中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1266-1274 DOI: 10.7536/PC221213 Previous Articles   

• Review •

Home Diagnosis of Myocardial Infarction: Aptamer-Based cTnI Sensing Technology

Zhiyuan Xu1,2, Guowei Gao1,2, Yansheng Li1,2(), Qingwei Liao1,2, Jingfang Hu1,2, Xueji Zhang3   

  1. 1 Key Laboratory of Sensors, Beijing Information Science and Technology University,Beijing 100101, China
    2 Key Laboratory of Modern Measurement and Control Technology of Ministry of Education, Beijing Information Science and Technology University,Beijing 100192, China
    3 School of Biomedical Engineering, Shenzhen University,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: lys2019@bistu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62101053); R&D Program of Beijing Municipal Education Commission(KM202211232004); Fundamental Research Funds for the Central Public Welfare Research Institutes(RXRC2022001); Project of Construction and Support for high-level Innovative Teams of Beijing Municipal Institutions(BPHR20220124)
Richhtml ( 10 ) PDF ( 114 ) Cited
Export

EndNote

Ris

BibTeX

Cardiac troponin I (cTnI) is a biomarker closely associated with acute myocardial infarction (AMI) and is considered as the "gold standard" for the diagnosis of AMI. A variety of cTnI detection techniques have been developed, including antibody-based and aptamer-based detection methodology. Aptamers are short DNA or RNA sequences that can specifically bind to the target, and have been used in the development of cTnI detection platforms due to their advantages of good stability, easy synthesis and low cost. In this paper, cTnI detection methods are divided into optical detection and electrochemical detection according to the signal transduction mode. This review introduces the current research progress of aptamer-based cTnI sensing technology, describes the detection principle, performance, advantages and disadvantages of various methods, summarizes cTnI sensing technology and prospects its development in home testing, hoping to provide reference for the development of more sensitive and portable cTnI sensors.

Contents

1 Introduction

2 Optical detection

2.1 Fluorescence detection method

2.2 Surface-enhanced Raman scattering

2.3 Electrochemical luminescence method

3 Electrochemical detection

3.1 Electrochemical impedance spectrum

3.2 Differential pulse voltammetry

3.3 Square wave voltammetry

4 Conclusion and outlook

Fig.1 Schematic representation of aptamer sensor for cTnI detection based on GO platform[26]
Fig.2 Schematic diagram of cTnI measurement based on aptamer using SERRS active particles on paper platform[36]
Fig.3 Schematic diagram of ECL sensor for detecting cTnI[41]
Fig.4 EIS aptamer sensor detection process[59]
Fig.5 Detection principle of electrochemical dual aptamer biosensor combined with NTH[61]
Fig.6 cTnI detection schematic diagram[70]
[1]
Wang Y Q, Liu T, Yang M, Wu C J, Zhang W, Chu Z Y, Jin W Q. Biosens. Bioelectron., 2021, 193: 113554.

doi: 10.1016/j.bios.2021.113554
[2]
Khushaim W, Peramaiah K, Beduk T, Teja Vijjapu M, Ilton de Oliveira Filho J, Huang K W, Mani V, Salama K N. Biosens. Bioelectron. X, 2022, 12: 100234.
[3]
Campu A, Muresan I, Craciun A M, Cainap S, Astilean S, Focsan M. Int. J. Mol. Sci., 2022, 23(14): 7728.

doi: 10.3390/ijms23147728
[4]
Park K C, Gaze D C, Collinson P O, Marber M S. Cardiovasc. Res., 2017, 113(14): 1708.

doi: 10.1093/cvr/cvx183
[5]
Komarova N, Panova O, Titov A, Kuznetsov A. Biomedicines, 2022, 10(5): 1085.

doi: 10.3390/biomedicines10051085
[6]
Yang H Z, Chu Y R, Wang Q X, Ding C F, Gao F. Anal. Chem., 2021, 49 (5): 779.

doi: 10.1021/ac50014a028
(杨海珠, 褚亚茹, 汪庆祥, 丁彩凤, 高凤. 分析化学, 2021, 49 (5): 779.).
[7]
Yuan Z P, Wang L, Chen J, Su W G, Li A Q, Su G S, Liu P B, Zhou X X. Anal., 2021, 146(18): 5474.

