingston A G. J. Membr. Sci., 2007, 301(1/2): 3.

doi: 10.1016/j.memsci.2007.06.034
[90]
Hołda A K, Aernouts B, Saeys W, Vankelecom I F J. J. Membr. Sci., 2013, 442: 196.

doi: 10.1016/j.memsci.2013.04.017
[91]
Hołda A K, Vankelecom I F J. J. Membr. Sci., 2014, 450: 512.

doi: 10.1016/j.memsci.2013.08.050
[92]
Hołda A K, Vankelecom I F J. J. Membr. Sci., 2014, 450: 499.

doi: 10.1016/j.memsci.2013.08.051
[93]
Wei C, He Z, Lin L, Cheng Q, Huang K, Ma S, Chen L. J. Membr. Sci., 2018, 563: 752.

doi: 10.1016/j.memsci.2018.06.046
[94]
Guan S S, Zhang S H, Han R L, Zhang B G, Jian X G. Desalination, 2013, 318: 56.

doi: 10.1016/j.desal.2013.03.018
[95]
Bandehali S, Moghadassi A, Parvizian F, Zhang Y T, Hosseini S M, Shen J N. Sep. Purif. Technol., 2020, 242: 116745.

doi: 10.1016/j.seppur.2020.116745
[96]
Xu Y C, Tognia M, Guo D X, Shen L G, Li R J, Lin H J. J. Colloid Interface Sci., 2019, 546: 251.

doi: 10.1016/j.jcis.2019.03.067
[97]
Asatekin A, Olivetti E A, Mayes A M. J. Membr. Sci., 2009, 332(1/2): 6.

doi: 10.1016/j.memsci.2009.01.029
[98]
Bengani P, Kou Y M, Asatekin A. J. Membr. Sci., 2015, 493: 755.

doi: 10.1016/j.memsci.2015.07.025
[99]
Guo S W, Wan Y H, Chen X R, Luo J Q. Chem. Eng. J., 2021, 409: 127376.

doi: 10.1016/j.cej.2020.127376
[100]
Cao Y, Chen X R, Feng S C, Wan Y H, Luo J Q. Ind. Eng. Chem. Res., 2020, 59(45): 19858.

doi: 10.1021/acs.iecr.0c04277
[101]
Zhao C S, Xue J M, Ran F, Sun S D. Prog. Mater. Sci., 2013, 58(1): 76.

doi: 10.1016/j.pmatsci.2012.07.002
[102]
Ismail A F, Hassan A R. Sep. Purif. Technol., 2007, 55(1): 98.

doi: 10.1016/j.seppur.2006.11.002
[103]
Xing L, Guo N, Zhang Y, Zhang H, Liu J. Sep. Purif. Technol., 2015, 146: 50.

doi: 10.1016/j.seppur.2015.03.030
[104]
Yu L, Zhang Y T, Wang Y M, Zhang H Q, Liu J D. J. Hazard. Mater., 2015, 287: 373.

doi: 10.1016/j.jhazmat.2015.01.057
[105]
Koulivand H, Shahbazi A, Vatanpour V, Rahmandoost M. Mater. Sci. Eng. C, 2020, 111: 110787.

doi: 10.1016/j.msec.2020.110787
[106]
Shukla A K, Alam J, Rahaman M, Alrehaili A, Alhoshan M, Aldalbahi A. Water Air Soil Pollut., 2020, 231(3): 1.

doi: 10.1007/s11270-019-4368-6
[107]
Qiu Z Y, Ji X F, He C J. J. Hazard. Mater., 2018, 360: 122.

doi: 10.1016/j.jhazmat.2018.08.004
[108]
Zhu J Y, Tian M M, Hou J W, Wang J, Lin J Y, Zhang Y T, Liu J D, Van der Bruggen B. J. Mater. Chem. A, 2016, 4(5): 1980.

doi: 10.1039/C5TA08024J
[109]
Luque-Alled J M, Abdel-Karim A, Alberto M, Leaper S, Perez-Page M, Huang K, Vijayaraghavan A, El-Kalliny A S, Holmes S M, Gorgojo P. Sep. Purif. Technol., 2020, 230: 115836.

doi: 10.1016/j.seppur.2019.115836
[110]
Yu L, Zhang Y T, Zhang H Q, Liu J D. Desalination, 2015, 359: 176.

doi: 10.1016/j.desal.2014.12.044
[111]
Wang Y M, Zhu J Y, Dong G Y, Zhang Y T, Guo N N, Liu J D. Sep. Purif. Technol., 2015, 150: 243.

doi: 10.1016/j.seppur.2015.07.005
[112]
Yuan S S, Li X, Zhu J Y, Zhang G, Van Puyvelde P, Van der Bruggen B. Chem. Soc. Rev., 2019, 48(10): 2665.

doi: 10.1039/C8CS00919H
[113]
Jun B M, Al-Hamadani Y A J, Son A, Park C M, Jang M, Jang A, Kim N C, Yoon Y. Sep. Purif. Technol., 2020, 247: 116947.

