中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1077-1096 DOI: 10.7536/PC221132 Previous Articles   Next Articles

• Review •

High Voltage Electrolytes for Lithium Batteries

Qimeng Ren1, Qinglei Wang2(), Yinwen Li2, Xuesheng Song2, Xuehui Shangguan2(), Faqiang Li2()   

  1. 1 School of Chemistry & Chemical Engineering, Linyi University,Linyi 276005, China
    2 School of Materials Science and Engineering, Linyi University,Linyi 276003, China
  • Received: Revised: Online: Published:
  • Contact: * Corresponding author e-mail: shangguanxuehui@lyu.edu.cn (Xuehui Shangguan);wangqinglei@lyu.edu.cn (Qinglei Wang);lifaqiang@lyu.edu.cn (Faqiang Li)
  • Supported by:
    National Natural Science Foundation of China(22209065); National Natural Science Foundation of China(22172070); Natural Science Foundation of Shandong Province(ZR2021QE039); Natural Science Foundation of Shandong Province(ZR2021QE149); Natural Science Foundation of Shandong Province(ZR2020MB082); Key R&D Plan of Linyi City(2021019zkt); 2022 Shandong Province Higher Education Youth Innovation Team Development Plan
Richhtml ( 224 ) PDF ( 4307 ) Cited
Export

EndNote

Ris

BibTeX

With the proposal of "peak carbon dioxide emissions" and "carbon neutral" strategic objectives, developing clean energy and promoting the development of new energy industry has become the consensus of the whole society. Lithium battery as the candidate for new generation of energy storage equipment due to its remarkable advantages such as high energy density, high power density, long cycle life and environmental friendliness. Its development plays a significant role in alleviating energy crisis, driving the conversion of old kinetic energy into new and achieving the strategic goal of "carbon peaking and carbon neutrality". In order to further improve the energy density of lithium batteries, the most effective strategy is to use high voltage or high specific capacity cathode materials. However, due to the low oxidation stability and narrow electrochemical window of traditional carbonate ester electrolytes, they are prone to oxidative decomposition when the working voltage exceeds 4.2 V, which cannot be cycled stably at high voltages, so it is particularly important to broaden the electrochemical window of electrolytes. This paper mainly discusses the mechanism of organic solvents and additives in high-voltage electrolytes, explores effective methods to broaden the electrochemical window of new electrolytes, summarizes the characteristics of aqueous electrolytes, solid electrolytes, and polymer gel electrolytes, and finally; summarizes and outlooks the future development and prospects of high-voltage electrolytes to provide scientific basis for the design and development of high-voltage electrolytes for lithium batteries.

