中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1258-1265 DOI: 10.7536/PC221214 Previous Articles   Next Articles

• Review •

Peracetic Acid-Based Advanced Oxidation Processes and Its Applications in Water Disinfection

Yining Li, Minghao Sui()   

  1. College of Environment Science and Engineering, Tongji University,Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: minghaosui@tongji.edu.cn
  • Supported by:
    National Natural Science Foundation of China(2019YFC0408801)
Richhtml ( 26 ) PDF ( 306 ) Cited
Export

EndNote

Ris

BibTeX

Recent research has revealed that PAA-based advanced oxidation processes (AOP) can simultaneously destroy developing micropollutants in water while having a greater disinfection efficacy than PAA alone. This paper summarizes the activation mechanism of PAA-based AOP and its use in water disinfection. According to recent study, UV/PAA has a good treatment effect in the cutting-edge problems of water disinfection, such as the removal of algae and algal toxins, the inactivation of fungus and antibiotic-resistant bacteria, etc. It is awaiting more investigation. There are few AOPs in the realm of water disinfection that activate PAA in other ways, but they have significant research promise. Identification of potential disinfection by-products found in AOP of PAA may also become a focus of future research.

Contents

1 Introduction

2 Peracetic acid-based advanced oxidation processes and activation mechanism

2.1 Radiation activation

2.2 Metal catalysts activation

2.3 Activated carbon catalysts activation

3 Recent advances of peracetic acid-based advanced oxidation processes in water disinfection

3.1 Recent advances of bacterial inactivation

3.2 Recent advances of fungus and algae inactivation

3.3 Recent advances of virus inactivation

3.4 Recent advances of DBPs

4 Conclusion and outlook

Fig.1 Mechanism of Ultraviolet Activation of PAA[23].Copyright 2020, American Chemical Society
Fig.2 Mechanism of Thermal Activation of PAA[17].Copyright 2020, American Chemical Society
Table 1 Overview of studies employing PAA-based AOPs for removing organic compounds
[1]
Chen Y X, Cheng M, Lai C, Wei Z, Zhang G X, Li L, Tang C S, Du L, Wang G F, Liu H D. Small, 2023, 19(14): 2205902.
[2]
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. ACS Catalysis, 2023, 13: 3.
[3]
Fu W H, Yi J, Cheng M, Liu Y, Zhang G X, Li L, Du L, Li B, Wang G F, Yang X F. J. Hazard. Mater., 2022, 424: 127419.
[4]
Shi Q K, Deng S, Zheng Y L, Du Y L, Li L, Yang S Z, Zhang G X, Du L, Wang G F, Cheng M, Liu Y. Environ. Res., 2022, 212: 113340.
[5]
Mezzanotte V, Antonelli M, Citterio S, Nurizzo C. Water Environ. Res., 2007, 79(12): 2373.

pmid: 18044353
[6]
Wang C H, Fang R S. Chinese Journal of Disinfection, 2006, (2): 100.
(王传虎, 方荣生. 中国消毒学杂志, 2006, (2) 100.).
[7]
Luukkonen T, Heyninck T, Rämö J, Lassi U. Water Res., 2015, 85: 275.

doi: 10.1016/j.watres.2015.08.037 pmid: 26342181
[8]
Tian Q L. Journal of Hubei University of Medicine, 1991, (1): 59.
(田秋霖. 湖北医学院学报, 1991, (1): 59.).
[9]
Ao X W, Eloranta J, Huang C H, Santoro D, Sun W J, Lu Z D, Li C. Water Res., 2021, 188: 116479.
[10]
Stampi S, De Luca G, Onorato M, Ambrogiani E, Zanetti F. J. Appl. Microbiol., 2002, 93(5): 725.

pmid: 12392516
[11]
Luukkonen T, Teeriniemi J, Prokkola H, Rämö J, Lassi U. Water SA, 2014, 40(1): 73.

doi: 10.4314/wsa.v40i1.9
[12]
Shah N S, He X X, Khan H M, Ali Khan J, O'Shea K E, Boccelli D L, Dionysiou D D. J. Hazard. Mater., 2013, 263: 584.

doi: 10.1016/j.jhazmat.2013.10.019
[13]
Matta R, Tlili S, Chiron S, Barbati S. Environ. Chem. Lett., 2011, 9(3): 347.

doi: 10.1007/s10311-010-0285-z
[14]
Shi C C,. Li Y, Wang J, Guo S, Barry Y, Zhang N. Marmier Water, 2022. 14, DOI: 10.3390/w14152309.

