中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1053-1064 DOI: 10.7536/PC221116 Previous Articles   Next Articles

• Review •

Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries

Qingping Li, Tao Li, Chenchen Shao, Wei Liu()   

  1. School of Materials Science and Engineering, Ocean University of China,Qingdao 266000, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: weiliu@ouc.edu.cn
Richhtml ( 59 ) PDF ( 1042 ) Cited
Export

EndNote

Ris

BibTeX

Prussian blue (PB) and its analogues (PBAs), which are composed of three-dimensional frame structure, are ideal cathode materials for sodium ion battery (SIB) and can provide a wide channel for sodium ion embedding and removal. However, there are a lot of water molecules and vacancies in PBAs materials, which greatly reduces the storage sites of sodium ions. Furthermore, transition metal ions in the metal organic framework are easy to dissolve during the cycles, resulting in limited sodium storage capacity and poor cycle stability of PBAs cathode materials. In recent years, a variety of PBAs modification technologies have been developed to improve their sodium storage performance. Based on recent related work and existing literature reports, this paper summarizes the process design, preparation methods, electrochemical behavior and other aspects of different modification technologies, and systematically reviews and prospects the research progress of various modification technologies of PBAs cathode materials in sodium ion batteries.

Contents

1 Introduction

2 Structure of Prussian blue and its analogues

3 Modification method of Prussian blue cathode material

3.1 Chelating agent assisted method

3.2 Increase Na+ concentration

3.3 Element doping

3.4 Inactive layer coating

3.5 Conductive agent composite technology

3.6 Self-assembly

3.7 Other modification methods

4 Conclusion and outlook

Fig.1 SEM images of (a,b) PW-1 and (c,d) PW-2 ; (e) Schematic diagram of the formation mechanism of PW-1[25]
Fig.2 (a,b) Electronic density of states of NaNiFe(CN)6 (cubic NiHCF) and Na2NiFe(CN)6 (monoclinic NiHCF), respectively[35]
Fig.3 SEM of (a) PB-0M, (b) PB-1M, (c) PB-2M, and (d) PB-4M; Charge-discharge profiles of (e) PB-0M, (f) PB-1M, (g) PB-2M, and (h) PB-4M between 2.0 and 4.0 V at 0.2 C at RT[40]
Fig.4 (a,b) TEM images of NiHCF and K-doped NiHCF, respectively; (c~e) The optimized migration paths of Na+ ions and the corresponding energy barrier profiles for NiHCF and K-doped NiHCF species; (f, g) the total density of state (TDOS) patterns of NiHCF and K-doped NiHCF[52]
Fig.5 (a) Schematic illustration of the synthesis process of PBM@PBN sample; (b) EDS mapping of PBM@PBN sampl; (c) TEM image and SAED pattern of PBM@PBN sample[54]
Fig.6 (a) the cycling performance of NFFCN-Original, NFFCN-0.005M NiCl2, NFFCN-0.002M NiCl2 at 500 mA·g-1; (b) rate performance comparison of NFFCN-Original and NFFCN-0.002M NiCl2[55]
Fig.7 (a) Preparation process of MnFeHCF@MnFeHCF core-shell material; (b) MnFeHCF@MnFeHCF samples synthesized under different Fe/Mn molar ratios[57]
Fig.8 (a) Synthesis process of highly uniform NMHCF/RGO. SEM images of (b) NMHCF and (c) NMHCF/RGO samples; TEM images of (d) NMHCF/RGO; (e) Elemental mapping images of the NMHCF/RGO; (f) Rate performances of NMHCF/RGO and NMHCF[59]
Fig.9 SEM images of (a, b) PB; (c, d) PB@PANI-NP and (e, f) PB@PANI[65]
Fig.10 (a) Schematic illustration of the synthesis procedure for Na1.58Fe[Fe(CN)6]0.92 hollow nanospheres and the discharge mechanism of Na1.58Fe[Fe(CN)6]0.92 nanosphere electrodes in sodium-ion batteries.[70].; (b,c) TEM images of hollow Na1.58Fe[Fe(CN)6]0.92[70] ; (d) Synthetic procedures for the preparation of hierarchical hollow rod-like Prussian blue[71]; (e~g) Time-dependent FESEM images of PW-HN after the reaction time of 1 h, 12 h, 24 h[72]; (h) Cross-section FESEM images of PW-HN[72]