doi: 10.1039/D1AN00808K
[8]
Bernadou A, Bouges S, Catroux M, Rigaux J C, Laland C, Levêque N, Noury U, Larrieu S, Acef S, Habold D, Cazenave-Roblot F, Filleul L. BMC Infect. Dis., 2021, 21(1): 198.

doi: 10.1186/s12879-021-05890-6 pmid: 33618660
[9]
Di Lallo A, Murphy R, Krieger A, Zhu J X, Taylor R H, Su H. IEEE Robotics Autom. Mag., 2021, 28(1): 18.

doi: 10.1109/MRA.2020.3045671
[10]
Lee T, Ahn J H, Choi J, Lee Y, Kim J M, Park C, Jang H, Kim T H, Lee M H. Micromachines, 2019, 10(3): 203.

doi: 10.3390/mi10030203
[11]
Miao L Y, Jiao L, Tang Q R, Li H, Zhang L H, Wei Q. Sens. Actuat. B Chem., 2019, 288: 60.

doi: 10.1016/j.snb.2019.02.111
[12]
Çimen D, Bereli N, Günaydın S, Denizli A. Talanta, 2020, 219: 121259.

doi: 10.1016/j.talanta.2020.121259
[13]
Cen S Y, Ge X Y, Chen Y, Wang A J, Feng J J. Microchem. J., 2021, 169: 106568.

doi: 10.1016/j.microc.2021.106568
[14]
Gopinathan P, Sinha A, Chung Y D, Shiesh S C, Lee G B. Anal., 2019, 144(16): 4943.

doi: 10.1039/C9AN00779B
[15]
Toh S Y, Citartan M, Gopinath S C B, Tang T H. Biosens. Bioelectron., 2015, 64: 392.

doi: 10.1016/j.bios.2014.09.026
[16]
Zhao H, Cao L L, Liu Q, Tang F, Chen L, Wang S J, Li Y Y, Li Y, Li B, Liu H. Sens. Actuat. B Chem., 2022, 351: 130970.

doi: 10.1016/j.snb.2021.130970
[17]
Lopa N S, Rahman M M, Ahmed F, Ryu T, Sutradhar S C, Lei J, Kim J, Kim D H, Lee Y H, Kim W. Biosens. Bioelectron., 2019, 126: 381.

doi: 10.1016/j.bios.2018.11.012
[18]
Cen Y, Wang Z P, Ke P X, Zhu W T, Yuan Z W, Feng S L, Chen Y Q, Lin C Y, Liu X M, Li Y T, Yan P K. Anal. Bioanal. Chem., 2021, 413(28): 7043.

doi: 10.1007/s00216-021-03667-z pmid: 34673993
[19]
Damborský P, Švitel J, Katrlík J. Essays Biochem., 2016, 60(1): 91.

doi: 10.1042/EBC20150010 pmid: 27365039
[20]
Han X, Li S H, Peng Z L, Othman A M, Leblanc R. ACS Sens., 2016, 1(2): 106.

doi: 10.1021/acssensors.5b00318
[21]
Rezaei Z, Ranjbar B. Eng. Life Sci., 2017, 17(2): 165.

doi: 10.1002/elsc.201500188 pmid: 32624764
[22]
Liu X, Liu H W, Li M, Qi H L, Gao Q, Zhang C X. ChemElectroChem, 2017, 4(7): 1708.

doi: 10.1002/celc.v4.7
[23]
Feng C J, Dai S, Wang L. Biosens. Bioelectron., 2014, 59: 64.

doi: 10.1016/j.bios.2014.03.014
[24]
Zheng P, Wu N Q. Chem. Asian J., 2017, 12(18): 2343.

doi: 10.1002/asia.v12.18
[25]
Kazemi Asl S, Rahimzadegan M. Crit. Rev. Anal. Chem., 2023, 53(3): 594.

doi: 10.1080/10408347.2021.1967721
[26]
Liu D K, Lu X, Yang Y W, Zhai Y Y, Zhang J, Li L. Anal. Bioanal. Chem., 2018, 410(18): 4285.

doi: 10.1007/s00216-018-1076-9
[27]
Wong K W, Xu D, He D G, Wong M S, Li H W. Sens. Actuat. B Chem., 2019, 291: 200.