doi: 10.3390/w14152309
[15]
Correa-Sanchez S, Peñuela G A. J. Water Process. Eng., 2022, 49: 102986.
[16]
Kiejza D, Kotowska U, Polińska W, Karpińska J. Sci. Total Environ., 2021, 790: 148195.
[17]
Wang J W Y, Wan J Q, Ding Z P, Wang J, Ma P C, Xie M, Wiesner R. Environmental Science Technology, 2020, 54: 22.
[18]
Luukkonen T, Pehkonen S O. Crit. Rev. Environ. Sci. Technol., 2017, 47(1): 1.

doi: 10.1080/10643389.2016.1272343
[19]
Zoschke K, Börnick H, Worch E. Water Res., 2014, 52: 131.

doi: 10.1016/j.watres.2013.12.034
[20]
Bai M D, Tian Y P, Yu Y X, Zheng Q L, Zhang X F, Zheng W, Zhang Z T. Chemosphere, 2018, 208: 541.

doi: 10.1016/j.chemosphere.2018.06.010
[21]
Yan T T, Ping Q, Zhang A, Wang L, Dou Y C, Li Y M. Chemosphere, 2021, 274: 129726.
[22]
Chateauneuf J, Lusztyk J, Ingold K U. J. Am. Chem. Soc., 1988, 110(9): 2877.

doi: 10.1021/ja00217a031
[23]
Zhang T Q, Huang C H. Environ. Sci. Technol., 2020, 54(12): 7579.

doi: 10.1021/acs.est.9b06826
[24]
Deng J, Liu S, Fu Y, Liu Y. Environmental Technology, 2022, 201, 117291.
[25]
Rokhina E V, Makarova K, Lahtinen M, Golovina E A, Van As H, Virkutyte J. Chem. Eng. J., 2013, 221: 476.

doi: 10.1016/j.cej.2013.02.018
[26]
Zhu T T, Liu B. Water Res., 2022, 220: 118705.
[27]
Wang J, Wang Z, Cheng Y, Cao L, Bai F, Yue S, Xie P, Ma J. Water Research, 2021, 201: 117291.
[28]
Kim J, Zhang T Q, Liu W, Du P H, Dobson J T, Huang C H. Environ. Sci. Technol., 2019, 53(22): 13312.

doi: 10.1021/acs.est.9b02991
[29]
Dias Carlos T, Bezerra L B, Vieira M M, Almeida Sarmento R, Pereira D H, Cavallini G S. J. Hazard. Mater., 2021, 403: 123949.
[30]
Wang J W, Wang Z P, Cheng Y J, Cao L S, Xie P C, Ma J. Sep. Purif. Technol., 2022, 281: 119854.
[31]
Zhang P Y, Zhang X F, Zhao X D, Jing G H, Zhou Z M. J. Hazard. Mater., 2022, 424: 127653.
[32]
He M F, Li W Q, Xie Z H, Yang S R, He C S, Xiong Z K, Du Y, Liu Y, Jiang F, Mu Y, Lai B. Water Research, 2022, 222, 118887.
[33]
Wen G, Wang S J, Ma J, Huang T L, Liu Z Q, Zhao L, Xu J L. J. Hazard. Mater., 2014, 275: 193.

doi: 10.1016/j.jhazmat.2014.05.002
[34]
Zhang L L, Chen J B, Zhang Y L, Xu Y, Zheng T L, Zhou X F. Water Res., 2022, 216: 118322.
[35]
Li Y F, Li K, Wan Q Q, Xu X Q, Cao R H, Wang J Y, Huang T L, Wen G. J. Hazard. Mater., 2022, 439: 129611.
[36]
Zhang L, Fu Y S, Wang Z R, Zhou G F, Zhou R Y, Liu Y Q. Sep. Purif. Technol., 2021, 276: 119319.
[37]
Wang Z R, Fu Y S, Peng Y L, Wang S X, Liu Y Q. Sep. Purif. Technol., 2021, 277: 119434.
[38]
Wang Z P, Wang J W, Xiong B, Bai F, Wang S L, Wan Y, Zhang L, Xie P C, Wiesner M R. Environ. Sci. Technol., 2020, 54(1): 464.

doi: 10.1021/acs.est.9b04528
[39]
Kim J, Du P H, Liu W, Luo C, Zhao H, Huang C H. Environ. Sci. Technol., 2020, 54(8): 5268.

doi: 10.1021/acs.est.0c00356
[40]
Wu W, Tian D, Liu T C, Chen J B, Huang T Y, Zhou X F, Zhang Y L. Chem. Eng. J., 2020, 394: 124938.
[41]
Wang J W, Xiong B, Miao L, Wang S L, Xie P C, Wang Z P, Ma J. Appl. Catal. B Environ., 2021, 280: 119422.
[42]
Rothbart S, Ember EE, R. van Eldik. New Journal of Chemistry, 2012, 36(3): 732.