Table 1 Performance comparison of PBAs modified by different methods
PBAs Modification method Discharge specific capacity Cyclic stability Rate capability ref
Na1.56Mn[Fe(CN)6]0.860.14·1.2H2O Chelating agent assisted 133 mAh·g-1 at 15 mA·g-1 80% after 100 cycles at 150 mA·g-1 89 mAh·g-1 at 300 mA·g-1 22
Na1.80Mn[Fe(CN)6]0.98·1.76H2O Chelating agent assisted 144 mAh·g-1 at 0.1 C 72.7% after 2100 cycles at 1 C 86.6 mAh·g-1 at 10 C 25
Na2.01Ni[Fe(CN)6]0.85·1.61H2O Chelating agent assisted 86.3 mAh·g-1 at 0.2C 90.4% after 800 cycles at 0.5 C 74.9 mAh·g-1 at 10 C 32
Na2.2Ni[Fe(CN)6]0.80.2·2.5H2O Chelating agent assisted 76.4 mAh·g-1 at 0.2 C 90.4% after 16 000 cycles at 20 C 71.9 mAh·g-1 at 10 C 33
Na1.92Mn[Fe(CN)6]0.98·1.38H2O Chelating agent assisted 152.8 mAh·g-1 at 10 mA·g-1 82 % after 500 cycles at 100 mA·g-1 110.3 mAh·g-1 at 1 A·g-1 34
Na1.48Ni[Fe(CN)6]0.89·2.87H2O Chelating agent assisted 85.7 mAh·g-1 at 0.1 C 78% after 1200 cycles at 50 C 66.2 mAh·g-1 at 50 C 35
Na0.22Ni[Fe(CN)6]0.76·3.67H2O Chelating agent assisted 78 mAh·g-1 at 17 mA·g-1 97.3% after 1200 cycles at
300 mAh·g-1
57.5 mAh·g-1 at 4.25 A·g-1 36
Na1.87Co[Fe(CN)6]0.98·2.2H2O Increase Na+ concentration 151 mAh·g-1 at 20 mA·g-1 85.2% after 100 cycles at 20 mA·g-1 115 mAh·g-1 at 400 mA·g-1 26
Na1.96Mn[Mn(CN)6]0.990.01·2H2O Increase Na+ concentration 209 mAh·g-1 at 0.2 C 75% after 100 cycles at 2 C - 39
NaxFe[Fe(CN)6]y·nH2O Increase Na+ concentration 130 mAh·g-1 at 0.2 C - 110 mAh·g-1 at 5 C 40
Na1.52Ni0.24Fe0.76[Fe(CN)6]0.95·3.06H2O Element doping 105.9 mAh·g-1 at 20 mA·g-1 73.1% after 1000 cycles at 1 A·g-1 55.5 mAh·g-1 at 2 A·g-1 44
Na2Cu0.6Ni0.4[Fe(CN)6] Element doping 62 mAh·g-1 at 0.5 C 96% after 1000 cycles at 10 C 56 mAh·g-1 at 10 C 45
Na1.68Ni0.14Co0.86[Fe(CN)6]0.84 Element doping 145 mAh·g-1 at 15 mA·g-1 90% after 100 cycles at 750 mA·g-1 110 mAh·g-1 at 750 mA·g-1 46
Na1.85Ni0.40Co0.31Fe0.29
[Fe(CN)6]0.97·2.5H2O
Element doping 120.4 mAh·g-1 at 20 mA·g-1 95.6% after 1000 cycles at 2 A·g-1 80 mA·h-1 at 2 A·g-1 48
Na1.61K0.13Ni[Fe(CN)6]0.89·
1.48H2O
Element doping 87.1 mAh·g-1 at 10 mA·g-1 86.1% after 500 cycles at 800 mA·g-1 68.2 mAh·g-1 at 200 mA·g-1 52
Mn[Fe(CN)6]@Ni[Fe(CN)6] Inactive layer coating 126.9 mAh·g-1 at 0.5 C 74.3% after 800 cycles at 1 C 87.2 mAh·g-1 at 10 C 54
NNiFCN@NFFCN Inactive layer coating 113.67 mAh·g-1 at 20 mA·g-1 83.18 after 100 cycles at 500 mA·g-1 82.9 mAh·g-1 at 500 mA·g-1 55
FeHCF@CuHCF Inactive layer coating 89 mAh·g-1 at 50 mA·g-1 80.6 after 1000 cycles at 50 mA·g-1 51.9 mAh·g-1 at 1.6 A g-1 56
NaMn[Fe(CN)6]/RGO Conductive agent
composite technology
161 mAh·g-1 at 20 mA·g-1 - 90 mAh·g-1 at 1 A·g-1 59
NaxFe[Fe(CN)6]/CNT Conductive agent
composite technology
142 mAh·g-1 at 0.1 C at -25℃ 86% after 1000 cycles at 2.4 C at -25℃ 88.4 mA·h g-1 at 2.4 C at -25℃ 63
NaxFe[Fe(CN)6]@PANI Conductive agent
composite technology
108.3 mAh·g-1 at 100 mA·g-1 93.4% after 500 cycles at 100 mA·g-1 90.3 mAh·g-1 at 2 A·g-1 65
Na2Fe[Fe(CN)6]@PANI Conductive agent
composite technology
149.9 mAh·g-1 at 1 C 62.7% after 500 cycles at 1 C 125.6 mAh·g-1 at 20 C 66
Na1.58Fe[Fe(CN)6]0.92 Self-assembly 142 mAh·g-1 at 0.1 C 90% after 800 cycles at 2 C 101 mAh·g-1 at 5 C 70
Na0.99Mn0.37Fe0.63[Fe(CN)6]0.96·1.36H2O Self-assembly 117.3 mAh·g-1 at 1 C 98.5% after 200 cycles at 1 C 92.4 mAh·g-1 at 20 C 71
Na3.1Fe4[Fe(CN)6]3 Self-assembly 115 mAh·g-1 at 2 C 65% after 10 000 cycles at 10 C 83 mAh·g-1 at 50 C 72
[1]
Hwang J Y, Myung S T, Sun Y K. Chem. Soc. Rev., 2017, 46(12): 3529.

