中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1106-1122 DOI: 10.7536/PC221102 Previous Articles   

• Review •

Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications

Wenying Zhou1(), Fang Wang1, Yating Yang1, Yun Wang1, Yingying Zhao2, Liangqing Zhang2   

  1. 1 School of Chemistry & Chemical Engineering, Xi'an University of Science and Technology,Xi'an 710054, China
    2 School of Materials Science and Engineering, Xi'an University of Science and Technology,Xi'an 710054, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: wyzhou2004@163.com
  • Supported by:
    National Natural Science Foundation of China(52277028); National Natural Science Foundation of China(51577154); Natural Science Basic Research Plan in Shaanxi Province of China(2022-JM186); Natural Science Basic Research Plan in Shaanxi Province of China(2021JQ-566); Scientific Research Program Funded by Shaanxi Provincial Education Department(21JK0756)
Richhtml ( 39 ) PDF ( 740 ) Cited
Export

EndNote

Ris

BibTeX

Heat dissipation has emerged as a critical challenge and technical bottleneck which is increasingly restricting the continuous miniaturization of large-power and ultrahigh frequency microelectronic devices and high-voltage electrical insulation equipment. High-performance heat conductive materials are highly desirable for effective thermal management. Compared with conventional heat conductive polymeric composites, the intrinsically thermal conductive polymers have gained extensive research and attention from domestic and overseas owing to their integrated excellent overall properties like high thermal conductivity and high dielectric breakdown strength, excellent flexibility, lightweight and high strength, etc. The present paper first discusses the heat conduction mechanisms in intrinsic polymers, and then systematically analyzes and reviews the following factors influencing phonon transport and polymers’ thermal conductivity: the structures from monomers and molecular chains with diverse scales, crystallinity, orientation, inter-chain interactions, crosslinking, structure defects, as well as temperature, pressure, environmental factors, etc. Further, the strategies to prepare high thermal conductivity polymers have been summarized. Finally, this paper sums up the existing questions and challenges ahead in the study of thermal conductive polymers, and points out their future research direction and prospects potential important applications in various industrial occasions.

Contents

1 Introduction

2 Thermal conduction mechanisms in polymers

3 Polymers’ structure and thermal conductivity

3.1 Near-range structures

3.2 Long-range structures

3.3 Aggregation structure

4 Other factors affecting TC

4.1 Density and specific heat capacity

4.2 Electrical conductivity

4.3 Speed of sound

4.4 Temperature

4.5 Pressure

4.6 Environmental factors

5 Strategies for the preparation of ITCP

5.1 Top-down methods

5.2 Bottom-up methods

6 Conclusion and Prospects

Fig.1 Thermal conduction mechanism in polymers[10]. (Reprinted with permission from Ref.[10]; Copyright (2016) Progress in Polymer Science)
Fig.2 Structures of polyelectrolytes (PAR, PVPR), four caged molecules[19]: DSQ, GHSQ, PC71BM, and ADP, COF and MOF like porphyrin-based reactive metallomesogen (PorV-x)[20], and LC molecules
Fig.3 k of PE chains with different types of branching chains[22].(Reprinted with permission from Ref. [22]; Copyright (2019) Advanced Functional Materials)
Fig.4 Sharp thermal conductivity changes from 380 to 410 K due to the thermal excitation of segmental rotation[14]. (Reprinted with permission from Ref. [14]; Copyright (2018) Polymer)
Fig.5 Effect of number of kinks on k of a polymer chain[52]. (Reprinted with permission from Ref. [52]; Copyright (2019) Journal of Applied Physics)
Fig.6 (a) Schematic of the internal structure changes when the polymer is subject to drawing[14]; (b) k as a function of crystallinity for polytrifluorochloroethylene[62]; (c) k along the direction parallel and perpendicular to the draw direction at different draw ratios[35,58]; (d) k of PE at different draw ratios from MDS[15]. (Reprinted with permission from Ref. [14] [62] [35] [58] [15]; Copyright (2018) Polymer)
Fig.7 k of different polymers as a function of their densities (a) and sound of speed (b)[14]. (Reprinted with permission from Ref. [14]; Copyright (2018) Polymer)
Fig.8 (a) k of unpoled and poled P(VDF-TrFE) films; (b) The P-E loop and coercive electric field of P(VDF-TrFE) film; (c) Structure of semi-crystalline PVDF[101]. (Reprinted with permission from Ref. [101]; Copyright (2021) Nano Energy)
Fig.9 Liquid crystal monomer with cyanobiphenyl mesogen and side-chain liquid crystal polymer prepared through anionic ring-opening polymerization[104]. (Reprinted with permission from Ref. [104]; Copyright (2022) Royal Society of Chemistry)
[1]
Zhou W Y, Dang Z M, Ding X W. Heat conductive polymer composites. Beijing: National Defense Industry Press, 2017. 72.
(周文英, 党智敏, 丁小卫. 聚合物基导热复合材料. 北京: 国防工业出版社, 2017. 72.).
[2]
Liu Y R, Xu Y F. Acta. Physica. Sinic., 2022, 71(2): 023601.