doi: 10.1039/C2NJ20852K
[43]
Zhou R Y, Zhou G F, Liu Y Q, Liu S L, Wang S X, Fu Y S. Chemosphere, 2022, 306: 135506.
[44]
Li R B, Manoli K, Kim J, Feng M B, Huang C H, Sharma V K. Environ. Sci. Technol., 2021, 55(13): 9150.

doi: 10.1021/acs.est.0c06676
[45]
de Velásquez M T O, Yáñez-noguez I, JimÉnez-cisneros B, Luna Pabello V M. Environ. Technol., 2008, 29(11): 1209.

doi: 10.1080/09593330802270632 pmid: 18975853
[46]
Zhou F Y, Lu C, Yao Y Y, Sun L J, Gong F, Li D W, Pei K M, Lu W Y, Chen W X. Chem. Eng. J., 2015, 281: 953.

doi: 10.1016/j.cej.2015.07.034
[47]
Zhang T Q, Wang T, Mejia-Tickner B, Kissel J, Xie X, Huang C H. Environ. Sci. Technol., 2020, 54(15): 9652.

doi: 10.1021/acs.est.0c02424
[48]
Drosou C, Coz A, Xekoukoulotakis N P, Moya A, Vergara Y, Mantzavinos D. J. Chem. Technol. Biotechnol., 2010, 85(8): 1049.
[49]
Ghordouei Milan E, Mahvi A H, Nabizadeh R, Alimohammadi M. Environ. Evid., 2022, 11(1): 1.

doi: 10.1186/s13750-022-00257-z
[50]
Ping Q, Yan T T, Wang L, Li Y M, Lin Y Q. Water Res., 2022, 210: 118019.
[51]
Zhang X F, Ma Y X, Tang T T, Xiong Y M, Dai R H. Sci. Total Environ., 2020, 720: 137653.
[52]
Almuhtaram H, Hofmann R. J. Hazard. Mater., 2022, 424: 127357.
[53]
Zhao H X, Zhang T Y, Wang H, Hu C Y, Tang Y L, Xu B. Sci. Total Environ., 2022, 853: 158626.
[54]
Cao L, Wang J, Wang Z, Yu S, Cheng Y, Ma J, Xie P. Water Research, 2022, 208(1): 117847.
[55]
Xu X Q, Zuo J, Wan Q Q, Cao R H, Xu H N, Li K, Huang T L, Wen G, Ma J. J. Hazard. Mater., 2022, 430: 128515.
[56]
Koivunen J, Heinonen-Tanski H. Water Res., 2005, 39(18): 4445.

pmid: 16221481
[57]
Wen G, Chen Z H, Wan Q Q, Zhao D, Xu X Q, Wang J Y, Li K, Huang T L. Chem. Eng. J., 2020, 382: 123003.
[58]
Hassaballah A H, Nyitrai J, Hart C H, Dai N, Sassoubre L M. Environ. Sci.: Water Res. Technol., 2019, 5(8): 1453.
[59]
Maffei F, Buschini A, Rossi C, Poli P L, Forti G C, Hrelia P. Environ. Mol. Mutagen., 2005, 46(2): 116.

doi: 10.1002/(ISSN)1098-2280
[60]
Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dörr A J M, Rizzoni M. Genet. Toxicol. Environ. Mutagen., 2004, 557(2): 119.

doi: 10.1016/j.mrgentox.2003.10.008
[61]
Guzzella L, Monarca S, Zani C, Feretti D, Zerbini I, Buschini A, Poli P L, Rossi C, Richardson S D. Genet. Toxicol. Environ. Mutagen., 2004, 564(2): 179.

doi: 10.1016/j.mrgentox.2004.08.006
[1] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[2] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[3] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[4] Hongtao Yu, Shuo Chen, Xie Quan*, Zhenhua Zhang. The Mechanism, Materials and Reactors of Photocatalytic Disinfection in Water and Wastewater Treatment [J]. Progress in Chemistry, 2017, 29(9): 1030-1041.
[5] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[6] Song Zhaoning, Feng Xiang, Liu Yibin, Yang Chaohe, Zhou Xinggui. Advances in Manipulation of Catalyst Structure and Relationship of Structure-Performance for Direct Propene Epoxidation with H2 and O2 [J]. Progress in Chemistry, 2016, 28(12): 1762-1773.
[7] . Treatment of Antibiotic Wastewater by Ozonation [J]. Progress in Chemistry, 2010, 22(05): 1002-1009.
[8] Wang Sheng1 Gao Diannan1,2 Zhang Chunxi1 Yuan Zhongshan1 Zhang Peng1 Wang Shudong1**. Low-temperature Catalytic Combustion of Methane over Noble Metal Catalyst [J]. Progress in Chemistry, 2008, 20(06): 789-797.