doi: 10.1039/C6CS00776G
[2]
Hu Y S, Komaba S, Forsyth M, Johnson C, Rojo T. Small Methods, 2019, 3(4): 1900184.

doi: 10.1002/smtd.v3.4
[3]
Wang Z N, Sougrati M T, He Y W, Le Pham P N, Xu W, Iadecola A, Ge R L, Zhou W H, Zheng Q, Li X F, Wang J H. Nano Energy, 2023, 109: 108256.

doi: 10.1016/j.nanoen.2023.108256
[4]
Choi A, Kim T, Kim M H, Lee S W, Jung Y H, Lee H W. Adv. Funct. Mater., 2022, 32(19): 2111901.

doi: 10.1002/adfm.v32.19
[5]
Wang B Q, Han Y, Wang X, Bahlawane N, Pan H G, Yan M, Jiang Y Z. iScience, 2018, 3: 110.

doi: 10.1016/j.isci.2018.04.008
[6]
Shen X, Zhou Q, Han M, Qi X G, Li B, Zhang Q Q, Zhao J M, Yang C, Liu H Z, Hu Y S. Nat. Commun., 2021, 12: 2848.

doi: 10.1038/s41467-021-23132-w
[7]
Deng L, Yu F D, Xia Y, Jiang Y S, Sui X L, Zhao L, Meng X H, Que L F, Wang Z B. Nano Energy, 2021, 82: 105659.

doi: 10.1016/j.nanoen.2020.105659
[8]
Liu Q N, Hu Z, Li W J, Zou C, Jin H L, Wang S, Chou S L, Dou S X. Energy Environ. Sci., 2021, 14(1): 158.

