中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1313-1326 DOI: 10.7536/PC221201 Previous Articles   Next Articles

• Review •

Formation Mechanisms of Secondary Sulfate and Nitrate in PM2.5

Fangfang Guo, Shaodong Xie()   

  1. College of Environmental Sciences and Engineering, Peking University,Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: sdxie@pku.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2018YFC0214001)
Richhtml ( 19 ) PDF ( 216 ) Cited
Export

EndNote

Ris

BibTeX

Secondary inorganic sulfate and nitrate, as the key chemical components of PM2.5, play important roles in the formation of severe regional haze events. The deteriorating sulfate and nitrate pollution has brought more serious challenges to the continuous improvement of air quality. Thus, elucidating the formation pathways and key factors of controlling the formation of inorganic sulfate and nitrate is crucial to eliminate PM2.5 pollution in the atmosphere. The formation of sulfate and nitrate involves complex chemical reactions, including gas- and aqueous-phase reactions and multi-phase reactions. Recent experimental and filed studies have revealed new reaction mechanisms and detailed reaction kinetics for the oxidation of SO2 and NO2 to form sulfate and nitrate. Merging new formation pathways of sulfate and nitrate with updating reaction kinetics based on laboratory measurements and field observations, air quality model performance is effectively improved to capture the spatial-temporal variations of sulfate and nitrate and identify their chemical formation pathways. This review provides a synthetic synopsis of recent advances in the fundamental mechanisms of sulfate and nitrate formation. In particular, the mechanisms and reaction kinetic results for a series of individual reaction pathways of current interest for the SO2 and NO2 oxidation are emphasized. The key factors affecting the SO2 and NO2 oxidation rates and significant challenges in laboratory studies of characterizing the reaction kinetics are also discussed. In addition, the sensitivity of nitrate to emission reductions of nitrogen oxides (NOx), volatile organic compounds (VOCs) and ammonia (NH3) is investigated. Finally, suggestions are put forward for the future research directions to improve the understanding of sulfate and nitrate formation.

Contents

1 Introduction

2 Mechanism of particulate sulfate formation

2.1 Gas-phase oxidation

2.2 Aqueous-phase oxidation

2.3 Heterogeneous oxidation

2.4 Multiphase photochemical oxidation

3 Mechanism of particulate nitrate formation

3.1 HNO3 formation

3.2 HNO3-NO3- partitioning

4 Conclusion and outlook

Table 1 The main reactions contributing to HNO3 formation
[1]
Zhang Q, Zheng Y X, Tong D, Shao M, Wang S X, Zhang Y H, Xu X D, Wang J N, He H, Liu W Q, Ding Y H, Lei Y, Li J H, Wang Z F, Zhang X Y, Wang Y S, Cheng J, Liu Y, Shi Q R, Yan L, Geng G N, Hong C P, Li M, Liu F, Zheng B, Cao J J, Ding A J, Gao J, Fu Q Y, Huo J T, Liu B X, Liu Z R, Yang F M, He K B, Hao J M. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(49): 24463.

doi: 10.1073/pnas.1907956116
[2]
Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier Van Der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik J G, Spracklen D V, Vignati E, Wild M, Williams M, Gilardoni S. Atmos. Chem. Phys., 2015, 15(14): 8217.

doi: 10.5194/acp-15-8217-2015
[3]
Wang Y, Zhang R Y, Saravanan R. Nat. Commun., 2014, 5: 3098.

doi: 10.1038/ncomms4098
[4]
Zheng B, Zhang Q, Zhang Y, He K B, Wang K, Zheng G J, Duan F K, Ma Y L, Kimoto T. Atmos. Chem. Phys., 2015, 15(4): 2031.

doi: 10.5194/acp-15-2031-2015
[5]
Wang J D, Zhao B, Wang S X, Yang F M, Xing J, Morawska L, Ding A J, Kulmala M, Kerminen V M, Kujansuu J, Wang Z F, Ding D, Zhang X Y, Wang H B, Tian M, Petäjä T, Jiang J K, Hao J M. Sci. Total Environ., 2017, 584/585: 426.

doi: 10.1016/j.scitotenv.2017.01.027
[6]
Wen L, Xue L K, Wang X F, Xu C H, Chen T S, Yang L X, Wang T, Zhang Q Z, Wang W X. Atmos. Chem. Phys., 2018, 18(15): 11261.

doi: 10.5194/acp-18-11261-2018
[7]
Li H Y, Zhang Q, Zheng B, Chen C R, Wu N N, Guo H Y, Zhang Y X, Zheng Y X, Li X, He K B. Atmos. Chem. Phys., 2018, 18(8): 5293.

doi: 10.5194/acp-18-5293-2018
[8]
Cheng Y F, Zheng G J, Wei C, Mu Q, Zheng B, Wang Z B, Gao M, Zhang Q, He K B, Carmichael G, Pöschl U, Su H. Sci. Adv., 2016, 2(12): e1601530.

doi: 10.1126/sciadv.1601530
[9]
Quan J N, Liu Q, Li X, Gao Y, Jia X C, Sheng J J, Liu Y G. Atmos. Environ., 2015, 122: 306.

doi: 10.1016/j.atmosenv.2015.09.068
[10]
Zhang R Y, Wang G H, Guo S, Zamora M L, Ying Q, Lin Y, Wang W G, Hu M, Wang Y. Chem. Rev., 2015, 115(10): 3803.

doi: 10.1021/acs.chemrev.5b00067
[11]
Xie X D, Hu J L, Qin M M, Guo S, Hu M, Wang H L, Lou S R, Li J Y, Sun J J, Li X, Sheng L, Zhu J L, Chen G Y, Yin J J, Fu W X, Huang C, Zhang Y H. Environ. Int., 2022, 166: 107369.

doi: 10.1016/j.envint.2022.107369
[12]
Zang H, Zhao Y, Huo J T, Zhao Q B, Fu Q Y, Duan Y S, Shao J Y, Huang C, An J Y, Xue L K, Li Z Y, Li C X, Xiao H Y. Atmos. Chem. Phys., 2022, 22(7): 4355.