doi: 10.7498/aps
(刘裕芮, 许艳菲. 物理学报, 2022, 71(2): 023601.).
[3]
Pan D K, Zong Z C, Yang N. Acta. Physica. Sinic., 2022, 71(08): 284.
(潘东楷, 宗志成, 杨诺. 物理学报, 2022, 71(08): 284.).
[4]
Xu X F, Zhou J, Chen J. Adv. Funct. Mater., 2020, 30(8): 1904704.

doi: 10.1002/adfm.v30.8
[5]
Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog. Polym. Sci., 2016, 59: 41.

doi: 10.1016/j.progpolymsci.2016.03.001
[6]
Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W. Compos. Sci. Technol., 2020, 193: 108134.

doi: 10.1016/j.compscitech.2020.108134
[7]
Huang C L, Qian X, Yang R G. Mat. Sci. Eng. R., 2018, 132: 1.

doi: 10.1016/j.mser.2018.06.002
[8]
Lin Y, Huang X Y, Chen J, Jiang P K. High Volt., 2017, 2(3): 139.

doi: 10.1049/hve2.v2.3
[9]
Zhan H F, Nie Y H, Chen Y N, Bell J M, Gu Y T. Adv. Funct. Mater., 2020, 30(8): 1903841.

doi: 10.1002/adfm.v30.8
[10]
Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Prog. Polym. Sci., 2016, 61: 1.

doi: 10.1016/j.progpolymsci.2016.05.001
[11]
Chaudhry A U, Mabrouk A N, Abdala A. Sci. Technol. Adv. Mater., 2020, 21(1): 737.

doi: 10.1080/14686996.2020.1820306
[12]
Henry A. Annu. Rev. Heat Transf., 2014, 17: 485.

doi: 10.1615/AnnualRevHeatTransfer.v17
[13]
Zhou W Y, Wang Y, Cao G Z, Cao D, Li T, Zhang X L. Acta Mater. Compos. Sin., 2021, 38(7)2038.
(周文英, 王蕴, 曹国政, 曹丹, 李婷, 张祥林. 复合材料学报, 2021, 38(7)2038.).
[14]
Wei X F, Wang Z, Tian Z T, Luo T F. J. Heat Transf., 2021, 143(7): 072101.

doi: 10.1115/1.4050557
[15]
Liao Q W, Zeng L P, Liu Z C, Liu W. Sci. Rep., 2016, 6: 34999.

doi: 10.1038/srep34999
[16]
Hong Y, Goh M. Polymers, 2021, 13(8): 1302.

doi: 10.3390/polym13081302
[17]
Ohki Y. IEEE Electr. Insul. Mag., 2010, 26(1): 48.
[18]
Ruan K P, Zhong X, Shi X T, Dang J J, Gu J W. Mater. Today Phys., 2021, 20: 100456
[19]
Xie X, Yang K X, Li D Y, Tsai T H, Shin J, Braun P V, Cahill D G. Phys. Rev. B, 2017, 95(3): 035406.

doi: 10.1103/PhysRevB.95.035406
[20]
Park M, Kang D G, Ko H, Rim M, Tran D T, Park S, Kang M J, Kim T W, Kim N, Jeong K U. Mater. Horiz., 2020, 7(10): 2635.

doi: 10.1039/D0MH00966K
[21]
Tan F L, Han S, Peng D L, Wang H L, Yang J, Zhao P, Ye X J, Dong X, Zheng Y Y, Zheng N, Gong L, Liang C L, Frese N, Gölzhäuser A, Qi H Y, Chen S S, Liu W, Zheng Z K. J. Am. Chem. Soc., 2021, 143(10): 3927.