doi: 10.1039/D0EE02997A
[9]
Wang C C, Liu L J, Zhao S, Liu Y C, Yang Y B, Yu H J, Lee S, Lee G H, Kang Y M, Liu R, Li F J, Chen J. Nat. Commun., 2021, 12: 2256.

doi: 10.1038/s41467-021-22523-3
[10]
Li C F, Li A, Li M J, Xiong P X, Liu Y S, Cheng M R, Geng D L, Xu Y H. ACS Appl. Mater. Interfaces, 2022, 14(21): 24462.

doi: 10.1021/acsami.2c05005
[11]
Geng W G, Zhang Z H, Yang Z L, Tang H Y, He G. Chem. Commun., 2022, 58(28): 4472.

doi: 10.1039/D2CC00699E
[12]
Sun J G, Ye H L, Oh J A S, Plewa A, Sun Y, Wu T, Sun Q M, Zeng K Y, Lu L. Energy Storage Mater., 2021, 43: 182.
[13]
Peng J, Zhang W, Liu Q N, Wang J Z, Chou S L, Liu H K, Dou S X. Adv. Mater., 2022, 34(15): 2108384.

doi: 10.1002/adma.v34.15
[14]
Marzak P, Yun J, Dorsel A, Kriele A, Gilles R, Schneider O, Bandarenka A S. J. Phys. Chem. C, 2018, 122(16): 8760.

doi: 10.1021/acs.jpcc.8b00395
[15]
Nai J W, Zhang J T, Lou X W (David), Chem, 2018, 4(8): 1967.

doi: 10.1016/j.chempr.2018.07.001
[16]
Wu X Y, Sun M Y, Shen Y F, Qian J F, Cao Y L, Ai X P, Yang H X. ChemSusChem, 2014, 7(2): 407.

doi: 10.1002/cssc.201301036
[17]
Niu L, Chen L, Zhang J, Jiang P, Liu Z P. J. Power Sources, 2018, 380: 135.

doi: 10.1016/j.jpowsour.2018.01.083
[18]
Peng J, Li C, Yin J W, Wang J S, Yu Y H, Shen Y, Fang J, Chen A N, Xu Y, Rehman R, Fang C, Miao L, Jiang R Z, Li Q, Han J T, Huang Y H. ACS Appl. Energy Mater., 2019, 2(1): 187.

doi: 10.1021/acsaem.8b01686
[19]
Moritomo Y, Yoshida Y, Iwaizumi H, Inoue D, Nagai I, Shibata T. J. Phys. Soc. Jpn., 2021, 90(1): 013601.

doi: 10.7566/JPSJ.90.013601
[20]
Li M, Mullaliu A, Passerini S, Giorgetti M. Batteries, 2021, 7(1): 5.

doi: 10.3390/batteries7010005
[21]
Baster D, Kondracki Ł, Oveisi E, Trabesinger S, Girault H H. ACS Appl. Energy Mater., 2021, 4(9): 9758.

doi: 10.1021/acsaem.1c01832
[22]
Zuo D X, Wang C P, Wu J W, Qiu H J, Zhang Q, Han J J, Liu X J. Solid State Ion., 2019, 340: 115025.

doi: 10.1016/j.ssi.2019.115025
[23]
Jiang M W, Hou Z D, Wang J J, Ren L B, Zhang Y, Wang J G. Nano Energy, 2022, 102: 107708.

doi: 10.1016/j.nanoen.2022.107708
[24]
Wheeler S, Capone I, Day S, Tang C, Pasta M. Chem. Mater., 2019, 31(7): 2619.

doi: 10.1021/acs.chemmater.9b00471
[25]
Shen Z L, Guo S H, Liu C L, Sun Y P, Chen Z, Tu J, Liu S Y, Cheng J P, Xie J, Cao G S, Zhao X B. ACS Sustainable Chem. Eng., 2018, 6(12): 16121.

doi: 10.1021/acssuschemeng.8b02758
[26]
Li C, Zang R, Li P X, Man Z M, Wang S J, Li X M, Wu Y H, Liu S S, Wang G X. Chem. Asian J., 2018, 13(3): 342.

doi: 10.1002/asia.v13.3
[27]
Xie B X, Zuo P J, Wang L G, Wang J J, Huo H, He M X, Shu J, Li H F, Lou S F, Yin G P. Nano Energy, 2019, 61: 201.

