中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1327-1340 DOI: 10.7536/PC221007 Previous Articles   Next Articles

• Review •

Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries

Bingyi Ma1, Sheng Huang2, Shuanjin Wang2, Min Xiao2, Dongmei Han1,2(), Yuezhong Meng1,2()   

  1. 1 School of Chemical Engineering and Technology, Sun Yat-sen University,Zhuhai 519082, China
    2 The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University,Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: handongm@mail.sysu.edu.cn(Dongmei Han); mengyzh@mail.sysu.edu.cn(Yuezhong Meng)
  • About author:

    Professor Dongmei Han received her PhD degree from Sun Yat-sen University in 2008, under the supervision of Professor Yuezhong Meng. She has ever worked one year as a Visiting fellow at University of wollongong, Australia 2008, and two years of a postdoctoral fellow with Professor Peikang Shen in Sun Yat-sen University from 2009 to 2012. Now she is an Associate Professor at Sun Yat-Sen University. Her research interests are focused on new energy materials. In this field, she has authored about 75 publications.

    Yuezhong Meng is the Pearl-River Professor at Sun Yat-sen University and the director of the Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province. He received B.Sc., M.Sc. and PhD degrees from Dalian University of Technology. He worked at City University of Hong Kong, McGill University, Canada, Nanyang Tech-nological University, Singapore and the National University of Singapore for more than 8 years. He became a "Hundred Talents" member of CAS in 1998. He has published 438 papers in refereed international journals and has 106 U.S. and Chinese patents. His research areas include exploratory functional polymers, chemical utilization of carbon dioxide and new energy materials.

Richhtml ( 14 ) PDF ( 214 ) Cited
Export

EndNote

Ris

BibTeX

The traditional electrolyte is flammable, easy to leak, and toxic, which affects the safety performance of batteries working for a long time. In view of the above problems, recently researchers have focused on the development of (quasi) solid electrolyte. Solid composite electrolyte composed of inorganic fillers and polymer has the advantages of high ionic conductivity and mechanical stability of inorganic electrolyte, flexibility and low interface impedance of polymer electrolyte, which has attracted extensive attention of researchers. Inorganic components mainly include active Li+-containing fillers and inert Li+-free fillers. The inert Li+-free fillers possess the benefits of low cost and easy preparation process, so they have greater potential for large-scale industrial applications. In this paper, the performance requirements of composite polymer electrolytes are reviewed. Starting from non-lithium inorganic hybrid components, we summarize the research on improving the performance of composite polymer electrolyte with inert Li+-free fillers, including zero-dimensional nanoparticles, one-dimensional nanotubes (nanowires, nanorods), two-dimensional boron nitride nanosheets, and three-dimensional structure of fillers. Different dimensions of analysis and thinking aim to shed light on the design and application of inert fillers-polymer electrolytes, and we also look forward to the broad prospects of non-lithium inorganic components in the industrial application of composite electrolyte.