Contents

1 Introduction

2 Working mechanism of high voltage electrolyte

3 Research progress on the high-voltage electrolyte for lithium batteries

3.1 New electrolyte organic solvents

3.2 High voltage electrolyte additive

3.3 Aqueous electrolyte

3.4 Solid state electrolyte

3.5 Gel polymer electrolyte

4 Conclusion and outlook

Fig.1 Schematic illustration of open-circuit energy of liquid electrolyte and conditions for electrode-electrolyte interphase formation[13]. Copyright 2010, American Chemical Society
Fig.2 Advantages and disadvantages of various high-voltage organic solvents.
Fig.3 Schematic diagram of the solution structures in (a)conventional low concentrated electrolyte (LCE), (b)highly concentrated electrolyte (HCE), and (c)locally highly concentrated electrolyte (LHCE).(d)Schematic diagram of the formation of stable and uniform solid electrode/electrolyte interphases on the electrode in LHCE electrolyte[52]. Copyright 2022, Royal Society Of Chemistry
Fig.4 Schematic diagrams of (a)cathode surface,(c)anode surface in EC/DMC electrolyte;(b)cathode surface and(d)anode surface in TMS/FEC electrolyte[61]. Copyright 2022, Elsevier
Table 1 Oxidation potential and HOMO/LUMO energies of carbonates, ethers, fluorinated carbonates, and fluorinated ethers[67]. Copyright 2013, Royal Society Of Chemistry
Fig.5 FT-IR spectra of LNMO cathode pristine and after 100 cycles in(a)Gen 2 electrolyte,(b)HVE electrolyte; graphite anode pristine and after 100 cycles in(c)Gen 2 electrolyte and(d)HVE electrolyte; Cycling performance of graphite/LNMO cells at (e)RT and(f)55℃ with HVE electrolyte and Gen 2 electrolyte[64]. Copyright 2013, Elsevier
Fig.6 (a)Comparison of HOMO-LUMO energy levels of different electrolytes.(b)LSV test for oxidation stability of different electrolytes[78]; Copyright 2022, American Chemical Society.(c)Schematic illustration of the SEI structure in the L-LDT electrolyte[79]. Copyright 2022, Elsevier
Fig.7 (a)Schematic diagram of mechanism on NCM622/Li battery electrode with different electrolytes.(b)The linear sweep voltammetry. Cycling performance (c)and Coulombic efficiency (d)of the NCM622/Li half cells in the different electrolytes[7]. Copyright 2021, Elsevier
Fig.8 Advantages and disadvantages of various additives.
Fig.9 (a)Schematic illustration of the contribution of TMB to stabilizing cathode interface[100]; Copyright 2019, American Chemical Society.(b)Schematic illustration of TMSB to enhance the high voltage performance of LIB. EIS patterns of the LiNi0.5Co0.2Mn0.3O2/graphite cells after (c)the 1st cycle and (d)the 150th cycles[101]. Copyright 2013, Elsevier
Fig.10 (a)Schematic diagram of the effects of LiDFBP in constructing SEI film in Li-rich cathode[105]; Copyright 2017, Wiley Online Library. (b)Rate capabilities, (c)cycling performances of LiCoO2/Li cells using base electrolyte and 0.1 wt% TTEP electrolyte at 25℃; LiCoO2/graphite cells cycling performances at(d)55℃,(e)25℃,SEM images of LiCoO2 electrodes after cycled in the (f)base and(g)0.1 wt% TTEP electrolyte[106]. Copyright 2019, Elsevier
Fig.11 Optimized structures and binding energy (Eb, kJ/mol)of (a)A-HF,(b)A-F and(c)A-H+ (A= EC, EMC, DEC and TTS);19F NMR spectra of (d)base and(e)2 wt% TTS-containing electrolytes after adding 1 wt% HF aqueous solution;(f)content diagram of transition metal ions on lithium electrode extracted from base electrolyte and LNMO/Li battery containing 2 wt% TTS electrolyte after 500 cycles[111]; Copyright 2020, Royal Society Of Chemistry.(g)Frontier molecular orbital energies of different electrolytes. (h)Galvanostatic long-term cycling of the Li/Li symmetrical cell. (i)Voltage-time profiles of Li/Li symmetric cells for initial discharge process.(j)Nyquist plots of Li/Li symmetric cells after 50 h cycles[112]. Copyright 2021, American Chemical Society
Fig.12 (a)Schematic diagram of the effect of FEC additives on SEI layer on a Li metal anode. (b)F 1s and (c)Li 1s XPS characterization spectra of the SEI layer induced by 0% and 5 vol% FEC after lithium stripping on Cu substrate after ten cycles[118]. Copyright 2017, Wiley Online Library. (d)Calculated oxidation potential (V vs. Li/Li+) of EC, EMC, DEC, LiPF6 and LiPO2F2 (e)cyclic voltammogram and (f)chronoamperometric responses of LNCM/Li cells with and without additive; (g)19F NMR spectra of electrolytes before and after electrochemical test;(h)cyclic stability and (i)Coulombic efficiency of LNCM/Li cells with and without additive[119]. Copyright 2018, Elsevier.
Fig.13 (a)Schematic diagram of the PS protection mechanism on the Li-rich-NMC cathode during cycling and gradual transformation from the layered to the spinel structure[122]. Copyright 2015, Royal Society Of Chemistry;(b)Schematic diagram of the role of MPS additive on the surface of the LNMO cathode[123].Copyright 2022, American Chemical Society
Fig.14 (a)Schematic illustration of NCM/Li cells cycling with and without DTD, TEM images of the (b)fresh cathode, and cycled cathode with(c)baseline and(d)DTD containing electrolytes[128].Copyright 2017, The Electrochemical Society
[1]
Feng D J, Chen S M, Wang R M, Chen T H, Gu S J, Su J L, Dong T, Liu Y W. J. Electrochem. Soc., 2020, 167(11): 110544.

doi: 10.1149/1945-7111/aba4e7
[2]
Cao X, Zou L F, Matthews B E, Zhang L C, He X Z, Ren X D, Engelhard M H, Burton S D, El-Khoury P Z, Lim H S, Niu C J, Lee H, Wang C S, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Energy Storage Mater., 2021, 34: 76.
[3]
Li G X. Adv. Energy Mater., 2021, 11(7): 2002891.

doi: 10.1002/aenm.v11.7
[4]
Yang H C, Li J, Sun Z H, Fang R P, Wang D W, He K, Cheng H M, Li F. Energy Storage Mater., 2020, 30: 113.
[5]
Mao S L, Wu Q, Ma F Y, Zhao Y, Wu T, Lu Y Y. Chem. Commun., 2021, 57(7): 840.

doi: 10.1039/D0CC06849G
[6]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16
[7]
Yan S X, Wang Y L, Chen T H, Gan Z D, Chen S M, Liu Y W, Zhang S J. J. Power Sources, 2021, 491: 229603.

doi: 10.1016/j.jpowsour.2021.229603
[8]
Zhang J Y, Yao X H, Misra R K, Cai Q, Zhao Y L. J. Mater. Sci. Technol., 2020, 44: 237.

doi: 10.1016/j.jmst.2020.01.017
[9]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115
[10]
Doi T, Hashinokuchi M, Inaba M. Curr. Opin. Electrochem., 2018, 9: 49.
[11]
Guo K L, Qi S H, Wang H P, Huang J D, Wu M G, Yang Y L, Li X, Ren Y R, Ma J M. Small Sci., 2022, 2(5): 2100107.