doi: 10.1016/j.snb.2019.04.035
[28]
Li Y, Yang Y Z, Lü X F, Deng Y L. J. Beijing Inst. Technol., 2020, 29(1): 45.
[29]
Li Y, Dai W Q, Lv X F, Deng Y L. Anal. Methods, 2018, 10(15): 1767.

doi: 10.1039/C8AY00309B
[30]
Smith W E. Chem. Soc. Rev., 2008, 37(5): 955.

doi: 10.1039/b708841h pmid: 18443681
[31]
Fu J T, Lai H S, Zhang Z M, Li G K. Anal. Chimica Acta, 2021, 1161: 338464.

doi: 10.1016/j.aca.2021.338464
[32]
Alves R S, Sigoli F A, Mazali I O. Nanotechnology, 2020, 31(50): 505505.

doi: 10.1088/1361-6528/abb84f
[33]
Lin C B, Li L J, Feng J, Zhang Y, Lin X, Guo H, Li R. Microchimica Acta, 2022, 189(1): 1.

doi: 10.1007/s00604-021-05112-5
[34]
Lee H, Youn H, Hwang A, Lee H, Park J Y, Kim W, Yoo Y, Ban C, Kang T, Kim B. Nanomaterials, 2020, 10(7): 1402.

doi: 10.3390/nano10071402
[35]
McNay G, Eustace D, Smith W E, Faulds K, Graham D. Appl. Spectrosc., 2011, 65(8): 825.

doi: 10.1366/11-06365
[36]
Tu D D, Holderby A, CotÉ G L. J. Biomed. Opt., 2020, 25(9): 097001.
[37]
Chen Y, Zhou S W, Li L L, Zhu J J. Nano Today, 2017, 12: 98.

doi: 10.1016/j.nantod.2016.12.013
[38]
Fereja T H, Du F X, Wang C, Snizhko D, Guan Y R, Xu G B. J. Anal. Test., 2020, 4(2): 76.

doi: 10.1007/s41664-020-00128-x
[39]
Shi Z X, Li G K, Hu Y F. Chin. Chem. Lett., 2019, 30(9): 1600.

doi: 10.1016/j.cclet.2019.04.066
[40]
Zhu L P, Ye J, Yan M X, Zhu Q J, Wang S, Huang J S, Yang X R. ACS Sens., 2019, 4(10): 2778.

doi: 10.1021/acssensors.9b01369
[41]
Saremi M, Amini A, Heydari H. Microchimica Acta, 2019, 186(4): 1.

doi: 10.1007/s00604-018-3127-5
[42]
Kitte S A, Tafese T, Xu C, Saqib M, Li H J, Jin Y D. Talanta, 2021, 221: 121674.

doi: 10.1016/j.talanta.2020.121674
[43]
Mi X N, Li H, Tan R, Tu Y F. Anal. Chem., 2020, 92(21): 14640.

doi: 10.1021/acs.analchem.0c03130
[44]
Han Z L, Shu J N, Liang X, Cui H. Anal. Chem., 2019, 91(19): 12260.

doi: 10.1021/acs.analchem.9b02318
[45]
Mi X N, Li H, Tan R, Feng B N, Tu Y F. Biosens. Bioelectron., 2021, 192: 113482.

doi: 10.1016/j.bios.2021.113482
[46]
Dorraj G S, Rassaee M J, Latifi A M, Pishgoo B, Tavallaei M. J. Biotechnol., 2015, 208: 80.

doi: 10.1016/j.jbiotec.2015.05.002
[47]
Lee T, Kim J, Nam I, Lee Y, Kim H E, Sohn H, Kim S E, Yoon J, Seo S W, Lee M H, Park C. Nanomaterials, 2019, 9(7): 1000.

doi: 10.3390/nano9071000
[48]
Sheng Q L, Qiao X J, Zhou M, Zheng J B. Microchimica Acta, 2017, 184(6): 1573.

doi: 10.1007/s00604-017-2219-y
[49]
Li Z H, Mohamed M A, Vinu Mohan A M, Zhu Z G, Sharma V, Mishra G K, Mishra R K. Sensors, 2019, 19(24): 5435.