doi: 10.5194/acp-22-4355-2022
[13]
Yang J R, Wang S B, Zhang R Q, Yin S S. Environ. Pollut., 2022, 296: 118716.

doi: 10.1016/j.envpol.2021.118716
[14]
Tham Y J, Wang Z, Li Q Y, Wang W H, Wang X F, Lu K D, Ma N, Yan C, Kecorius S, Wiedensohler A, Zhang Y H, Wang T. Atmos. Chem. Phys., 2018, 18(17): 13155.

doi: 10.5194/acp-18-13155-2018
[15]
Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. 3rd. ed. Hoboken, New Jersey: John Wiley & Sons, 2016.
[16]
Zhang D, Zhang R Y. Environ. Sci. Technol., 2005, 39(15): 5722.

doi: 10.1021/es050372d
[17]
Rodhe H, Crutzen P, Vanderpol A. Tellus, 1981, 33(2): 132.
[18]
Faloona I. Atmos. Environ., 2009, 43(18): 2841.

doi: 10.1016/j.atmosenv.2009.02.043
[19]
Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B. Atmos. Chem. Phys., 2015, 15(6): 2969.

doi: 10.5194/acp-15-2969-2015
[20]
Sarwar G, Simon H, Fahey K, Mathur R, Goliff W S, Stockwell W R. Atmos. Environ., 2014, 85: 204.

doi: 10.1016/j.atmosenv.2013.12.013
[21]
Sarwar G, Fahey K, Kwok R, Gilliam R C, Roselle S J, Mathur R, Xue J, Yu J Z, Carter W P L. Atmos. Environ., 2013, 68: 186.

doi: 10.1016/j.atmosenv.2012.11.036
[22]
Mauldin R L, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, KurtÉn T, Stratmann F, Kerminen V M, Kulmala M. Nature, 2012, 488(7410): 193.

doi: 10.1038/nature11278
[23]
Welz O, Savee J D, Osborn D L, Vasu S S, Percival C J, Shallcross D E, Taatjes C A. Science, 2012, 335(6065): 204.

doi: 10.1126/science.1213229
[24]
Boy M, Mogensen D, Smolander S, Zhou L, Nieminen T, Paasonen P, Plass-Dülmer C, Sipilä M, Petäjä T, Mauldin L, Berresheim H, Kulmala M. Atmos. Chem. Phys., 2013, 13(7): 3865.

doi: 10.5194/acp-13-3865-2013
[25]
Liu L, Bei N F, Wu J R, Liu S X, Zhou J M, Li X, Yang Q C, Feng T, Cao J J, Tie X X, Li G H. Atmos. Chem. Phys., 2019, 19(21): 13341.

doi: 10.5194/acp-19-13341-2019
[26]
Huang H L, Chao W, Lin J J M. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(35): 10857.

doi: 10.1073/pnas.1513149112
[27]
Sipilä M, Jokinen T, Berndt T, Richters S, Makkonen R, Donahue N M, Mauldin R L, KurtÉn T, Paasonen P, Sarnela N, Ehn M, Junninen H, Rissanen M P, Thornton J, Stratmann F, Herrmann H, Worsnop D R, Kulmala M, Kerminen V M, Petäjä T. Atmos. Chem. Phys., 2014, 14(22): 12143.

doi: 10.5194/acp-14-12143-2014
[28]
Wang Y X, Zhang Q Q, Jiang J K, Zhou W, Wang B Y, He K B, Duan F K, Zhang Q, Philip S, Xie Y Y. J. Geophys. Res. Atmos., 2014, 119(17): 10425.
[29]
Wang G H, Zhang R Y, Gomez M E, Yang L X, Levy Zamora M, Hu M, Lin Y, Peng J F, Guo S, Meng J J, Li J J, Cheng C L, Hu T F, Ren Y Q, Wang Y S, Gao J, Cao J J, An Z S, Zhou W J, Li G H, Wang J Y, Tian P F, Marrero-Ortiz W, Secrest J, Du Z F, Zheng J, Shang D J, Zeng L M, Shao M, Wang W G, Huang Y, Wang Y, Zhu Y J, Li Y X, Hu J X, Pan B W, Cai L, Cheng Y T, Ji Y M, Zhang F, Rosenfeld D, Liss P S, Duce R A, Kolb C E, Molina M J. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(48): 13630.

doi: 10.1073/pnas.1616540113
[30]
Weber R J, Guo H Y, Russell A G, Nenes A. Nat. Geosci., 2016, 9(4): 282.

doi: 10.1038/ngeo2665
[31]
Maaß F, Elias H, Wannowius K J. Atmos. Environ., 1999, 33(27): 4413.

doi: 10.1016/S1352-2310(99)00212-5
[32]
Ye C, Chen H, Hoffmann E H, Mettke P, Tilgner A, He L, Mutzel A, Brüggemann M, Poulain L, Schaefer T, Heinold B, Ma Z B, Liu P F, Xue C Y, Zhao X X, Zhang C L, Zhang F, Sun H, Li Q, Wang L, Yang X, Wang J H, Liu C, Xing C Z, Mu Y J, Chen J M, Herrmann H. Environ. Sci. Technol., 2021, 55(12): 7818.

doi: 10.1021/acs.est.1c00561
[33]
Liu T Y, Clegg S L, Abbatt J P D. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(3): 1354.

doi: 10.1073/pnas.1916401117
[34]
Kahan T F, Ardura D, Donaldson D J. J. Phys. Chem. A, 2010, 114(5): 2164.

doi: 10.1021/jp9085156 pmid: 20085262
[35]
Fang Y H, Ye C X, Wang J X, Wu Y S, Hu M, Lin W L, Xu F F, Zhu T. Atmos. Chem. Phys., 2019, 19(19): 12295.

doi: 10.5194/acp-19-12295-2019
[36]
Sievering H. J. Geophys. Res., 2004, 109(D19): D19317.
[37]
Zhang S, Li D P, Ge S S, Liu S J, Wu C, Wang Y Q, Chen Y B, Lv S J, Wang F L, Meng J J, Wang G H. Sci. Total Environ., 2021, 772: 144897.