doi: 10.1002/smsc.v2.5
[12]
Wang J H, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 2016, 7: 12032.

doi: 10.1038/ncomms12032
[13]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.

doi: 10.1021/cm901452z
[14]
Tong B, Song Z Y, Wan H H, Feng W F, Armand M, Liu J C, Zhang H, Zhou Z B. InfoMat, 2021, 3(12): 1364.

doi: 10.1002/inf2.v3.12
[15]
Wu W Y, Bai Y, Wang X R, Wu C. Chin. Chemical Lett., 2021, 32(4): 1309.

doi: 10.1016/j.cclet.2020.10.009
[16]
Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2011, 115(42): 12120.

doi: 10.1021/jp204401t
[17]
Tan S, Ji Y J, Zhang Z R, Yang Y. ChemPhysChem, 2014, 15(10): 1956.

doi: 10.1002/cphc.v15.10
[18]
Janssen P, Schmitz R, Müller R, Isken P, Lex-Balducci A, Schreiner C, Winter M, Cekić-Lasković I, Schmitz R,. Electrochimica Acta, 2014, 125: 101.

doi: 10.1016/j.electacta.2014.01.023
[19]
Jurng S, Brown Z L, Kim J, Lucht B L. Energy Environ. Sci., 2018, 11(9): 2600.

doi: 10.1039/C8EE00364E
[20]
Zuo X X, Deng X, Ma X D, Wu J H, Liang H Y, Nan J M. J. Mater. Chem. A, 2018, 6(30): 14725.

doi: 10.1039/C8TA04558E
[21]
Drozhzhin O A, Shevchenko V A, Zakharkin M V, Gamzyukov P I, Yashina L V, Abakumov A M, Stevenson K J, Antipov E V. Electrochimica Acta, 2018, 263: 127.

doi: 10.1016/j.electacta.2018.01.037
[22]
Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2012, 116(10): 3235.

doi: 10.1021/jp211619y
[23]
Zhao H J, Yu X Q, Li J D, Li B, Shao H Y, Li L, Deng Y H. J. Mater. Chem. A, 2019, 7(15): 8700.

doi: 10.1039/C9TA00126C
[24]
Qin Z M, Hong B, Duan B Y, Hong S, Chen Y C, Lai Y Q, Feng J. Electrochimica Acta, 2018, 276: 412.

doi: 10.1016/j.electacta.2018.04.193
[25]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.

doi: 10.1021/ja3091438 pmid: 23294028
[26]
Dong Y N, Young B T, Zhang Y Z, Yoon T, Heskett D R, Hu Y F, Lucht B L. ACS Appl. Mater. Interfaces, 2017, 9(24): 20467.

doi: 10.1021/acsami.7b01481
[27]
Xu M Q, Zhou L, Dong Y N, Chen Y J, Demeaux J, MacIntosh A D, Garsuch A, Lucht B L. Energy Environ. Sci., 2016, 9(4): 1308.

doi: 10.1039/C5EE03360H
[28]
Kazzazi A, Bresser D, Kuenzel M, Hekmatfar M, Schnaidt J, Jusys Z, Diemant T, Behm R J, Copley M, Maranski K, Cookson J, de Meatza I, Axmann P, Wohlfahrt-Mehrens M, Passerini S. J. Power Sources, 2021, 482: 228975.

doi: 10.1016/j.jpowsour.2020.228975
[29]
Li X, Liu J D, He J, Qi S H, Wu M G, Wang H P, Jiang G X, Huang J D, Wu D X, Li F, Ma J M. Adv. Sci., 2022, 9(20): 2201297.

doi: 10.1002/advs.v9.20
[30]
Ji W X, Huang H, Zheng D, Zhang X X, Ding T Y, Lambert T H, Qu D Y. Energy Storage Mater., 2020, 32: 185.
[31]
Zhang S S. J. Power Sources, 2006, 162(2): 1379.

doi: 10.1016/j.jpowsour.2006.07.074
[32]
Zhang H, Eshetu G G, Judez X, Li C M, Rodriguez-Martínez L M, Armand M. Angewandte Chemie Int. Ed., 2018, 57(46): 15002.

doi: 10.1002/anie.v57.46
[33]
Kim K, Ma H, Park S, Choi N S. ACS Energy Lett., 2020, 5(5): 1537.

doi: 10.1021/acsenergylett.0c00468
[34]
Sun X G, Wan S, Guang H Y, Fang Y X, Reeves K S, Chi M F, Dai S. J. Mater. Chem. A, 2017, 5(3): 1233.

doi: 10.1039/C6TA07757A
[35]
Younesi R, Veith G M, Johansson P, Edström K, Vegge T. Energy Environ. Sci., 2015, 8(7): 1905.

doi: 10.1039/C5EE01215E
[36]
Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Adv. Sci., 2019, 6(22): 1901036.