doi: 10.1016/j.seppur.2020.116947
[114]
Tavangar T, Karimi M, Rezakazemi M, Reddy K R, Aminabhavi T M. Chem. Eng. J., 2020, 385: 123787.

doi: 10.1016/j.cej.2019.123787
[115]
Guo S W, Chen X R, Wan Y H, Feng S C, Luo J Q. ACS Appl. Mater. Interfaces, 2020, 12(11): 13327.

doi: 10.1021/acsami.0c00259
[116]
Zheng J F, Li Y, Xu D L, Zhao R, Liu Y Y, Li G C, Gao Q Y, Zhang X, Volodine A, Van der Bruggen B. Sep. Purif. Technol., 2022, 282: 120155.

doi: 10.1016/j.seppur.2021.120155
[117]
Yamagishi H, Crivello J V, Belfort G. J. Membr. Sci., 1995, 105(3): 237.

doi: 10.1016/0376-7388(95)00063-I
[118]
Homayoonfal M, Akbari A, Mehrnia M R. Desalination, 2010, 263(1/3): 217.

doi: 10.1016/j.desal.2010.06.062
[119]
Liu C L, Bi W H, Chen D L, Zhang S B, Mao H C. Chin. J. Chem. Eng., 2017, 25(11): 1685.

doi: 10.1016/j.cjche.2017.06.001
[120]
Lin C E, Fang L F, Du S Y, Yao Z K, Zhu B K. Sep. Purif. Technol., 2019, 212: 101.

doi: 10.1016/j.seppur.2018.11.026
[121]
Yu H Z, Qiu X Y, Moreno N, Ma Z W, Calo V M, Nunes S P, Peinemann K V. Angewandte Chemie Int. Ed., 2015, 54(47): 13824.

doi: 10.1002/anie.201508593
[122]
Hampu N, Werber J R, Chan W Y, Feinberg E C, Hillmyer M A. ACS Nano, 2020, 14(12): 16446.

doi: 10.1021/acsnano.0c07883
[123]
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336(6080): 434.

doi: 10.1126/science.1215368
[124]
Marques D S, Vainio U, Chaparro N M, Calo V M, Bezahd A R, Pitera J W, Peinemann K V, Nunes S P. Soft Matter, 2013, 9(23): 5557.

doi: 10.1039/c3sm27475f
[125]
Guo L M, Wang Y, Steinhart M. Chem. Soc. Rev., 2021, 50(11): 6333.

doi: 10.1039/D0CS00500B
[126]
Nunes S P. Macromolecules, 2016, 49(8): 2905.

doi: 10.1021/acs.macromol.5b02579
[127]
Vakili H, Mohseni M, Makki H, Yahyaei H, Ghanbari H, González A, Irusta L. Polymer, 2020, 195: 122424.

doi: 10.1016/j.polymer.2020.122424
[128]
Bates C M, Bates F S. Macromolecules, 2017, 50(1): 3.

doi: 10.1021/acs.macromol.6b02355
[129]
Sutisna B, Polymeropoulos G, Musteata V, Peinemann K V, Avgeropoulos A, Smilgies D M, Hadjichristidis N, Nunes S P. Mol. Syst. Des. Eng., 2016, 1(3): 278.

doi: 10.1039/C6ME00033A
[130]
Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41(18): 5969.

doi: 10.1039/c2cs35115c
[131]
Zhang Z Z, Simon A, Abetz C, Held M, Höhme A L, Schneider E S, Segal-Peretz T, Abetz V. Adv. Mater., 2021, 33(48): 2105251.

doi: 10.1002/adma.v33.48
[132]
Bates F S, Fredrickson G H. Phys. Today, 1999, 52(2): 32.
[133]
Brendel J C, Schacher F H. Chem. Asian J., 2018, 13(3): 230.

doi: 10.1002/asia.v13.3
[134]
Trollsås M, Kelly M A, Claesson H, Siemens R, Hedrick J L. Macromolecules, 1999, 32(15): 4917.

doi: 10.1021/ma990054x
[135]
Klein R, Schüll C, Berger-Nicoletti E, Haubs M, Kurz K, Frey H. Macromolecules, 2013, 46(22): 8845.

doi: 10.1021/ma4015565
[136]
Bütün V, Liu S, Weaver J V M, Bories-Azeau X, Cai Y, Armes S P. React. Funct. Polym., 2006, 66(1): 157.

doi: 10.1016/j.reactfunctpolym.2005.07.021
[137]
Lee S, Saito K, Lee H R, Lee M J, Shibasaki Y, Oishi Y, Kim B S. Biomacromolecules, 2012, 13(4): 1190.

doi: 10.1021/bm300151m
[138]
Feng H B, Lu X Y, Wang W Y, Kang N G, Mays J. Polymers, 2017, 9(12): 494.

doi: 10.3390/polym9100494
[139]
Zhang Y Z, Almodovar-Arbelo N E, Weidman J L, Corti D S, Boudouris B W, Phillip W A. Npj Clean Water, 2018, 1: 2.