doi: 10.1016/j.scitotenv.2020.144897
[38]
Liu T Y, Chan A W H, Abbatt J P D. Environ. Sci. Technol., 2021, 55(8): 4227.

doi: 10.1021/acs.est.0c06496
[39]
Liu T Y, Abbatt J P D. Nat. Chem., 2021, 13(12): 1173.

doi: 10.1038/s41557-021-00777-0
[40]
Xue J, Yu X, Yuan Z B, Griffith S M, Lau A K H, Seinfeld J H, Yu J Z. Nat. Geosci., 2019, 12(12): 977.

doi: 10.1038/s41561-019-0485-5
[41]
Li L J, Hoffmann M R, Colussi A J. Environ. Sci. Technol., 2018, 52(5): 2686.

doi: 10.1021/acs.est.7b05222
[42]
Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molina M J, Zhang R Y. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(49): 17373.

doi: 10.1073/pnas.1419604111
[43]
Herrmann H, Schaefer T, Tilgner A, Styler S A, Weller C, Teich M, Otto T. Chem. Rev., 2015, 115(10): 4259.

doi: 10.1021/cr500447k pmid: 25950643
[44]
Chen T Z, Chu B W, Ge Y L, Zhang S P, Ma Q X, He H, Li S M. Environ. Pollut., 2019, 252: 236.

doi: 10.1016/j.envpol.2019.05.119
[45]
Turši? J, Berner A, Podkrajšek B, Grgić I. Atmos. Environ., 2004, 38(18): 2789.

doi: 10.1016/j.atmosenv.2004.02.036
[46]
Zheng G J, Su H, Wang S W, Andreae M O, Pöschl U, Cheng Y F. Science, 2020, 369(6509): 1374.

doi: 10.1126/science.aba3719
[47]
Ge S S, Wang G H, Zhang S, Li D P, Xie Y N, Wu C, Yuan Q, Chen J M, Zhang H L. Environ. Sci. Technol., 2019, 53(24): 14339.

doi: 10.1021/acs.est.9b04196
[48]
Clifton C L, Altstein N, Huie R E. Environ. Sci. Technol., 1988, 22(5): 586.

doi: 10.1021/es00170a018
[49]
Guo H Y, Weber R J, Nenes A. Sci. Rep., 2017, 7: 12109.

doi: 10.1038/s41598-017-11704-0
[50]
Liu M X, Song Y, Zhou T, Xu Z Y, Yan C Q, Zheng M, Wu Z J, Hu M, Wu Y S, Zhu T. Geophys. Res. Lett., 2017, 44(10): 5213.

doi: 10.1002/grl.v44.10
[51]
Wang G H, Zhang F, Peng J F, Duan L, Ji Y M, Marrero-Ortiz W, Wang J Y, Li J J, Wu C, Cao C, Wang Y, Zheng J, Secrest J, Li Y X, Wang Y Y, Li H, Li N, Zhang R Y. Atmos. Chem. Phys., 2018, 18(14): 10123.

doi: 10.5194/acp-18-10123-2018
[52]
Rindelaub J D, Craig R L, Nandy L, Bondy A L, Dutcher C S, Shepson P B, Ault A P. J. Phys. Chem. A, 2016, 120(6): 911.

doi: 10.1021/acs.jpca.5b12699 pmid: 26745214
[53]
Craig R L, Nandy L, Axson J L, Dutcher C S, Ault A P. J. Phys. Chem. A, 2017, 121(30): 5690.

doi: 10.1021/acs.jpca.7b05261
[54]
Wei H R, Vejerano E P, Leng W N, Huang Q S, Willner M R, Marr L C, Vikesland P J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(28): 7272.

doi: 10.1073/pnas.1720488115
[55]
Song Q P, Osada K. Atmos. Environ., 2021, 261: 118605.

doi: 10.1016/j.atmosenv.2021.118605
[56]
Kerminen V M, Hillamo R, Teinilä K, Pakkanen T, Allegrini I, Sparapani R. Atmos. Environ., 2001, 35(31): 5255.

doi: 10.1016/S1352-2310(01)00345-4
[57]
Metzger S, Mihalopoulos N, Lelieveld J. Atmos. Chem. Phys., 2006, 6(9): 2549.

doi: 10.5194/acp-6-2549-2006
[58]
Shi G L, Xu J, Peng X, Xiao Z M, Chen K, Tian Y Z, Guan X B, Feng Y C, Yu H F, Nenes A, Russell A G. Environ. Sci. Technol., 2017, 51(8): 4289.

doi: 10.1021/acs.est.6b05736
[59]
Zhang T, Cao J J, Tie X X, Shen Z X, Liu S X, Ding H, Han Y M, Wang G H, Ho K F, Qiang J, Li W T. Atmos. Res., 2011, 102(1/2): 110.

doi: 10.1016/j.atmosres.2011.06.014
[60]
Hennigan C J, Izumi J, Sullivan A P, Weber R J, Nenes A. Atmos. Chem. Phys., 2015, 15(5): 2775.

doi: 10.5194/acp-15-2775-2015
[61]
Trebs I, Metzger S, Meixner F X, Helas G, Hoffer A, Rudich Y, Falkovich A H, Moura M A L, Artaxo P, Slanina J, Andreae M O. J. Geophys. Res., 2005, 110(D7): D07303.
[62]
Song S J, Gao M, Xu W Q, Shao J Y, Shi G L, Wang S X, Wang Y X, Sun Y L, McElroy M B. Atmos. Chem. Phys., 2018, 18(10): 7423.

doi: 10.5194/acp-18-7423-2018
[63]
Qiu C, Zhang R Y. Phys. Chem. Chem. Phys., 2013, 15(16): 5738.

doi: 10.1039/c3cp43446j
[64]
Lee Y N, Schwartz S E. Fourth International Conference on Precipitation Scavenging, Dry Deposition, and Resuspension, Santa Monica, California, 1982.
[65]
Angle K J, Neal E E, Grassian V H. Environ. Sci. Technol., 2021, 55(15): 10291.

doi: 10.1021/acs.est.1c01932
[66]
Tao W, Su H, Zheng G J, Wang J D, Wei C, Liu L X, Ma N, Li M, Zhang Q, Pöschl U, Cheng Y F. Atmos. Chem. Phys., 2020, 20(20): 11729.