doi: 10.1002/advs.v6.22
[37]
Roy B, Cherepanov P, Nguyen C, Forsyth C, Pal U, Mendes T C, Howlett P, Forsyth M, MacFarlane D, Kar M. Adv. Energy Mater., 2021, 11(36): 2101422.

doi: 10.1002/aenm.v11.36
[38]
Chen X, Usrey M, Peña-Hueso A, West R, Hamers R J. J. Power Sources, 2013, 241: 311.

doi: 10.1016/j.jpowsour.2013.04.079
[39]
Qian Q L, Yang Y F, Shao H X. Phys. Chem. Chem. Phys., 2017, 19(42): 28772.

doi: 10.1039/C7CP04839D
[40]
Zhang Y J, Wu Y, Li H Y, Chen J H, Lei D N, Wang C X. Nat. Commun., 2022, 13: 1297.

doi: 10.1038/s41467-022-28959-5 pmid: 35277497
[41]
Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H S, Matthews B E, Lee H, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Nat. Energy, 2019, 4(9): 796.

doi: 10.1038/s41560-019-0464-5
[42]
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Nat. Energy, 2018, 3(8): 674.

doi: 10.1038/s41560-018-0196-y
[43]
Zou Y G, Shen Y B, Wu Y Q, Xue H J, Guo Y J, Liu G, Wang L M, Ming J. Chem. Eur. J., 2020, 26(35): 7930.

doi: 10.1002/chem.v26.35
[44]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.

doi: 10.1038/s41560-019-0336-z
[45]
Zheng J M, Lochala J A, Kwok A, Deng Z D, Xiao J. Adv. Sci., 2017, 4(8): 1700032.

doi: 10.1002/advs.v4.8
[46]
Lin S S, Hua H M, Lai P B, Zhao J B. Adv. Energy Mater, 2021, 11(36): 2101775.

doi: 10.1002/aenm.v11.36
[47]
Ma G Q, Wang L, He X M, Zhang J J, Chen H C, Xu W G, Ding Y S. ACS Appl. Energy Mater., 2018, 1(10): 5446.
[48]
Wang W, Zhang J L, Yang Q, Wang S W, Wang W H, Li B H. ACS Appl. Mater. Interfaces, 2020, 12(20): 22901.

doi: 10.1021/acsami.0c03952
[49]
Perez Beltran S, Cao X, Zhang J G, Balbuena P B. Chem. Mater., 2020, 32(14): 5973.

doi: 10.1021/acs.chemmater.0c00987
[50]
Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Joule, 2019, 3(7): 1662.

doi: 10.1016/j.joule.2019.05.006
[51]
Yamada Y, Yamada A. J. Electrochem. Soc., 2015, 162(14): A2406.

doi: 10.1149/2.0041514jes
[52]
Chang C Y, Yao Y, Li R R, Cong Z F, Li L W, Guo Z H, Hu W G, Pu X. J. Mater. Chem. A, 2022, 10(16): 9001.

doi: 10.1039/D1TA10618J
[53]
Xu K. Chem. Rev., 2014, 114(23): 11503.

doi: 10.1021/cr500003w
[54]
Xiang J, Wu F, Chen R J, Li L, Yu H G. J. Power Sources, 2013, 233: 115.

doi: 10.1016/j.jpowsour.2013.01.123
[55]
Fan X L, Wang C S. Chem. Soc. Rev., 2021, 50(18): 10486.

doi: 10.1039/D1CS00450F
[56]
Sun X G, Angell C A. Electrochem. Commun., 2005, 7(3): 261.

doi: 10.1016/j.elecom.2005.01.010
[57]
Sun X G, Austen Angell C. Solid State Ionics, 2004, 175(1): 257.

doi: 10.1016/j.ssi.2003.11.035
[58]
Sun X G, Angell C A. Electrochem. Commun., 2009, 11(7): 1418.

doi: 10.1016/j.elecom.2009.05.020
[59]
Xue L G, Ueno K, Lee S Y, Angell C A. J. Power Sources, 2014, 262: 123.

doi: 10.1016/j.jpowsour.2014.03.099
[60]
Su C C, He M N, Redfern P C, Curtiss L A, Shkrob I A, Zhang Z C. Energy Environ. Sci., 2017, 10(4): 900.

doi: 10.1039/C7EE00035A
[61]
Dong L W, Liu Y P, Chen D J, Han Y P, Ji Y P, Liu J P, Yuan B T, Dong Y F, Li Q, Zhou S Y, Zhong S J, Liang Y F, Yang M Q, Yang C H, He W D. Energy Storage Mater., 2022, 44: 527.
[62]
Zheng Q F, Li G J, Zheng X W, Xing L D, Xu K, Li W S. Energy Environ. Mater., 2022, 5(3): 906.

doi: 10.1002/eem2.v5.3
[63]
Wu F, Xiang J, Li L, Chen J Z, Tan G Q, Chen R J. J. Power Sources, 2012, 202: 322.

doi: 10.1016/j.jpowsour.2011.11.065
[64]
Hu L B, Zhang Z C, Amine K. Electrochem. Commun., 2013, 35: 76.