doi: 10.1021/jacs.0c13458
[22]
Luo D C, Huang C L, Huang Z. J. Heat Transf., 2018, 140(3): 031302.

doi: 10.1115/1.4038003
[23]
Fan L H, Xi F Q, Wang X Y, Xuan J, Jiao K. J. Electrochem. Soc., 2019, 166(8): F511.

doi: 10.1149/2.0791908jes
[24]
Yu S, Park C, Hong S M, Koo C M. Thermochimica Acta, 2014, 583: 67.

doi: 10.1016/j.tca.2014.03.018
[25]
Li S H, Yu X X, Bao H, Yang N. J. Phys. Chem. C, 2018, 122(24): 13140.

doi: 10.1021/acs.jpcc.8b02001
[26]
Kisiel M, Mossety-Leszczak B. Eur. Polym. J., 2020, 124: 109507.

doi: 10.1016/j.eurpolymj.2020.109507
[27]
Ota S, Harada M. J. Appl. Polym. Sci., 2021, 138(19): 50367.

doi: 10.1002/app.v138.19
[28]
Islam A M, Lim H, You N H, Ahn S, Goh M, Hahn J R, Yeo H, Jang S G. ACS Macro Lett., 2018, 7(10): 1180.

doi: 10.1021/acsmacrolett.8b00456
[29]
Kim Y, Yeo H, You N H, Jang S G, Ahn S, Jeong K U, Lee S H, Goh M. Polym. Chem., 2017, 8(18): 2806.

doi: 10.1039/C7PY00243B
[30]
Tonpheng B, Yu J C, Andersson O. Phys. Chem. Chem. Phys., 2011, 13(33): 15047.

doi: 10.1039/c1cp20785g
[31]
Xu W X, Liang X A, Xu X H, Zhu Y. Acta. Physica. Sinic, 2020, 69(19): 261.
(徐文雪, 梁新刚, 徐向华, 祝渊. 物理学报, 2020, 69(19): 261.).
[32]
Lv G X, Jensen E, Evans C M, Cahill D G. ACS Appl. Polym. Mater., 2021, 3(9): 4430.

doi: 10.1021/acsapm.1c00737
[33]
Xiong X, Yang M, Liu C L, Li X B, Tang D W. J. Appl. Phys., 2017, 122(3): 035104.

doi: 10.1063/1.4994797
[34]
Rashidi V, Coyle E J, Sebeck K, Kieffer J, Pipe K P. J. Phys. Chem. B, 2017, 121(17): 4600.

doi: 10.1021/acs.jpcb.7b01377
[35]
Shen S, Henry A, Tong J, Zheng R T, Chen G. Nat. Nanotechnol., 2010, 5(4): 251.

doi: 10.1038/nnano.2010.27
[36]
Wei X F, Huang Z H, Koch S, Zamengo M, Deng Y C, Minus M L, Morikawa J, Guo R L, Luo T F. ACS Appl. Polym. Mater., 2021, 3(6): 2979.

doi: 10.1021/acsapm.1c00128
[37]
Xu Y F, Wang X X, Zhou J W, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G. Sci. Adv., 2018, 4(3): eaar3031.

doi: 10.1126/sciadv.aar3031
[38]
Ma H, O'Donnel E, Tian Z T. Nanoscale, 2018, 10(29): 13924.

doi: 10.1039/C8NR02994F
[39]
Zhang T, Luo T F. J. Phys. Chem. B, 2016, 120(4): 803.

doi: 10.1021/acs.jpcb.5b09955
[40]
Singh V, Bougher T L, Weathers A, Cai Y, Bi K D, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A. Nat. Nanotechnol., 2014, 9(5): 384.

doi: 10.1038/nnano.2014.44
[41]
Ma H, Tian Z T. J. Mater. Res., 2019, 34(1): 126.

doi: 10.1557/jmr.2018.362
[42]
Zhang T, Wu X F, Luo T F. J. Phys. Chem. C, 2014, 118(36): 21148.

doi: 10.1021/jp5051639
[43]
Liu J, Yang R G. Phys. Rev. B, 2012, 86(10): 104307.

doi: 10.1103/PhysRevB.86.104307
[44]
Kawagoe Y, Surblys D, Kikugawa G, Ohara T. AIP Adv., 2019, 9(2): 025302.