doi: 10.5194/acp-20-11729-2020
[67]
Harris E, Sinha B, van Pinxteren D, Tilgner A, Fomba K W, Schneider J, Roth A, Gnauk T, Fahlbusch B, Mertes S, Lee T, Collett J, Foley S, Borrmann S, Hoppe P, Herrmann H. Science, 2013, 340(6133): 727.

doi: 10.1126/science.1230911 pmid: 23661757
[68]
Alexander B, Park R J, Jacob D J, Gong S L. J. Geophys. Res., 2009, 114(D2): D02309.
[69]
Li J, Zhang Y L, Cao F, Zhang W Q, Fan M Y, Lee X H, Michalski G. Environ. Sci. Technol., 2020, 54(5): 2626.

doi: 10.1021/acs.est.9b07150
[70]
Shao J Y, Chen Q J, Wang Y X, Lu X, He P Z, Sun Y L, Shah V, Martin R V, Philip S, Song S J, Zhao Y, Xie Z Q, Zhang L, Alexander B. Atmos. Chem. Phys., 2019, 19(9): 6107.

doi: 10.5194/acp-19-6107-2019
[71]
Yue F G, He P Z, Chi X Y, Wang L Q, Yu X W, Zhang P F, Xie Z Q. Atmos. Pollut. Res., 2020, 11(8): 1351.

doi: 10.1016/j.apr.2020.05.014
[72]
Chen Q J, Geng L, Schmidt J A, Xie Z Q, Kang H, Dachs J, Cole-Dai J, Schauer A J, Camp M G, Alexander B. Atmos. Chem. Phys., 2016, 16(17): 11433.

doi: 10.5194/acp-16-11433-2016
[73]
Yiin B S, Margerum D W. Inorg. Chem., 1988, 27(10): 1670.

doi: 10.1021/ic00283a002
[74]
Xia M, Peng X, Wang W H, Yu C, Sun P, Li Y Y, Liu Y L, Xu Z N, Wang Z, Xu Z, Nie W, Ding A J, Wang T. Atmos. Chem. Phys., 2020, 20(10): 6147.

doi: 10.5194/acp-20-6147-2020
[75]
Zhang F, Wang Y, Peng J F, Chen L, Sun Y L, Duan L, Ge X L, Li Y X, Zhao J Y, Liu C, Zhang X C, Zhang G, Pan Y P, Wang Y S, Zhang A L, Ji Y M, Wang G H, Hu M, Molina M J, Zhang R Y. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(8): 3960.

doi: 10.1073/pnas.1919343117
[76]
He H, Wang Y S, Ma Q X, Ma J Z, Chu B W, Ji D S, Tang G Q, Liu C, Zhang H X, Hao J M. Sci. Rep., 2014, 4: 4172.

doi: 10.1038/srep04172
[77]
Xie Y N, Ding A J, Nie W, Mao H T, Qi X M, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X G, Virkkula A, Boy M, Xue L K, Guo J, Sun J N, Yang X Q, Kulmala M, Fu C B. J. Geophys. Res. Atmos., 2015, 120(24): 12679.

doi: 10.1002/jgrd.v120.24
[78]
Liu C, Ma Q X, Liu Y C, Ma J Z, He H. Phys. Chem. Chem. Phys., 2012, 14(5): 1668.

doi: 10.1039/C1CP22217A
[79]
Zhao Y, Liu Y C, Ma J Z, Ma Q X, He H. Atmos. Environ., 2017, 152: 465.

doi: 10.1016/j.atmosenv.2017.01.005
[80]
Yu T, Zhao D F, Song X J, Zhu T. Atmos. Chem. Phys., 2018, 18(9): 6679.

doi: 10.5194/acp-18-6679-2018
[81]
Yang W W, Ma Q X, Liu Y C, Ma J Z, Chu B W, Wang L, He H. J. Phys. Chem. A, 2018, 122(30): 6311.

doi: 10.1021/acs.jpca.8b05130
[82]
Zhang S P, Xing J, Sarwar G, Ge Y L, He H, Duan F K, Zhao Y, He K B, Zhu L D, Chu B W. Atmos. Environ., 2019, 208: 133.

doi: 10.1016/j.atmosenv.2019.04.004
[83]
Zhao D F, Song X J, Zhu T, Zhang Z F, Liu Y J, Shang J. Atmos. Chem. Phys., 2018, 18(4): 2481.

doi: 10.5194/acp-18-2481-2018
[84]
Brodzinsky R, Chang S G, Markowitz S S, Novakov T. J. Phys. Chem., 1980, 84(25): 3354.

doi: 10.1021/j100462a009
[85]
He G Z, Ma J Z, He H. ACS Catal., 2018, 8(5): 3825.

doi: 10.1021/acscatal.7b04195
[86]
He G Z, He H. Environ. Sci. Technol., 2020, 54(12): 7070.

doi: 10.1021/acs.est.0c00021
[87]
Chen Z, Liu P, Wang W G, Cao X, Liu Y X, Zhang Y H, Ge M F. Environ. Sci. Technol., 2022, 56(12): 7637.

doi: 10.1021/acs.est.2c00112
[88]
Wang W G, Liu M Y, Wang T T, Song Y, Zhou L, Cao J J, Hu J N, Tang G G, Chen Z, Li Z J, Xu Z Y, Peng C, Lian C F, Chen Y, Pan Y P, Zhang Y H, Sun Y L, Li W J, Zhu T, Tian H Z, Ge M F. Nat. Commun., 2021, 12: 1993.

doi: 10.1038/s41467-021-22091-6
[89]
Hung H M, Hoffmann M R. Environ. Sci. Technol., 2015, 49(23): 13768.

doi: 10.1021/acs.est.5b01658
[90]
Hung H M, Hsu M N, Hoffmann M R. Environ. Sci. Technol., 2018, 52(16): 9079.

doi: 10.1021/acs.est.8b01391
[91]
Wang T T, Liu M X, Liu M Y, Song Y, Xu Z Y, Shang F, Huang X, Liao W L, Wang W G, Ge M F, Cao J J, Hu J N, Tang G G, Pan Y P, Hu M, Zhu T. Environ. Sci. Technol., 2022, 56(12): 7771.