doi: 10.1016/j.elecom.2013.08.009
[65]
Holoubek J, Yu M Y, Yu S C, Li M Q, Wu Z H, Xia D W, Bhaladhare P, Gonzalez M S, Pascal T A, Liu P, Chen Z. ACS Energy Lett., 2020, 5(5): 1438.

doi: 10.1021/acsenergylett.0c00643
[66]
Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D. Langmuir, 2014, 30(25): 7414.

doi: 10.1021/la501368y pmid: 24885475
[67]
Zhang Z C, Hu L B, Wu H M, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energy Environ. Sci., 2013, 6(6): 1806.

doi: 10.1039/c3ee24414h
[68]
Fu C K, Ma Y L, Lou S F, Cui C, Xiang L Z, Zhao W, Zuo P J, Wang J J, Gao Y Z, Yin G P. J. Mater. Chem. A, 2020, 8(4): 2066.

doi: 10.1039/C9TA11341J
[69]
Kim Y S, Lee S H, Son M Y, Jung Y M, Song H K, Lee H. ACS Appl. Mater. Interfaces, 2014, 6(3): 2039.

doi: 10.1021/am405092y
[70]
Zhang Q Q, Liu K, Ding F, Li W, Liu X J, Zhang J L. Electrochimica Acta, 2019, 298: 818.

doi: 10.1016/j.electacta.2018.12.104
[71]
Fu F, Liu Y, Sun C, Cong L N, Liu Y L, Sun L Q, Xie H M. Energy Environ. Mater., 2023, 6(3): e12367.

doi: 10.1002/eem2.v6.3
[72]
Zhang Q Q, Liu K, Ding F, Li W, Liu X J, Zhang J L. ACS Appl. Mater. Interfaces, 2017, 9(35): 29820.

doi: 10.1021/acsami.7b09119
[73]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.

doi: 10.1021/ja412807w pmid: 24654781
[74]
Li S P, Fang S, Li Z W, Chen W Y, Dou H, Zhang X G. Batter. Supercaps, 2022, 5(4): e202100416.
[75]
Amanchukwu C V, Yu Z A, Kong X, Qin J, Cui Y, Bao Z N. J. Am. Chem. Soc., 2020, 142(16): 7393.

doi: 10.1021/jacs.9b11056 pmid: 32233433
[76]
Holoubek J, Yan Q Z, Liu H D, Hopkins E J, Wu Z H, Yu S C, Luo J, Pascal T A, Chen Z, Liu P. ACS Energy Lett., 2022, 7(2): 675.

doi: 10.1021/acsenergylett.1c02723
[77]
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Nat. Energy, 2018, 3(9): 739.

doi: 10.1038/s41560-018-0199-8
[78]
Zhao Y, Zhou T H, El Kazzi M, Coskun A. ACS Appl. Energy Mater., 2022, 5(6): 7784.

doi: 10.1021/acsaem.2c01261
[79]
Xia M, Lin M, Liu G P, Cheng Y, Jiao T P, Fu A, Yang Y, Wang M S, Zheng J M. Chem. Eng. J., 2022, 442: 136351.

doi: 10.1016/j.cej.2022.136351
[80]
Horiuchi S, Zhu H J, Forsyth M, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Electrochimica Acta, 2017, 241: 272.

doi: 10.1016/j.electacta.2017.04.165
[81]
Hu M, Pang X L, Zhou Z. J. Power Sources, 2013, 237: 229.

doi: 10.1016/j.jpowsour.2013.03.024
[82]
Dong L, Liang F X, Wang D, Zhu C Z, Liu J H, Gui D Y, Li C H. Electrochimica Acta, 2018, 270: 426.

doi: 10.1016/j.electacta.2018.03.108
[83]
Yong T Q, Zhang L Z, Wang J L, Mai Y J, Yan X D, Zhao X Y. J. Power Sources, 2016, 328: 397.

doi: 10.1016/j.jpowsour.2016.08.044
[84]
Li H F, Pang J, Yin Y P, Zhuang W D, Wang H, Zhai C X, Lu S G. RSC Adv., 2013, 3(33): 13907.

doi: 10.1039/c3ra40275d
[85]
Lombardo L, Brutti S, Navarra M A, Panero S, Reale P. J. Power Sources, 2013, 227: 8.

doi: 10.1016/j.jpowsour.2012.11.017
[86]
Li F, Liu J D, He J, Hou Y Y, Wang H P, Wu D X, Huang J D, Ma J M. Angewandte Chemie Int. Ed., 2022, 61(27): e202205091.
[87]
Hu Y S, Kong W H, Li H, Huang X J, Chen L Q. Electrochem. Commun., 2004, 6(2): 126.

doi: 10.1016/j.elecom.2003.10.024
[88]
Lee S Y, Park Y J. ACS Omega, 2020, 5(7): 3579.

doi: 10.1021/acsomega.9b03932
[89]
Liu Y L, Hamam I, Dahn J R. J. Electrochem. Soc., 2020, 167(11): 110527.