doi: 10.1016/j.nanoen.2019.04.059
[28]
Xu L, Li H, Wu X Y, Shao M M, Liu S Y, Wang B, Zhao G Y, Sheng P, Chen X, Han Y, Cao Y L, Ai X P, Qian J F, Yang H X. Electrochem. Commun., 2019, 98: 78.

doi: 10.1016/j.elecom.2018.11.019
[29]
Yan C X, Zhao A L, Zhong F P, Feng X M, Chen W H, Qian J F, Ai X P, Yang H X, Cao Y L. Electrochimica Acta, 2020, 332: 135533.

doi: 10.1016/j.electacta.2019.135533
[30]
Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Nat. Commun., 2020, 11: 980.

doi: 10.1038/s41467-020-14444-4
[31]
Qin M S, Ren W H, Jiang R X, Li Q, Yao X H, Wang S Q, You Y, Mai L Q. ACS Appl. Mater. Interfaces, 2021, 13(3): 3999.

doi: 10.1021/acsami.0c20067
[32]
Xu Y, Chang M, Fang C, Liu Y, Qiu Y G, Ou M Y, Peng J, Wei P, Deng Z, Sun S X, Sun X P, Li Q, Han J T, Huang Y H. ACS Appl. Mater. Interfaces, 2019, 11(33): 29985.

doi: 10.1021/acsami.9b10312
[33]
Sun Y P, Xu Y L, Xu Z, Sun Y, Xu X W, Tu J, Xie J, Liu S Y, Zhao X B. J. Mater. Chem. A, 2021, 9(37): 21228.

doi: 10.1039/D1TA05998J
[34]
Peng F W, Yu L, Gao P Y, Liao X Z, Wen J G, He Y S, Tan G Q, Ren Y, Ma Z F. J. Mater. Chem. A, 2019, 7(39): 22248.

doi: 10.1039/C9TA08603J
[35]
Xu Y, Wan J, Huang L, Ou M Y, Fan C Y, Wei P, Peng J, Liu Y, Qiu Y G, Sun X P, Fang C, Li Q, Han J T, Huang Y H, Alonso J A, Zhao Y S. Adv. Energy Mater., 2019, 9(4): 1803158.

doi: 10.1002/aenm.v9.4
[36]
Xu Y, Ou M Y, Liu Y, Xu J, Sun X P, Fang C, Li Q, Han J T, Huang Y H. Nano Energy, 2020, 67: 104250.

doi: 10.1016/j.nanoen.2019.104250
[37]
Xu Y, Wan J, Huang L, Xu J, Ou M Y, Liu Y, Sun X P, Li S, Fang C, Li Q, Han J T, Huang Y H, Zhao Y S. Energy Storage Mater., 2020, 33: 432.
[38]
Wu X Y, Deng W W, Qian J F, Cao Y L, Ai X P, Yang H X. J. Mater. Chem. A, 2013, 1(35): 10130.

doi: 10.1039/c3ta12036h
[39]
Lee H W, Wang R Y, Pasta M, Woo Lee S, Liu N, Cui Y. Nat. Commun., 2014, 5: 5280.

doi: 10.1038/ncomms6280
[40]
Chen Y C, Woo H J, Rizwan M binti Yahya R, Cui D H, Luo D, Chen L, Arof A K M, Wang F. ACS Appl. Energy Mater., 2019, 2(12): 8570.

doi: 10.1021/acsaem.9b01491
[41]
Oliver-Tolentino M, González M M, Osiry H, Ramos-Sánchez G, González I. Dalton Trans., 2018, 47(46): 16492.

doi: 10.1039/c8dt03595d pmid: 30406804
[42]
Xie J P, Ma L, Li J L, Yin X Q, Wen Z R, Zhong Y L, Li C W, Liu Y, Shen Z X, Mai W J, Hong G, Zhang W J. Adv. Mater., 2022, 34(44): 2205625.