doi: 10.1021/acs.est.2c02533
[92]
Zhang R F, Gen M S, Huang D D, Li Y J, Chan C K. Environ. Sci. Technol., 2020, 54(7): 3831.

doi: 10.1021/acs.est.9b06445
[93]
Zheng H T, Song S J, Sarwar G, Gen M S, Wang S X, Ding D, Chang X, Zhang S P, Xing J, Sun Y L, Ji D S, Chan C K, Gao J, McElroy M B. Environ. Sci. Technol. Lett., 2020, 7(9): 632.

doi: 10.1021/acs.estlett.0c00368
[94]
Gen M S, Zhang R F, Huang Dan Dan, Li Y J, Chan C K. Environ. Sci. Technol. Lett., 2019, 6(2): 86.

doi: 10.1021/acs.estlett.8b00681
[95]
Gen M S, Zhang R F, Li Y J, Chan C K. Environ. Sci. Technol., 2020, 54(16): 9862.

doi: 10.1021/acs.est.0c01540
[96]
Wang X K, Gemayel R, Hayeck N, Perrier S, Charbonnel N, Xu C H, Chen H, Zhu C, Zhang L W, Wang L, Nizkorodov S A, Wang X M, Wang Z, Wang T, Mellouki A, Riva M, Chen J M, George C. Environ. Sci. Technol., 2020, 54(6): 3114.

doi: 10.1021/acs.est.9b06347
[97]
Yu Z C, Jang M. Atmos. Chem. Phys., 2018, 18(19): 14609.

doi: 10.5194/acp-18-14609-2018
[98]
Romer P S, Wooldridge P J, Crounse J D, Kim M J, Wennberg P O, Dibb J E, Scheuer E, Blake D R, Meinardi S, Brosius A L, Thames A B, Miller D O, Brune W H, Hall S R, Ryerson T B, Cohen R C. Environ. Sci. Technol., 2018, 52(23): 13738.

doi: 10.1021/acs.est.8b03861
[99]
Benedict K B, McFall A S, Anastasio C. Environ. Sci. Technol., 2017, 51(8): 4387.

doi: 10.1021/acs.est.6b06370
[100]
Ye C X, Zhang N, Gao H L, Zhou X L. Environ. Sci. Technol., 2017, 51(12): 6849.

doi: 10.1021/acs.est.7b00387
[101]
Wingen L M, Moskun A C, Johnson S N, Thomas J L, Roeselová M, Tobias D J, Kleinman M T, Finlayson-Pitts B J. Phys. Chem. Chem. Phys., 2008, 10(37): 5668.

doi: 10.1039/b806613b pmid: 18956101
[102]
Richards N K, Wingen L M, Callahan K M, Nishino N, Kleinman M T, Tobias D J, Finlayson-Pitts B J. J. Phys. Chem. A, 2011, 115(23): 5810.

doi: 10.1021/jp109560j pmid: 21291193
[103]
Richards N K, Finlayson-Pitts B J. Environ. Sci. Technol., 2012, 46(19): 10447.

doi: 10.1021/es300607c
[104]
George C, Ammann M, D’Anna B, Donaldson D J, Nizkorodov S A. Chem. Rev., 2015, 115(10): 4218.

doi: 10.1021/cr500648z
[105]
Liu Y Y, Wang T, Fang X Z, Deng Y, Cheng H Y, Bacha A U R, Nabi I, Zhang L W. Sci. Total Environ., 2020, 734: 139415.

doi: 10.1016/j.scitotenv.2020.139415
[106]
Park J, Jang M, Yu Z C. Environ. Sci. Technol., 2017, 51(17): 9605.

doi: 10.1021/acs.est.7b00588
[107]
Park J Y, Jang M. RSC Adv., 2016, 6(63): 58617.

doi: 10.1039/C6RA09601H
[108]
Dupart Y, King S M, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(51): 20842.

doi: 10.1073/pnas.1212297109
[109]
Ma Q X, Wang L, Chu B W, Ma J Z, He H. J. Phys. Chem. A, 2019, 123(7): 1311.

doi: 10.1021/acs.jpca.8b11433
[110]
Chen X R, Wang H C, Lu K D, Li C M, Zhai T Y, Tan Z F, Ma X F, Yang X P, Liu Y H, Chen S Y, Dong H B, Li X, Wu Z J, Hu M, Zeng L M, Zhang Y H. Environ. Sci. Technol., 2020, 54(15): 9243.

doi: 10.1021/acs.est.0c00972
[111]
Wang H C, Lu K D, Guo S, Wu Z J, Shang D J, Tan Z F, Wang Y J, Le Breton M, Lou S R, Tang M J, Wu Y S, Zhu W F, Zheng J, Zeng L M, Hallquist M, Hu M, Zhang Y H. Atmos. Chem. Phys., 2018, 18(13): 9705.

doi: 10.5194/acp-18-9705-2018
[112]
Brown S S, DubÉ W P, Peischl J, Ryerson T B, Atlas E, Warneke C, de Gouw J A, te Lintel Hekkert S, Brock C A, Flocke F, Trainer M, Parrish D D, Feshenfeld F C, Ravishankara A R. J. Geophys. Res., 2011, 116(D24): D23405.
[113]
Heintz F, Platt U, Flentje H, Dubois R. J. Geophys. Res., 1996, 101(D17): 22891.
[114]
Alexander B, Sherwen T, Holmes C D, Fisher J A, Chen Q J, Evans M J, Kasibhatla P. Atmos. Chem. Phys., 2020, 20(6): 3859.

doi: 10.5194/acp-20-3859-2020
[115]
Alexander B, Hastings M G, Allman D J, Dachs J, Thornton J A, Kunasek S A. Atmos. Chem. Phys., 2009, 9(14): 5043.

doi: 10.5194/acp-9-5043-2009
[116]
Michalski G, Scott Z, Kabiling M, Thiemens M H. Geophys. Res. Lett., 2003, 30(16): 1870.
[117]
Wang Y L, Song W, Yang W, Sun X C, Tong Y D, Wang X M, Liu C Q, Bai Z P, Liu X Y. J. Geophys. Res. Atmos., 2019, 124(7): 4174.