doi: 10.1149/1945-7111/aba36a
[90]
Michan A L, Parimalam B S, Leskes M, Kerber R N, Yoon T, Grey C P, Lucht B L. Chem. Mater., 2016, 28(22): 8149.

doi: 10.1021/acs.chemmater.6b02282
[91]
El Ouatani L, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D. J. Electrochem. Soc., 2009, 156(2): A103.

doi: 10.1149/1.3029674
[92]
Tornheim A, He M N, Su C C, Zhang Z C. J. Electrochem. Soc., 2017, 164(1): A6366.

doi: 10.1149/2.0471701jes
[93]
Xia J, Dahn J R. J. Power Sources, 2016, 324: 704.

doi: 10.1016/j.jpowsour.2016.06.008
[94]
Burns J C, Petibon R, Nelson K J, Sinha N N, Kassam A, Way B M, Dahn J R. J. Electrochem. Soc., 2013, 160(10): A1668.

doi: 10.1149/2.031310jes
[95]
Petibon R, Xia J, Ma L, Bauer M K G, Nelson K J, Dahn J R. J. Electrochem. Soc., 2016, 163(13): A2571.

doi: 10.1149/2.0321613jes
[96]
Xia J, Aiken C P, Ma L, Kim G Y, Burns J C, Chen L P, Dahn J R. J. Electrochem. Soc., 2014, 161(6): A1149.

doi: 10.1149/2.108406jes
[97]
Haregewoin A M, Wotango A S, Hwang B J. Energy Environ. Sci., 2016, 9(6): 1955.

doi: 10.1039/C6EE00123H
[98]
Zhang B D, Wang L L, Wang X T, Zhou S Y, Fu A, Yan Y W, Wang Q S, Xie Q S, Peng D L, Qiao Y, Sun S G. Energy Storage Mater., 2022, 53: 492.
[99]
Wang X T, Gu Z Y, Li W H, Zhao X X, Guo J Z, Du K D, Luo X X, Wu X L. Chem. Asian J., 2020, 15(18): 2803.

doi: 10.1002/asia.v15.18
[100]
Liu Q Y, Yang G J, Liu S, Han M, Wang Z X, Chen L Q. ACS Appl. Mater. Interfaces, 2019, 11(19): 17435.

doi: 10.1021/acsami.9b03417
[101]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M. J. Power Sources, 2013, 229: 308.

doi: 10.1016/j.jpowsour.2012.12.056
[102]
Shim E G, Nam T H, Kim J G, Kim H S, Moon S I. Electrochimica Acta, 2009, 54(8): 2276.

doi: 10.1016/j.electacta.2008.10.037
[103]
Zhu Y M, Luo X Y, Zhi H Z, Liao Y H, Xing L D, Xu M Q, Liu X, Xu K, Li W S. J. Mater. Chem. A, 2018, 6(23): 10990.

doi: 10.1039/C8TA01236A
[104]
Sun H H, Liu J D, He J, Wang H P, Jiang G X, Qi S H, Ma J M. Sci. Bull., 2022, 67(7): 725.

doi: 10.1016/j.scib.2022.01.012
[105]
Han J G, Park I, Cha J, Park S, Park S, Myeong S, Cho W, Kim S S, Hong S Y, Cho J, Choi N S. ChemElectroChem, 2017, 4(1): 3.

doi: 10.1002/celc.201600812
[106]
Liang X, Huang J, Zheng Y, Shi P C, Sun Y, Xiang H F. Electrochimica Acta, 2019, 316: 228.

doi: 10.1016/j.electacta.2019.05.137
[107]
Zhang H P, Xia Q, Wang B, Yang L C, Wu Y P, Sun D L, Gan C L, Luo H J, Bebeda A W, van Ree T. Electrochem. Commun., 2009, 11(3): 526.

doi: 10.1016/j.elecom.2008.11.050
[108]
Tu W Q, Ye C C, Yang X R, Xing L D, Liao Y H, Liu X, Li W S. J. Power Sources, 2017, 364: 23.

doi: 10.1016/j.jpowsour.2017.08.021
[109]
Peebles C, Sahore R, Gilbert J A, Garcia J C, Tornheim A, Bareño J, Iddir H, Liao C, Abraham D P. J. Electrochem. Soc., 2017, 164(7): A1579.

doi: 10.1149/2.1101707jes
[110]
Park S, Jeong S Y, Lee T K, Park M W, Lim H Y, Sung J, Cho J, Kwak S K, Hong S Y, Choi N S. Nat. Commun., 2021, 12: 838.

doi: 10.1038/s41467-021-21106-6
[111]
Chen H Y, Chen J W, Zhang W G, Xie Q M, Che Y X, Wang H R, Xing L D, Xu K, Li W S. J. Mater. Chem. A, 2020, 8(42): 22054.

doi: 10.1039/D0TA07438A
[112]
Liu Y C, Hong L, Jiang R, Wang Y D, Patel S V, Feng X Y, Xiang H F. ACS Appl. Mater. Interfaces, 2021, 13(48): 57430.