doi: 10.3390/s19245435
[50]
Luo Z B, Sun D P, Tong Y L, Zhong Y S, Chen Z G. Microchimica Acta, 2019, 186(6): 1.

doi: 10.1007/s00604-018-3127-5
[51]
Kumar S, Kalkal A. Nanotechnology in Cancer Management. Amsterdam: Elsevier, 2021, 43.
[52]
Kaya H O, Cetin A E, Azimzadeh M, Topkaya S N. J. Electroanal. Chem., 2021, 882: 114989.

doi: 10.1016/j.jelechem.2021.114989
[53]
Siddiqui S, Dai Z T, Stavis C J, Zeng H J, Moldovan N, Hamers R J, Carlisle J A, Arumugam P U. Biosens. Bioelectron., 2012, 35(1): 284.

doi: S0956-5663(12)00142-X pmid: 22456097
[54]
Daniels J, Pourmand N. Electroanalysis, 2007, 19(12): 1239.

doi: 10.1002/(ISSN)1521-4109
[55]
Magar H S, Hassan R Y A, Mulchandani A. Sensors, 2021, 21(19): 6578.

doi: 10.3390/s21196578
[56]
Gobalu K, Vasudevan M, Gopinath S C B, Perumal V, Ovinis M. Cellulose, 2021, 28(9): 5761.

doi: 10.1007/s10570-021-03911-w
[57]
Qiao X J, Li K X, Xu J Q, Cheng N, Sheng Q L, Cao W, Yue T L, Zheng J B. Biosens. Bioelectron., 2018, 113: 142.

doi: 10.1016/j.bios.2018.05.003
[58]
Vasudevan M, Tai M J Y, Perumal V, Gopinath S C B, Murthe S S, Ovinis M, Mohamed N M, Joshi N. J. Taiwan Inst. Chem. Eng., 2021, 118: 245.

doi: 10.1016/j.jtice.2021.01.016
[59]
Kitte S A, Bushira F A, Soreta T R. J. Iran. Chem. Soc., 2022, 19(2): 505.

doi: 10.1007/s13738-021-02324-7
[60]
Yola M L, Atar N. Biosens. Bioelectron., 2019, 126: 418.

doi: 10.1016/j.bios.2018.11.016
[61]
Sun D P, Luo Z B, Lu J, Zhang S S, Che T, Chen Z G, Zhang L Y. Biosens. Bioelectron., 2019, 134: 49.

doi: 10.1016/j.bios.2019.03.049
[62]
Sun D P, Lin X G, Lu J, Wei P, Luo Z B, Lu X G, Chen Z G, Zhang L Y. Biosens. Bioelectron., 2019, 142: 111578.

doi: 10.1016/j.bios.2019.111578
[63]
Xu W J, Liu T, Wang Y Q, Zhang W, Yao X Y, Hou B L, Xie Y, Chu Z Y, Jin W Q. Electroanalysis, 2021, 33(7): 1810.

doi: 10.1002/elan.v33.7
[64]
Han Y J, Su X J, Fan L F, Liu Z G, Guo Y J. Microchem. J., 2021, 169: 106598.

doi: 10.1016/j.microc.2021.106598
[65]
Li J, Zhang S W, Zhang L, Zhang Y, Zhang H, Zhang C X, Xuan X X, Wang M J, Zhang J Y, Yuan Y Q. Front. Chem., 2021, 9: 680593.

doi: 10.3389/fchem.2021.680593
[66]
Song Z P, Song J, Gao F, Chen X P, Wang Q H, Zhao Y N, Huang X G, Yang C Y, Wang Q X. Sens. Actuat. B Chem., 2022, 368: 132205.

doi: 10.1016/j.snb.2022.132205
[67]
Mirčeski V, Stojanov L, Skrzypek S. Contributions Sect. Nat. Math. Biotech. Sci., 2018, 39(2): 103.
[68]
Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M. Electroanalysis, 2013, 25(11): 2411.

doi: 10.1002/elan.v25.11
[69]
Jo H, Gu H, Jeon W, Youn H, Her J, Kim S K, Lee J, Shin J H, Ban C. Anal. Chem., 2015, 87(19): 9869.