doi: 10.1063/1.5080432
[45]
Naghizadeh J, Ueberreiter K. Kolloid Zeitschrift Und Zeitschrift Für Polym., 1972, 250(10): 932.
[46]
Zhao J H, Jiang J W, Wei N, Zhang Y C, Rabczuk T. J. Appl. Phys., 2013, 113(18): 184304.

doi: 10.1063/1.4804237
[47]
Hansen D, Kantayya R C, Ho C C. Polym. Eng. Sci., 1966, 6(3): 260.

doi: 10.1002/(ISSN)1548-2634
[48]
Lv W, Henry A. Appl. Phys. Lett., 2016, 108(18): 181905.

doi: 10.1063/1.4948605
[49]
Henry A, Chen G. Phys. Rev. Lett., 2008, 101(23): 235502.

doi: 10.1103/PhysRevLett.101.235502
[50]
Kiessling A, Simavilla D N, Vogiatzis G G, Venerus D C. Polymer, 2021, 228: 123881.

doi: 10.1016/j.polymer.2021.123881
[51]
Duan X H, Li Z H, Liu J, Chen G, Li X B. J. Appl. Phys., 2019, 125(16): 164303.

doi: 10.1063/1.5086453
[52]
Subramanyan H, Zhang W Y, He J X, Kim K, Li X B, Liu J. J. Appl. Phys., 2019, 125(9): 095104.

doi: 10.1063/1.5086176
[53]
Qian X, Zhou J W, Chen G. Nat. Mater., 2021, 20(9): 1188.

doi: 10.1038/s41563-021-00918-3 pmid: 33686278
[54]
Li P F, Yang S, Zhang T, Shrestha R, Hippalgaonkar K, Luo T F, Zhang X, Shen S. Sci. Rep., 2016, 6: 21452.

doi: 10.1038/srep21452
[55]
Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W. Natl Sci Rev, 2018, 5(4): 500.

doi: 10.1093/nsr/nwy004
[56]
Liu J, Ju S H, Ding Y F, Yang R G. Appl. Phys. Lett., 2014, 104(15): 153110.

doi: 10.1063/1.4871737
[57]
Allen P B, Feldman J L, Fabian J, Wooten F. Philos. Mag. Part B., 1999, 79(11): 1715.

doi: 10.1080/13642819908223054
[58]
Choy C L, Wong Y W, Yang G W, Kanamoto T. J. Polym. Sci. B Polym. Phys., 1999, 37(23): 3359.

doi: 10.1002/(ISSN)1099-0488
[59]
Lando J B, Olf H G, Peterlin A. J. Polym. Sci. A-1 Polym. Chem., 1966, 4(4): 941.
[60]
Kommandur S, Yee S K. J. Polym. Sci. B Polym. Phys., 2017, 55(15): 1160.

doi: 10.1002/polb.v55.15
[61]
Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A. Polymer, 2011, 52(8): 1711.

doi: 10.1016/j.polymer.2011.02.019
[62]
Zhang Y Z, Lei C X, Wu K, Fu Q. Adv. Sci., 2021, 8(14): 2004821.

doi: 10.1002/advs.v8.14
[63]
Guo Y T, Leung S N. AIP Adv., 2018, 8(4): 045126.

doi: 10.1063/1.5028375
[64]
Liu J, Yang R G. Phys. Rev. B, 2010, 81(17): 174122.

doi: 10.1103/PhysRevB.81.174122
[65]
He J X, Kim K, Wang Y C, Liu J. Appl. Phys. Lett., 2018, 112(5): 051907.

doi: 10.1063/1.5010986
[66]
Pan X L, Schenning A H P J, Shen L H, Bastiaansen C W M. Macromolecules, 2020, 53(13): 5599.

doi: 10.1021/acs.macromol.9b02647
[67]
Li Z, An L, Khuje S, Tan J Y, Hu Y, Huang Y L, Petit D, Faghihi D, Yu J, Ren S Q. Sci. Adv., 2021, 7(40): eabi7410.

doi: 10.1126/sciadv.abi7410
[68]
Shrestha R, Li P F, Chatterjee B, Zheng T, Wu X F, Liu Z Y, Luo T F, Choi S, Hippalgaonkar K, de Boer M P, Shen S. Nat. Commun., 2018, 9: 1664.