doi: 10.1021/acsami.1c18783
[113]
Yang T X, Zeng H N, Wang W L, Zhao X Y, Fan W Z, Wang C Y, Zuo X X, Zeng R H, Nan J M. J. Mater. Chem. A, 2019, 7(14): 8292.

doi: 10.1039/C9TA01293A
[114]
Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Sci. Adv., 2018, 4(12): eaau9245.

doi: 10.1126/sciadv.aau9245
[115]
Beichel W, Klose P, Blattmann H, Hoecker J, Kratzert D, Krossing I. ChemElectroChem, 2018, 5(10): 1415.

doi: 10.1002/celc.v5.10
[116]
Shi P C, Liu F F, Feng Y Z, Zhou J F, Rui X H, Yu Y. Small, 2020, 16(30): 2001989.

doi: 10.1002/smll.v16.30
[117]
Xu N B, Shi J W, Liu G P, Yang X R, Zheng J M, Zhang Z R, Yang Y. J. Power Sources Adv., 2021, 7: 100043.

doi: 10.1016/j.powera.2020.100043
[118]
Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Adv. Funct. Mater., 2017, 27(10): 1605989.

doi: 10.1002/adfm.v27.10
[119]
Chen J W, Xing L D, Yang X R, Liu X, Li T J, Li W S. Electrochimica Acta, 2018, 290: 568.

doi: 10.1016/j.electacta.2018.09.077
[120]
Zhao D N, Wang P, Cui X L, Mao L P, Li C L, Li S Y. Electrochimica Acta, 2018, 260: 536.

doi: 10.1016/j.electacta.2017.12.103
[121]
Zhao W M, Ji Y J, Zhang Z R, Lin M, Wu Z L, Zheng X, Li Q, Yang Y. Curr. Opin. Electrochem., 2017, 6(1): 84.
[122]
Pires J, Timperman L, Castets A, Santos Peña J, Dumont E, Levasseur S, Dedryvère R, Tessier C, Anouti M. RSC Adv., 2015, 5(52): 42088.

doi: 10.1039/C5RA05650K
[123]
Huang Y G, Li Y, Tan C L, Huang Z K, Pan Q C, Chu Y Q, Zheng F H, Wang H Q, Li Q Y. ACS Appl. Energy Mater., 2022, 5(1): 639.

doi: 10.1021/acsaem.1c03150
[124]
Li B, Wang Y Q, Tu W Q, Wang Z S, Xu M Q, Xing L D, Li W S. Electrochimica Acta, 2014, 147: 636.

doi: 10.1016/j.electacta.2014.09.151
[125]
Jankowski P, Lindahl N, Weidow J, Wieczorek W, Johansson P. ACS Appl. Energy Mater., 2018, 1(6): 2582.

doi: 10.1021/acsaem.8b00295
[126]
Xia J, Petibon R, Sinha N N, Dahn J R. J. Electrochem. Soc., 2015, 162(12): A2227.

doi: 10.1149/2.0151512jes
[127]
Wang Z S, Rao M M, Li J H, Ye C C, Liu Z D, Xu Q S, Jin X J, Du R A, Xie Q M, Luo W, Li W S, Qiu Y C. J. Electroanal. Chem., 2019, 851: 113411.

doi: 10.1016/j.jelechem.2019.113411
[128]
Hong P B, Xu M Q, Liao B, Wu Y N, Lin N N, Huang Q M, Li W S. J. Electrochem. Soc., 2017, 164(13): A2914.

doi: 10.1149/2.0181713jes
[129]
Hong P B, Xu M Q, Chen D R, Chen X Q, Xing L D, Huang Q M, Li W S. J. Electrochem. Soc., 2016, 164(2): A137.

doi: 10.1149/2.0531702jes
[130]
Shi X T, Zheng T L, Xiong J W, Zhu B Y, Cheng Y J, Xia Y G. ACS Appl. Mater. Interfaces, 2021, 13(48): 57107.

doi: 10.1021/acsami.1c15690
[131]
Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q Y, Wang D Y, Xu W, Zhang J G. Adv. Funct. Mater., 2020, 30(24): 2001285.

doi: 10.1002/adfm.v30.24
[132]
Han S Y, Zhang H, Fan C J, Fan W Z, Yu L. Solid State Ion., 2019, 337: 63.

doi: 10.1016/j.ssi.2019.03.027
[133]
Chen X, Zhang Q. Acc. Chem. Res., 2020, 53(9): 1992.

doi: 10.1021/acs.accounts.0c00412
[134]
Tan J F, Liu J P. ENERGY ENVIRONMENTAL Mater., 2021, 4(3): 302.

doi: 10.1002/eem2.v4.3
[135]
Zhang H, Liu X, Li H H, Hasa I, Passerini S. Angewandte Chemie Int. Ed., 2021, 60(2): 598.

doi: 10.1002/anie.v60.2
[136]
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. Science, 2015, 350(6263): 938.

doi: 10.1126/science.aab1595
[137]
Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A. Nat. Energy, 2016, 1(10): 16129.