doi: 10.1021/acs.analchem.5b02312
[70]
Lang M J, Luo D, Yang G Y, Mei Q X, Feng G J, Yang Y, Liu Z H, Chen Q H, Wu L. RSC Adv., 2020, 10(60): 36396.

doi: 10.1039/D0RA05171C
[71]
Rauf S, Mani V, Lahcen A A, Yuvaraja S, Beduk T, Salama K N. Electrochimica Acta, 2021, 386: 138489.

doi: 10.1016/j.electacta.2021.138489
[72]
Jo H, Her J, Lee H, Shim Y B, Ban C. Talanta, 2017, 165: 442.

doi: 10.1016/j.talanta.2016.12.091
[73]
Villalonga A, Estabiel I, PÉrez-Calabuig A M, Mayol B, Parrado C, Villalonga R. Biosens. Bioelectron., 2021, 183: 113203.

doi: 10.1016/j.bios.2021.113203
[74]
Chen K C, Zhao H L, Wang Z X, Zhou F F, Shi Z H, Cao S D, Lan M B. Biosens. Bioelectron., 2022, 212: 114431.

doi: 10.1016/j.bios.2022.114431
[75]
Zhang J T, Lakshmipriya T, Gopinath S C B. ACS Omega, 2020, 5(40): 25899.

doi: 10.1021/acsomega.0c03260
[76]
Bezinge L, Suea-Ngam A, deMello A J, Shih C J. Mol. Syst. Des. Eng., 2020, 5(1): 49.

doi: 10.1039/C9ME00135B
[77]
Shaver A, Arroyo-Currás N. Curr. Opin. Electrochem., 2022, 32: 100902.
[78]
Chen C, Wang J S. Anal., 2020, 145(5): 1605.

doi: 10.1039/C9AN01998G
[79]
Song J, Zheng Y, Huang M J, Wu L L, Wang W, Zhu Z, Song Y L, Yang C Y. Anal. Chem., 2020, 92(4): 3307.

doi: 10.1021/acs.analchem.9b05203 pmid: 31876151
[80]
Li F Y, Lyu D Y, Liu S, Guo W W. Adv. Mater., 2020, 32(3): 1806538.

doi: 10.1002/adma.v32.3
[81]
Khajouei S, Ravan H, Ebrahimi A. Adv. Colloid Interface Sci., 2020, 275: 102060.

doi: 10.1016/j.cis.2019.102060
[82]
Li Y S, Ma Y L, Jiao X Y, Li T Y, Lv Z H, Yang C J, Zhang X J, Wen Y Q. Nat. Commun., 2019, 10(1): 1036.

doi: 10.1038/s41467-019-08952-1
[1] Qimeng Ren, Qinglei Wang, Yinwen Li, Xuesheng Song, Xuehui Shangguan, Faqiang Li. High Voltage Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(7): 1077-1096.
[2] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[3] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[4] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[5] Yanqun Shan, Xiaoying Wang*. Electrochemical Aptasensor for Detection of Ochratoxin A [J]. Progress in Chemistry, 2018, 30(6): 797-808.
[6] Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*. The Application of DNA Biosensor Based on Conjugated Polymers [J]. Progress in Chemistry, 2015, 27(12): 1799-1807.
[7] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[8] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[9] Qian Dongjin*, Fu Yanrong. Interfacial Self-Assembly of Viologen-Functionalized Ultrathin Films and Molecular Aggregates [J]. Progress in Chemistry, 2013, 25(01): 46-53.
[10] Wen Yanli, Lin Meihua, Pei Hao, Lu Na, Fan Chunhai. Electrochemical-Based MicroRNA Sensors [J]. Progress in Chemistry, 2012, (9): 1656-1664.
[11] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[12] Liang Miao, Liu Rui, Su Rongxin, Qi Wei, Wang Libing, He Zhimin. Aptamer-Based Sensing Technology Towards Food Safety Analysis [J]. Progress in Chemistry, 2012, 24(07): 1378-1387.
[13] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[14] Wang Juan, Liu Ying, Zhang Weide. Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites [J]. Progress in Chemistry, 2011, 23(8): 1583-1590.
[15] Lu Lin, Li Xiaogang, Gao Jin. Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate [J]. Progress in Chemistry, 2011, 23(8): 1618-1626.