doi: 10.1029/2019JD030284
[118]
Atkinson R. Atmos. Environ., 2000, 34(12/14): 2063.

doi: 10.1016/S1352-2310(99)00460-4
[119]
He P Z, Xie Z Q, Chi X Y, Yu X W, Fan S D, Kang H, Liu C, Zhan H C. Atmos. Chem. Phys., 2018, 18(19): 14465.

doi: 10.5194/acp-18-14465-2018
[120]
Wang H C, Lu K D, Chen X R, Zhu Q D, Chen Q, Guo S, Jiang M Q, Li X, Shang D J, Tan Z F, Wu Y S, Wu Z J, Zou Q, Zheng Y, Zeng L M, Zhu T, Hu M, Zhang Y H. Environ. Sci. Technol. Lett., 2017, 4(10): 416.

doi: 10.1021/acs.estlett.7b00341
[121]
Wahner A, Mentel T F, Sohn M. Geophys. Res. Lett., 1998, 25(12): 2169.

doi: 10.1029/98GL51596
[122]
Fan M Y, Zhang Y L, Lin Y C, Hong Y H, Zhao Z Y, Xie F, Du W, Cao F, Sun Y L, Fu P Q. Environ. Sci. Technol., 2022, 56(11): 6870.

doi: 10.1021/acs.est.1c02843
[123]
Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009, 9(21): 8351.

doi: 10.5194/acp-9-8351-2009
[124]
Davis J M, Bhave P V, Foley K M. Atmos. Chem. Phys., 2008, 8(17): 5295.

doi: 10.5194/acp-8-5295-2008
[125]
Gržinić G, Bartels-Rausch T, Berkemeier T, Türler A, Ammann M. Atmos. Chem. Phys., 2015, 15(23): 13615.

doi: 10.5194/acp-15-13615-2015
[126]
Griffiths P T, Badger C L, Cox R A, Folkers M, Henk H H, Mentel T F. J. Phys. Chem. A, 2009, 113(17): 5082.

doi: 10.1021/jp8096814 pmid: 19385680
[127]
Bertram T H, Thornton J A, Riedel T P, Middlebrook A M, Bahreini R, Bates T S, Quinn P K, Coffman D J. Geophys. Res. Lett., 2009, 36(19): L19803.

doi: 10.1029/2009GL040248
[128]
Gaston C J, Thornton J A, Ng N L. Atmos. Chem. Phys., 2014, 14: 5693.

doi: 10.5194/acp-14-5693-2014
[129]
Wang Z, Wang W H, Tham Y J, Li Q Y, Wang H, Wen L, Wang X F, Wang T. Atmos. Chem. Phys., 2017, 17(20): 12361.

doi: 10.5194/acp-17-12361-2017
[130]
McDuffie E E, Fibiger D L, DubÉ W P, Lopez-Hilfiker F, Lee B H, Thornton J A, Shah V, JaeglÉ L, Guo H Y, Weber R J, Michael Reeves J, Weinheimer A J, Schroder J C, Campuzano-Jost P, Jimenez J L, Dibb J E, Veres P, Ebben C, Sparks T L, Wooldridge P J, Cohen R C, Hornbrook R S, Apel E C, Campos T, Hall S R, Ullmann K, Brown S S. J. Geophys. Res. Atmos., 2018, 123(8): 4345.

doi: 10.1002/jgrd.v123.8
[131]
Yu C, Wang Z, Xia M, Fu X, Wang W H, Tham Y J, Chen T S, Zheng P G, Li H Y, Shan Y, Wang X F, Xue L K, Zhou Y, Yue D L, Ou Y B, Gao J, Lu K D, Brown S S, Zhang Y H, Wang T. Atmos. Chem. Phys., 2020, 20(7): 4367.

doi: 10.5194/acp-20-4367-2020
[132]
Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Häseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F. Atmos. Chem. Phys., 2013, 13(2): 1057.

doi: 10.5194/acp-13-1057-2013
[133]
Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, OrdÓñez C. Atmos. Chem. Phys., 2016, 16(18): 12239.

doi: 10.5194/acp-16-12239-2016
[134]
Chuang M T, Wu C F, Lin C Y, Lin W C, Chou C C K, Lee C T, Lin T H, Fu J S, Kong S S K. Atmos. Environ., 2022, 269: 118856.

doi: 10.1016/j.atmosenv.2021.118856
[135]
Fu X, Wang T, Gao J, Wang P, Liu Y M, Wang S X, Zhao B, Xue L K. Environ. Sci. Technol., 2020, 54(7): 3881.

doi: 10.1021/acs.est.9b07248
[136]
Qin M M, Hu A Q, Mao J J, Li X, Sheng L, Sun J J, Li J Y, Wang X S, Zhang Y H, Hu J L. Sci. Total Environ., 2022, 810: 152268.

doi: 10.1016/j.scitotenv.2021.152268
[137]
Feng T, Zhao S Y, Zhang X, Wang Q Y, Liu L, Li G H, Tie X X. Sci. Total Environ., 2020, 745: 140961.

doi: 10.1016/j.scitotenv.2020.140961
[138]
Jung D, de la Paz D, Notario A, Borge R. Sci. Total Environ., 2022, 827: 154126.

doi: 10.1016/j.scitotenv.2022.154126
[139]
Liu T T, Hong Y W, Li M R, Xu L L, Chen J S, Bian Y H, Yang C, Dan Y B, Zhang Y N, Xue L K, Zhao M, Huang Z, Wang H. Atmos. Chem. Phys., 2022, 22(3): 2173.

doi: 10.5194/acp-22-2173-2022
[140]
Lu K D, Fuchs H, Hofzumahaus A, Tan Z F, Wang H C, Zhang L, Schmitt S H, Rohrer F, Bohn B, Broch S, Dong H B, Gkatzelis G I, Hohaus T, Holland F, Li X, Liu Y, Liu Y H, Ma X F, Novelli A, Schlag P, Shao M, Wu Y S, Wu Z J, Zeng L M, Hu M, Kiendler-Scharr A, Wahner A, Zhang Y H. Environ. Sci. Technol., 2019, 53(18): 10676.