doi: 10.1002/adma.v34.44
[43]
Oliver-Tolentino M A, Vázquez-Samperio J, Arellano-Ahumada S N, Guzmán-Vargas A, Ramírez-Rosales D, Wang J A, Reguera E. J. Phys. Chem. C, 2018, 122(36): 20602.

doi: 10.1021/acs.jpcc.8b05506
[44]
Wang J, Mi C H, Nie P, Dong S Y, Tang S Y, Zhang X G. J. Electroanal. Chem., 2018, 818: 10.

doi: 10.1016/j.jelechem.2018.04.011
[45]
Li W F, Zhang F, Xiang X D, Zhang X C. ChemElectroChem, 2018, 5(2): 350.

doi: 10.1002/celc.201700958
[46]
Peng J, Wang J S, Yi H C, Hu W J, Yu Y H, Yin J W, Shen Y, Liu Y, Luo J H, Xu Y, Wei P, Li Y Y, Jin Y, Ding Y, Miao L, Jiang J J, Han J T, Huang Y H. Adv. Energy Mater., 2018, 8(11): 1702856.

doi: 10.1002/aenm.201702856
[47]
Ge P, Li S J, Shuai H L, Xu W, Tian Y, Yang L, Zou G Q, Hou H S, Ji X B. Adv. Mater., 2019, 31(3): 1806092.

doi: 10.1002/adma.v31.3
[48]
Zhang L L, Wei C, Fu X Y, Chen Z Y, Yan B, Sun P P, Chang K J, Yang X L. Carbon Energy, 2021, 3(5): 827.

doi: 10.1002/cey2.v3.5
[49]
Li J K, He X, Ostendorp S, Zhang L, Hou X, Zhou D, Yan B, Meira D M, Yang Y, Jia H, Schumacher G, Wang J, Paillard E, Wilde G, Winter M, Li J. Electrochimica Acta, 2020, 342: 135928.

doi: 10.1016/j.electacta.2020.135928
[50]
Shettigar A, Moorthy B, Paulraj V, Kim D K, Bharathi K K. ECS J. Solid State Sci. Technol., 2021, 10(6): 061012.

doi: 10.1149/2162-8777/ac0a42
[51]
Chen Z Y, Fu X Y, Zhang L L, Yan B, Yang X L. ACS Appl. Mater. Interfaces, 2022, 14(4): 5506.

doi: 10.1021/acsami.1c23793
[52]
Wei C, Fu X Y, Zhang L L, Liu J, Sun P P, Gao L, Chang K J, Yang X L. Chem. Eng. J., 2021, 421: 127760.

doi: 10.1016/j.cej.2020.127760
[53]
Yang D Z, Xu J, Liao X Z, He Y S, Liu H M, Ma Z F. Chem. Commun., 2014, 50(87): 13377.

doi: 10.1039/C4CC05830E
[54]
Feng F, Chen S L, Zhao S Q, Zhang W L, Miao Y G, Che H Y, Liao X Z, Ma Z F. Chem. Eng. J., 2021, 411: 128518.

doi: 10.1016/j.cej.2021.128518
[55]
Sun J G, Ye H L, Oh J A S, Sun Y, Plewa A, Wang Y M, Wu T, Zeng K Y, Lu L. Nano Res., 2022, 15(3): 2123.

doi: 10.1007/s12274-021-3844-7
[56]
Wang Z H, Huang Y X, Luo R, Wu F, Li L, Xie M, Huang J Q, Chen R J. J. Power Sources, 2019, 436: 226868.

doi: 10.1016/j.jpowsour.2019.226868
[57]
Zuo D X, Wang C P, Han J J, Han Q H, Hu Y N, Wu J W, Qiu H J, Zhang Q, Liu X J. J. Mater. Sci. Technol., 2022, 114: 180.

doi: 10.1016/j.jmst.2021.11.020
[58]
Parajuli D, Tanaka H, Sakurai K, Hakuta Y, Kawamoto T. Materials, 2021, 14(5): 1151.

doi: 10.3390/ma14051151
[59]
Wang H, Xu E Z, Yu S M, Li D T, Quan J J, Xu L, Wang L, Jiang Y. ACS Appl. Mater. Interfaces, 2018, 10(40): 34222.