doi: 10.1038/s41545-018-0002-1
[140]
Zhao Z W, Wang X, Jing X X, Zhao Y J, Lan K, Zhang W, Duan L L, Guo D Y, Wang C Y, Peng L, Zhang X M, An Z S, Li W, Nie Z H, Fan C H, Zhao D Y. Adv. Mater., 2021, 33(23): 2100820.

doi: 10.1002/adma.v33.23
[141]
Zhu G D, Yin Y R, Li Z N, Qiu Y Y, Yi Z, Gao C J. J. Membr. Sci., 2019, 582: 391.

doi: 10.1016/j.memsci.2019.04.009
[142]
Zhu G D, Yang C Y, Yin Y R, Yi Z, Chen X H, Liu L F, Gao C J. J. Membr. Sci., 2019, 589: 117255.

doi: 10.1016/j.memsci.2019.117255
[143]
Sargent J L, Hoss D J, Phillip W A, Boudouris B W. J. Appl. Polym. Sci., 2018, 135(24): 45531.

doi: 10.1002/app.v135.24
[144]
Phillip W A, Dorin R M, Werner J, Hoek E M V, Wiesner U, Elimelech M. Nano Lett., 2011, 11(7): 2892.

doi: 10.1021/nl2013554
[145]
Pendergast M M, Mika Dorin R, Phillip W A, Wiesner U, Hoek E M V. J. Membr. Sci., 2013, 444: 461.

doi: 10.1016/j.memsci.2013.04.074
[146]
Paradiso S P, Delaney K T, García-Cervera C J, Ceniceros H D, Fredrickson G H. ACS Macro Lett., 2014, 3(1): 16.

doi: 10.1021/mz400572r
[147]
Peinemann K V, Abetz V, Simon P F W. Nat. Mater., 2007, 6(12): 992.

doi: 10.1038/nmat2038
[148]
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett., 2015, 4(9): 1044.

doi: 10.1021/acsmacrolett.5b00472
[149]
Zhang Z Z, Rahman M M, Abetz C, Höhme A L, Sperling E, Abetz V. Adv. Mater., 2020, 32(8): 1907014.

doi: 10.1002/adma.v32.8
[150]
Xie Y H, Sutisna B, Nunes S P. Chem. Commun., 2017, 53(49): 6609.

doi: 10.1039/C7CC01596H
[151]
Albert J N L, Epps T H III. Mater. Today, 2010, 13(6): 24.
[152]
Yu H Z, Qiu X Y, Nunes S P, Peinemann K V. Angew. Chem. Int. Ed., 2014, 53(38): 10072.

doi: 10.1002/anie.201404491
[153]
Hoheisel T N, Hur K, Wiesner U B. Prog. Polym. Sci., 2015, 40: 3.

doi: 10.1016/j.progpolymsci.2014.10.002
[154]
Zhang Z Z, Rahman M M, Abetz C, Abetz V. J. Mater. Chem. A, 2020, 8(19): 9554.

doi: 10.1039/D0TA01023E
[155]
Kheirieh S, Asghari M, Afsari M. Rev. Chem. Eng., 2018, 34(5): 657.

doi: 10.1515/revce-2017-0011
[156]
Yang H, Shi X S, Chu S Y, Shao Z P, Wang Y. Adv. Sci., 2021, 8(7): 2003096.

doi: 10.1002/advs.v8.7
[157]
Ma D W, Ye X Y, Li Z, Zhou J M, Zhong D L, Zhang C X, Xiong S, Xia J Z, Wang Y. Sep. Purif. Technol., 2021, 259: 118100.

doi: 10.1016/j.seppur.2020.118100
[158]
Wang N, Wang T, Hu Y X. ACS Appl. Mater. Interfaces, 2017, 9(36): 31018.

doi: 10.1021/acsami.7b06997
[159]
Chen W, Wei M J, Wang Y. J. Membr. Sci., 2017, 525: 342.

doi: 10.1016/j.memsci.2016.12.009
[160]
Xie Y H, Moreno N, Calo V M, Cheng H, Hong P Y, Sougrat R, Behzad A R, Tayouo R, Nunes S P. Polym. Chem., 2016, 7(18): 3076.

doi: 10.1039/C6PY00215C
[1] Shiping Jin, Ying Sun, Xueqin Zhang. Oxygen Permeability of Polymer Hydrogel Materials [J]. Progress in Chemistry, 2023, 35(9): 1304-1312.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[7] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[8] Kaili Gu, Haozhen Li, Jinhua Zhang, Jinxiang Li. Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron [J]. Progress in Chemistry, 2021, 33(10): 1812-1822.
[9] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[10] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[11] Zehuai Mou, Yinjun Wang, Hongyan Xie. Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers [J]. Progress in Chemistry, 2020, 32(12): 1885-1894.
[12] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
[13] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[14] Fengyang Zhao, Yongjian Jiang, Tao Liu, Chunchun Ye. Nanofiltration Membrane Based on Novel Materials [J]. Progress in Chemistry, 2018, 30(7): 1013-1027.
[15] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.