doi: 10.1038/nenergy.2016.129
[138]
Cui G L. Matter, 2020, 2(4): 805.

doi: 10.1016/j.matt.2020.02.003
[139]
Lu Y, Zhao C Z, Yuan H, Cheng X B, Huang J Q, Zhang Q. Adv. Funct. Mater., 2021, 31(18): 2009925.

doi: 10.1002/adfm.v31.18
[140]
Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J, Guo Y G. Angew. Chem., 2020, 132(29): 12167.

doi: 10.1002/ange.v132.29
[141]
Kim T, Song W T, Son D Y, Ono L K, Qi Y B. J. Mater. Chem. A, 2019, 7(7): 2942.

doi: 10.1039/C8TA10513H
[142]
Zhao N, Khokhar W, Bi Z J, Shi C, Guo X X, Fan L Z, Nan C W. Joule, 2019, 3(5): 1190.

doi: 10.1016/j.joule.2019.03.019
[143]
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10(9): 682.

doi: 10.1038/nmat3066
[144]
Zhao F P, Liang J W, Yu C, Sun Q, Li X N, Adair K, Wang C H, Zhao Y, Zhang S M, Li W H. Adv. Energy Mater., 2020, 10(9): 1903422.

doi: 10.1002/aenm.v10.9
[145]
Hao X G, Zhao Q, Su S M, Zhang S Q, Ma J B, Shen L, Yu Q P, Zhao L, Liu Y, Kang F Y, He Y B. Adv. Energy Mater., 2019, 9(34): 1901604.

doi: 10.1002/aenm.v9.34
[146]
Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. Nano Energy, 2019, 61: 119.

doi: 10.1016/j.nanoen.2019.04.058
[147]
Luo W, Gong Y H, Zhu Y Z, Li Y J, Yao Y G, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y F, Wachsman E D, Hu L B. Adv. Mater., 2017, 29(22): 1606042.

doi: 10.1002/adma.v29.22
[148]
Qiu J L, Liu X Y, Chen R S, Li Q H, Wang Y, Chen P H, Gan L Y, Lee S J, Nordlund D, Liu Y J, Yu X Q, Bai X D, Li H, Chen L Q. Adv. Funct. Mater., 2020, 30(22): 1909392.

doi: 10.1002/adfm.v30.22
[149]
Homann G, Stolz L, Neuhaus K, Winter M, Kasnatscheew J. Adv. Funct. Mater., 2020, 30(46): 2006289.

doi: 10.1002/adfm.v30.46
[150]
Li S, Chen Y M, Liang W F, Shao Y F, Liu K W, Nikolov Z, Zhu Y. Joule, 2018, 2(9): 1838.

doi: 10.1016/j.joule.2018.06.008
[151]
Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. J. Am. Chem. Soc., 2016, 138(30): 9385.

doi: 10.1021/jacs.6b05341
[152]
Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. Nano Lett., 2018, 18(6): 3829.

doi: 10.1021/acs.nanolett.8b01111
[153]
Chen S M, Wen K H, Fan J T, Bando Y, Golberg D. J. Mater. Chem. A, 2018, 6(25): 11631.

doi: 10.1039/C8TA03358G
[154]
Lv Z L, Zhou Q, Zhang S, Dong S M, Wang Q L, Huang L, Chen K, Cui G L. Energy Storage Mater., 2021, 37: 215.
[155]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.

doi: 10.1002/adma.v32.17
[156]
Song X F, Zhang Y N, Ye Y W, Liu Z F, Cheng F, Li H R. ACS Appl. Energy Mater., 2020, 3(5): 4906.

doi: 10.1021/acsaem.0c00485
[157]
Zheng Y W, Li X W, Fullerton W R, Qian Q, Shang M W, Niu J J, Li C Y. ACS Appl. Energy Mater., 2021, 4(6): 5639.

doi: 10.1021/acsaem.1c00451
[1] Disheng Yu, Changlin Liu, Xue Lin, Lizhi Sheng, Lili Jiang. Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries [J]. Progress in Chemistry, 2024, 36(1): 132-144.
[2] Tan Shi, Donghui Kou, Yanan Xue, Shufen Zhang, Wei Ma. Saccharide Sensors Based on Phenylboronic Acid Derivatives [J]. Progress in Chemistry, 2024, 36(1): 106-119.
[3] Zhiyuan Xu, Guowei Gao, Yansheng Li, Qingwei Liao, Jingfang Hu, Xueji Zhang. Home Diagnosis of Myocardial Infarction: Aptamer-Based cTnI Sensing Technology [J]. Progress in Chemistry, 2023, 35(8): 1266-1274.
[4] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[5] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[6] Zhao Lanqing, Hou Minjie, Zhang Da, Zhou Yingjie, Xie Zhipeng, Liang Feng. Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for Solid-State Sodium Ion Batteries [J]. Progress in Chemistry, 2023, 35(11): 1625-1637.
[7] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[8] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[9] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[10] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[11] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[12] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[13] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[14] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[15] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.