doi: 10.1021/acs.est.9b02422
[141]
Li K, Jacob D J, Liao H, Qiu Y L, Shen L, Zhai S X, Bates K H, Sulprizio M P, Song S J, Lu X, Zhang Q, Zheng B, Zhang Y L, Zhang J Q, Lee H C, Kuk S K. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(10): e2015797118.

doi: 10.1073/pnas.2015797118
[142]
Fu X, Wang T, Zhang L, Li Q Y, Wang Z, Xia M, Yun H, Wang W H, Yu C, Yue D L, Zhou Y, Zheng J Y, Han R. Atmos. Chem. Phys., 2019, 19(1): 1.

doi: 10.5194/acp-19-1-2019
[143]
Li J Y, Zhang N, Wang P, Choi M, Ying Q, Guo S, Lu K D, Qiu X H, Wang S X, Hu M, Zhang Y H, Hu J L. Environ. Pollut., 2021, 287: 117624.

doi: 10.1016/j.envpol.2021.117624
[144]
Thornton J A, Kercher J P, Riedel T P, Wagner N L, Cozic J, Holloway J S, DubÉ W P, Wolfe G M, Quinn P K, Middlebrook A M, Alexander B, Brown S S. Nature, 2010, 464(7286): 271.

doi: 10.1038/nature08905
[145]
Wang X, Jacob D J, Fu X, Wang T, Le Breton M, Hallquist M, Liu Z R, McDuffie E E, Liao H. Environ. Sci. Technol., 2020, 54(16): 9908.

doi: 10.1021/acs.est.0c02296
[146]
Qiu X H, Ying Q, Wang S X, Duan L, Zhao J, Xing J, Ding D, Sun Y L, Liu B X, Shi A J, Yan X, Xu Q C, Hao J M. Atmos. Chem. Phys., 2019, 19(10): 6737.

doi: 10.5194/acp-19-6737-2019
[147]
Sommariva R, Hollis L D J, Sherwen T, Baker A R, Ball S M, Bandy B J, Bell T G, Chowdhury M N, Cordell R L, Evans M J, Lee J D, Reed C, Reeves C E, Roberts J M, Yang M X, Monks P S. Atmos. Sci. Lett., 2018, 19(8): e844.

doi: 10.1002/asl.2018.19.issue-8
[148]
Ahern A T, Goldberger L, Jahl L, Thornton J, Sullivan R C. Environ. Sci. Technol., 2018, 52(2): 550.

doi: 10.1021/acs.est.7b04386
[149]
Young C J, Washenfelder R A, Edwards P M, Parrish D D, Gilman J B, Kuster W C, Mielke L H, Osthoff H D, Tsai C, Pikelnaya O, Stutz J, Veres P R, Roberts J M, Griffith S, Dusanter S, Stevens P S, Flynn J, Grossberg N, Lefer B, Holloway J S, Peischl J, Ryerson T B, Atlas E L, Blake D R, Brown S S. Atmos. Chem. Phys., 2014, 14(7): 3427.

doi: 10.5194/acp-14-3427-2014
[150]
Young C J, Washenfelder R A, Roberts J M, Mielke L H, Osthoff H D, Tsai C, Pikelnaya O, Stutz J, Veres P R, Cochran A K, van den Boer T C, Flynn J, Grossberg N, Haman C L, Lefer B, Stark H, Graus M, de Gouw J, Gilman J B, Kuster W C, Brown S S. Environ. Sci. Technol., 2012, 46(20): 10965.

doi: 10.1021/es302206a
[151]
Wang X F, Wang H, Xue L K, Wang T, Wang L W, Gu R R, Wang W H, Tham Y J, Wang Z, Yang L X, Chen J M, Wang W X. Atmos. Environ., 2017, 156: 125.

doi: 10.1016/j.atmosenv.2017.02.035
[152]
Wang H C, Tang M J, Tan Z F, Peng C, Lu K D. Progress in Chemistry, 2020, 32(10): 1535.
(王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 化学进展, 2020, 32(10): 1535.).

doi: 10.7536/PC200304
[153]
Alicke B. J. Geophys. Res., 2003, 108(D4): 8247.
[154]
Xue C Y, Zhang C L, Ye C, Liu P F, Catoire V, Krysztofiak G, Chen H, Ren Y G, Zhao X X, Wang J H, Zhang F, Zhang C X, Zhang J W, An J L, Wang T, Chen J M, Kleffmann J, Mellouki A, Mu Y J. Environ. Sci. Technol., 2020, 54(18): 11048.

doi: 10.1021/acs.est.0c01832
[155]
Womack C C, McDuffie E E, Edwards P M, Bares R, Gouw J A, Docherty K S, DubÉ W P, Fibiger D L, Franchin A, Gilman J B, Goldberger L, Lee B H, Lin J C, Long R, Middlebrook A M, Millet D B, Moravek A, Murphy J G, Quinn P K, Riedel T P, Roberts J M, Thornton J A, Valin L C, Veres P R, Whitehill A R, Wild R J, Warneke C, Yuan B, Baasandorj M, Brown S S. Geophys. Res. Lett., 2019, 46(9): 4971.

doi: 10.1029/2019GL082028
[156]
Zhai S X, Jacob D J, Wang X, Liu Z R, Wen T X, Shah V, Li K, Moch J M, Bates K H, Song S J, Shen L, Zhang Y Z, Luo G, Yu F Q, Sun Y L, Wang L T, Qi M Y, Tao J, Gui K, Xu H H, Zhang Q, Zhao T L, Wang Y S, Lee H C, Choi H, Liao H. Nat. Geosci., 2021, 14(6): 389.

doi: 10.1038/s41561-021-00726-z
[157]
Lu M M, Tang X, Feng Y C, Wang Z F, Chen X S, Kong L, Ji D S, Liu Z R, Liu K X, Wu H J, Liang S W, Zhou H, Hu K. Sci. Total Environ., 2021, 788: 147747.