doi: 10.1038/s41467-018-03978-3 pmid: 29695754
[69]
Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L P H, Kalinin A, Schöffler M S, Jahnke T, Lein M, Dörner R. Nat. Commun., 2019, 10: 1.

doi: 10.1038/s41467-018-07882-8 pmid: 30602773
[70]
Zhang R C, Huang Z H, Sun D, Ji D H, Zhong M L, Zang D M, Xu J Z, Wan Y Z, Lu A. Polymer, 2018, 154: 42.

doi: 10.1016/j.polymer.2018.08.078
[71]
Ohara T, Chia Yuan T, Torii D, Kikugawa G, Kosugi N. J. Chem. Phys., 2011, 135(3): 034507.

doi: 10.1063/1.3613648
[72]
Zhang L, Ruesch M, Zhang X L, Bai Z T, Liu L. RSC Adv., 2015, 5(107): 87981.

doi: 10.1039/C5RA18519J
[73]
Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J. Sci. Adv., 2017, 3(7): e1700342.

doi: 10.1126/sciadv.1700342
[74]
Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H. Polym. Chem., 2021, 12(7): 975.

doi: 10.1039/D0PY01549K
[75]
Mehra N, Li Y F, Zhu J H. J. Phys. Chem. C, 2018, 122(19): 10327.

doi: 10.1021/acs.jpcc.8b01991
[76]
Li Y, Pan P, Liu C, Zhou W Y, Li C G, Gong C D, Li H L, Zhang L, Song H. J. Polym. Eng., 2020, 40(7): 573.

doi: 10.1515/polyeng-2020-0004
[77]
Li C G, Li Y, Gong C D, Ruan K P, Zhong X, Pan P, Liu C, Gu J W, Shi X T. J. Appl. Polym. Sci., 2021, 138(6): 49791.

doi: 10.1002/app.v138.6
[78]
Xie X, Li D Y, Tsai T H, Liu J, Braun P V, Cahill D G. Macromolecules, 2016, 49(3): 972.

doi: 10.1021/acs.macromol.5b02477
[79]
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. Nat. Mater., 2015, 14(3): 295.

doi: 10.1038/nmat4141
[80]
Mathur V, Sharma K. Heat Mass Transf., 2016, 52(12): 2901.

doi: 10.1007/s00231-016-1779-4
[81]
Hummel P, Lechner A M, Herrmann K, Biehl P, Rössel C, Wiedenhöft L, Schacher F H, Retsch M. Macromolecules, 2020, 53(13): 5528.

doi: 10.1021/acs.macromol.0c00596
[82]
Zheng H T, Xu G J, Wu K, Feng L, Zhang R G, Bao Y L, Wang H, Wang K X, Qu Z C, Shi J. J. Phys. Chem. C, 2021, 125(39): 21580.

doi: 10.1021/acs.jpcc.1c04919
[83]
Wei X F, Zhang T, Luo T F. Phys. Chem. Chem. Phys., 2016, 18(47): 32146.

doi: 10.1039/C6CP06643G
[84]
Eiermann K, Hellwege K X. J. Polym. Sci., 1962, 57(165): 99.

doi: 10.1002/pol.1962.1205716508
[85]
Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J, Zhou J, Li B W. Chin. Phys. Lett., 2020, 37(10): 104401.

doi: 10.1088/0256-307X/37/10/104401
[86]
Zhou J, Xi Q, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J. Phys. Rev. Materials, 2020, 4: 015601.

doi: 10.1103/PhysRevMaterials.4.015601
[87]
Liu J, Xu Z L, Cheng Z, Xu S, Wang X W. ACS Appl. Mater. Interfaces, 2015, 7(49): 27279.

doi: 10.1021/acsami.5b08578
[88]
dos Santos W N, de Sousa J A, Gregorio R. Polym. Test., 2013, 32(5): 987.

doi: 10.1016/j.polymertesting.2013.05.007
[89]
Hsieh W P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G. Phys. Rev. B, 2011, 83(17): 174205.

doi: 10.1103/PhysRevB.83.174205
[90]
Yamanaka A, Izumi Y, Kitagawa T, Terada T, Sugihara H, Hirahata H, Ema K, Fujishiro H, Nishijima S. J. Appl. Polym. Sci., 2006, 101(4): 2619.