doi: 10.1021/acsami.8b11157
[60]
Wang H, Wang L, Chen S M, Li G P, Quan J J, Xu E Z, Song L, Jiang Y. J. Mater. Chem. A, 2017, 5(7): 3569.

doi: 10.1039/C6TA10592K
[61]
Prabakar S J R, Jeong J, Pyo M. RSC Adv., 2015, 5(47): 37545.

doi: 10.1039/C5RA04769B
[62]
Luo J H, Sun S X, Peng J, Liu B, Huang Y Y, Wang K, Zhang Q, Li Y Y, Jin Y, Liu Y, Qiu Y G, Li Q, Han J T, Huang Y H. ACS Appl. Mater. Interfaces, 2017, 9(30): 25317.

doi: 10.1021/acsami.7b06334
[63]
You Y, Yao H R, Xin S, Yin Y X, Zuo T T, Yang C P, Guo Y G, Cui Y, Wan L J, Goodenough J B. Adv. Mater., 2016, 28(33): 7243.

doi: 10.1002/adma.201600846
[64]
Yuan Y B, Bin D, Dong X L, Wang Y G, Wang C X, Xia Y Y. ACS Sustainable Chem. Eng., 2020, 8(9): 3655.

doi: 10.1021/acssuschemeng.9b06588
[65]
Zhang Q, Fu L, Luan J Y, Huang X B, Tang Y G, Xie H L, Wang H Y. J. Power Sources, 2018, 395: 305.

doi: 10.1016/j.jpowsour.2018.05.085
[66]
Luo Y, Yang L X, Liu Q, Yan Y W. R. Soc. Open Sci., 2021, 8(11): 211092.

doi: 10.1098/rsos.211092
[67]
Peng F W, Yu L, Yuan S Q, Liao X Z, Wen J G, Tan G Q, Feng F, Ma Z F. ACS Appl. Mater. Interfaces, 2019, 11(41): 37685.

doi: 10.1021/acsami.9b12041
[68]
Wang X, Wang B Q, Tang Y X, Xu B B, Liang C, Yan M, Jiang Y Z. J. Mater. Chem. A, 2020, 8(6): 3222.

doi: 10.1039/C9TA12376H
[69]
Kim D S, Yoo H, Park M S, Kim H. J. Alloys Compd., 2019, 791: 385.

doi: 10.1016/j.jallcom.2019.03.317
[70]
Tang X, Liu H, Su D W, Notten P H L, Wang G X. Nano Res., 2018, 11(8): 3979.

doi: 10.1007/s12274-018-1979-y
[71]
Feng F, Chen S L, Liao X Z, Ma Z F. Small Methods, 2019, 3(4): 1800259.

doi: 10.1002/smtd.v3.4
[72]
Ren W H, Zhu Z X, Qin M S, Chen S, Yao X H, Li Q, Xu X M, Wei Q L, Mai L Q, Zhao C. Adv. Funct. Mater., 2019, 29(15): 1806405.

doi: 10.1002/adfm.v29.15
[73]
Lim C Q X, Tan Z K. ACS Appl. Energy Mater., 2021, 4(6): 6214.

doi: 10.1021/acsaem.1c00987
[74]
Wang P Y, Li Y H, Zhu D G, Gong F L, Fang S M, Zhang Y H, Sun S M. Dalton Trans., 2022, 51(25): 9622.

doi: 10.1039/D2DT01171A
[75]
Peng J, Zhang W, Hu Z, Zhao L F, Wu C, Peleckis G, Gu Q F, Wang J Z, Liu H K, Dou S X, Chou S L. Nano Lett., 2022, 22(3): 1302.

doi: 10.1021/acs.nanolett.1c04492
[1] Shiying Yang, Zhen Yang. Mechanism of Phase Transition on Zero-Valent Aluminum Surface and Its Effect on Pollutant Removal [J]. Progress in Chemistry, 2023, 35(7): 1030-1039.
[2] Nan Wang, Yingxu Wei, Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry [J]. Progress in Chemistry, 2023, 35(6): 839-860.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[7] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[8] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[9] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[10] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[11] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[12] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[13] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[14] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[15] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.