doi: 10.1016/j.scitotenv.2021.147747
[158]
Li M M, Zhang Z H, Yao Q, Wang T J, Xie M, Li S, Zhuang B L, Han Y. Atmos. Chem. Phys., 2021, 21(19): 15135.

doi: 10.5194/acp-21-15135-2021
[159]
Dong X Y, Li J, Fu J S, Gao Y, Huang K, Zhuang G S. Sci. Total Environ., 2014, 481: 522.

doi: 10.1016/j.scitotenv.2014.02.076
[160]
Shah V, JaeglÉ L, Thornton J A, Lopez-Hilfiker F D, Lee B H, Schroder J C, Campuzano-Jost P, Jimenez J L, Guo H Y, Sullivan A P, Weber R J, Green J R, Fiddler M N, Bililign S, Campos T L, Stell M, Weinheimer A J, Montzka D D, Brown S S. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(32): 8110.

doi: 10.1073/pnas.1803295115
[161]
Balamurugan V, Chen J, Qu Z, Bi X, Keutsch F N. Atmos. Chem. Phys., 2022, 22(11): 7105.

doi: 10.5194/acp-22-7105-2022
[162]
Han X, Zhu L Y, Liu M X, Song Y, Zhang M G. Atmos. Chem. Phys., 2020, 20(16): 9979.

doi: 10.5194/acp-20-9979-2020
[163]
Xu Z Y, Liu M X, Zhang M S, Song Y, Wang S X, Zhang L, Xu T T, Wang T T, Yan C Q, Zhou T, Sun Y L, Pan Y P, Hu M, Zheng M, Zhu T. Atmos. Chem. Phys., 2019, 19(8): 5605.

doi: 10.5194/acp-19-5605-2019
[164]
Ye Z L, Guo X R, Cheng L, Cheng S Y, Chen D S, Wang W L, Liu B. Atmos. Environ., 2019, 219: 116989.

doi: 10.1016/j.atmosenv.2019.116989
[165]
Viatte C, Wang T Z, Van Damme M, Dammers E, Meleux F, Clarisse L, Shephard M W, Whitburn S, Coheur P F, Cady-Pereira K E, Clerbaux C. Atmos. Chem. Phys., 2020, 20(1): 577.

doi: 10.5194/acp-20-577-2020
[166]
Wang S S, Nan J L, Shi C Z, Fu Q Y, Gao S, Wang D F, Cui H X, Saiz-Lopez A, Zhou B. Sci. Rep., 2015, 5: 15842.

doi: 10.1038/srep15842
[167]
Mozurkewich M. Atmos. Environ. A Gen. Top., 1993, 27(2): 261.

doi: 10.1016/0960-1686(93)90356-4
[168]
Wu C, Zhang S, Wang G H, Lv S J, Li D P, Liu L, Li J J, Liu S J, Du W, Meng J J, Qiao L P, Zhou M, Huang C, Wang H L. Environ. Sci. Technol., 2020, 54(24): 15622.

doi: 10.1021/acs.est.0c04544
[169]
Tang M J, Cziczo D J, Grassian V H. Chem. Rev., 2016, 116(7): 4205.

doi: 10.1021/acs.chemrev.5b00529
[170]
Tobo Y, Zhang D Z, Matsuki A, Iwasaka Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(42): 17905.

doi: 10.1073/pnas.1008235107
[171]
Liu Y, Gibson Cain, Wang H, Grassian, Laskin A. J. Phys. Chem. A, 2008, 112(7): 1561.

doi: 10.1021/jp076169h pmid: 18232670
[172]
Li W J, Shao L Y, Shi Z B, Chen J M, Yang L X, Yuan Q, Yan C, Zhang X Y, Wang Y Q, Sun J Y, Zhang Y M, Shen X J, Wang Z F, Wang W X. J. Geophys. Res. Atmos., 2014, 119(2): 1044.
[173]
Goodman A L, Underwood G M, Grassian V H. J. Geophys. Res., 2000, 105(D23): 29053.
[174]
Wang G H, Cheng C L, Huang Y, Tao J, Ren Y Q, Wu F, Meng J J, Li J J, Cheng Y T, Cao J J, Liu S X, Zhang T, Zhang R, Chen Y B. Atmos. Chem. Phys., 2014, 14(21): 11571.

doi: 10.5194/acp-14-11571-2014
[175]
Wang G H, Zhou B H, Cheng C L, Cao J J, Li J J, Meng J J, Tao J, Zhang R J, Fu P Q. Atmos. Chem. Phys., 2013, 13(2): 819.

doi: 10.5194/acp-13-819-2013
[176]
Gard E E, Kleeman M J, Gross D S, Hughes L S, Allen J O, Morrical B D, Fergenson D P, Dienes T, Gälli M E, Johnson R J, Cass G R, Prather K A. Science, 1998, 279(5354): 1184.

pmid: 9469803
[177]
Saul T D, Tolocka M P, Johnston M V. J. Phys. Chem. A, 2006, 110(24): 7614.

doi: 10.1021/jp060639a
[178]
Gupta D, Kim H, Park G, Li X, Eom H J, Ro C U. Atmos. Chem. Phys., 2015, 15(6): 3379.

doi: 10.5194/acp-15-3379-2015
[179]
Finlayson-Pitts B J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(15): 6566.

doi: 10.1073/pnas.1003038107
[180]
Ryder O S, Ault A P, Cahill J F, Guasco T L, Riedel T P, Cuadra-Rodriguez L A, Gaston C J, Fitzgerald E, Lee C, Prather K A, Bertram T H. Environ. Sci. Technol., 2014, 48(3): 1618.

doi: 10.1021/es4042622
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[3] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[4] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[5] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[6] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[7] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[8] Haichao Wang, Mingjin Tang, Zhaofeng Tan, Chao Peng, Keding Lu. Atmospheric Chemistry of Nitryl Chloride [J]. Progress in Chemistry, 2020, 32(10): 1535-1546.
[9] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[10] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[11] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[12] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[13] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[14] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[15] Lin Heng, Zhang Hui. Treatment of Organic Pollutants Using Electro-Fenton and Electro-Fenton-Like Process in Aqueous Solution [J]. Progress in Chemistry, 2015, 27(8): 1123-1132.