doi: 10.1002/(ISSN)1097-4628
[91]
Tomlinson J N, Kline D E, Sauer J A. Polym. Eng. Sci., 1965, 5(1): 44.

doi: 10.1002/(ISSN)1548-2634
[92]
Chien H C, Peng W T, Chiu T H, Wu P H, Liu Y J, Tu C W, Wang C L, Lu M C. ACS Nano, 2020, 14(3): 2939.

doi: 10.1021/acsnano.9b07493
[93]
Dinpajooh M, Nitzan A. J. Chem. Phys., 2020, 153(16): 164903.

doi: 10.1063/5.0023085
[94]
Kang D G, Park M, Kim D Y, Goh M, Kim N, Jeong K U. ACS Appl. Mater. Interfaces, 2016, 8(44): 30492.

doi: 10.1021/acsami.6b10256
[95]
Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M. Polymer, 2019, 180: 121760.

doi: 10.1016/j.polymer.2019.121760
[96]
Feng X H, Liu G Q, Xu S, Lin H, Wang X W. Polymer, 2013, 54(7): 1887.

doi: 10.1016/j.polymer.2013.01.038
[97]
Wang X J, Ho V, Segalman R A, Cahill D G. Macromolecules, 2013, 46(12): 4937.

doi: 10.1021/ma400612y
[98]
Ma J, Zhang Q, Mayo A, Ni Z H, Yi H, Chen Y F, Mu R, Bellan L M, Li D Y. Nanoscale, 2015, 7(40): 16899.

doi: 10.1039/C5NR04995D
[99]
Lu C H, Chiang S W, Du H D, Li J, Gan L, Zhang X, Chu X D, Yao Y W, Li B H, Kang F Y. Polymer, 2017, 115: 52.

doi: 10.1016/j.polymer.2017.02.024
[100]
Yoon D, Lee H, Kim T, Song Y, Lee T, Lee J, Hun Seol J. Eur. Polym. J., 2023, 184: 111775.

doi: 10.1016/j.eurpolymj.2022.111775
[101]
Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N. Nano Energy, 2021, 82: 105749.

doi: 10.1016/j.nanoen.2021.105749
[102]
Mu L W, Ji T, Chen L, Mehra N, Shi Y J, Zhu J H. ACS Appl. Mater. Interfaces, 2016, 8(42): 29080.

doi: 10.1021/acsami.6b10451
[103]
Kato T, Nagahara T, Agari Y, Ochi M. J. Polym. Sci. B Polym. Phys., 2005, 43(24): 3591.

doi: 10.1002/(ISSN)1099-0488
[104]
Ku K, Choe S, Yeo H. Mol. Syst. Des. Eng., 2022, 7(5): 520.

doi: 10.1039/D1ME00182E
[105]
Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H. J. Polym. Sci. B Polym. Phys., 2003, 41(14): 1739.

doi: 10.1002/(ISSN)1099-0488
[1] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[2] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[3] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[4] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[5] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[6] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[7] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[8] Wu Hongwei, Chen Yayun, Rao Caihui, Liu Chuanxiang*. Anion Receptors Based on CH Donor Group [J]. Progress in Chemistry, 2016, 28(10): 1501-1514.
[9] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[10] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[11] Wang Sai, Wu Bin, Duan Junfei, Fang Jianglin*, Chen Dongzhong. Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators [J]. Progress in Chemistry, 2014, 26(01): 125-139.
[12] Fu Yujie, Tang Shouyuan*. Study of Molecular Complexes Between Water and Organic/Biologic Molecules by Microwave Spectroscopy [J]. Progress in Chemistry, 2013, 25(06): 1042-1051.
[13] Huang Cuiying, Li Yang, Wang Changsheng. Accurate and Rapid Calculation of the Hydrogen Bond Strengths and Hydrogen Bonding Potential Energy Curves for the Hydrogen-Bonded Complexes Containing Peptide Amides and/or Nucleic Acid Bases [J]. Progress in Chemistry, 2012, 24(06): 1214-1226.
[14] Zhang Qian, Shan Feng, Lu Xuemin, Lu Qinghua. Preparation of Vertically Oriented Mesoporous Thin Films [J]. Progress in Chemistry, 2012, 24(04): 492-500.
[15] Dong Huanli, Hu Wenping. Orientation, Crystallization and Device Applications of Conjugated Polymers [J]. Progress in Chemistry, 2011, 23(6): 1041-1049.