Contents

1 Introduction

2 Performance requirements

2.1 High ionic conductivity

2.2 High lithium-ion transference number

2.3 Wide electrochemical stability window

2.4 Mechanical strength

2.5 Thermal and chemical stability

3 Multi-dimensional non-lithium inorganic hybrid component

3.1 Zero-dimensional nanoparticles

3.2 One-dimensional nanostructure

3.3 Two-dimensional nanosheet

3.4 Three-dimensional strucutre

4 Conclusion and outlook

Fig.1 The research trend of solid composite electrolytes of lithium batteries from 2011 to 2021
Fig.2 Schematic diagram of performance requirements for composite polymer electrolytes
Fig.3 Schematic diagram of 0 D nanoparticles improving lithium ion conductivity by enhancing polymer chain segment movement
Table 1 Main electrochemical properties of composite polymer electrolytes with nanoparticles
0 D nanoparticles Electrolyte Ionic
conductivity(S/cm)
Lithium-ion transference number Electrochemical stability window (vs
Li+/Li)(V)
Performance of battery ref
0.5 wt% TiO2 CPE-8 1.97×10-4(25 ℃) 5. LiFePO4/Li battery: The initial discharge capacity is 149 mAh/g, and the capacity retention rate after 140 cycles is 90% (0.2 C) 81
8 wt% TDI-SiO2 PEO-TDI-SiO2 1.2×10-4(25 ℃) 0.33 5.6 Graphene foam-LiFePO4/Li battery: The initial discharge capacity is 149.8 mAh/g, and the capacity retention rates after 100 cycles and 200 cycles are 93.8% and 83.7%, respectively (0.2 C) 58
4 wt% Al2O3 GPE 3.37×10-3 (24 ℃) 0.74 4.5 LiFePO4/Li battery: The highest capacity can reach 140 mAh/g. After 200 cycles, the capacity remains at 115 mAh/g, and the retention rate is 82.1% (100 mA/g) 82
9 wt% SiO2 PAN-in situ 3.5×10-4(20 ℃) 0.52 5.2 Li/ /NCM622 battery: The initial capacity is 173.1 mAh/g, the discharge capacity remains at 162.3 mAh/g after 200 cycles, and the capacity retention rate is 93.7% (0.1 C) 83
10 wt% KH570-modified SiO2 KSCE-PEO 3.37×10-4(25 ℃) 4.9 LiFePO4/Li battery: The initial capacity is 138.31 mAh/g, and the discharge capacity after 100 cycles is 144.4 mAh/g (0.2 C) 57
7.5 wt% TiO2 PVdF-co-HFP-LiTFSI-EC-TiO2-NCF 2.69×10-3 (30 ℃) 0.53 5.4 LiFePO4/Li battery: The initial capacity is 145 mAh/g, and the capacity retention rate after 50 cycles is 94% (0.1 C) 84
TiO2 PVDF-HFP/TBOB 7.4×10-3(25 ℃) 5.5 LiFePO4/Li battery: It can stably charge and discharge for 600 cycles at 0.1 C, with little capacity attenuation 85
10 wt% γ-Al2O3 FSI-based NSPE 5.4×10-4(70 ℃) 0.15 LiFePO4/Li battery: The initial capacity is 160 mAh/g, and the capacity after 50 cycles is 156 mAh/g (0.1 C) 86
ZnO VPI-ZnO/PEO/LiTFSI 1.5×10-5(25 ℃) 0.31 4.5 NMC811/Li battery: The initial capacity is 164.7 mAh/g. It remains 132.8 mAh/g after 200 cycles, and the capacity retention rate is 82.0% (0.5 C) 28
4 wt% ZrO2 P(CL80TMC20)-LiTFSI0.28-ZrO2 1.7×10-5(30 ℃) 0.83~0.87 LiFePO4/Li battery: The initial capacity is 150 mAh/g, and the capacity retention rate is 82% after 55 cycles (0.1 C) 59
TiO2 PEG-TEP-TiO2 1.9×10-5(70 ℃) 5.32 LiFePO4/Li battery: The initial capacity is 125.7 mAh/g, the capacity after 200 cycles is 102.0 mAh/g, and the capacity retention rate is 82% (0.2 C) 30
γ-Al2O3 QSE 1.1×10-3(25 ℃) 0.62 5.0 LiFePO4/Li battery: The initial capacity is 141.8 mAh/g. After 50 cycles, the capacity is 136.8 mAh/g and the capacity retention rate is 96.5% (0.1 C) 87
SiO2 SiES 1.74×10-3(25 ℃) 0.44 4.91 LiFePO4/Li battery: After 200 cycles, the capacity is still 159.3 mAh/g (0.2 C) 88
Fig.4 (a) TEM image and (b) EDXS profile of core-shell structured SiO2 particle in the direction of diameter[61]. Copyright 2012, Elsevier
Fig.5 Schematic diagram of ion conduction pathway constructed by 1 D nanorods
Fig.6 (a) The preparation scheme of TDI grafted TiO2 and (b) schematic diagram of electrolyte preparation and application[69]. Copyright 2021, Elsevier
Table 2 Main electrochemical properties of composite polymer electrolytes with inert one-dimensional nanofiller
1 D nanostructure Electrolyte Ionic
conductivity(S/cm)
Lithium-ion transference number Electrochemical stability window
(vs Li+/Li)(V)
Performance of battery ref
Ca-CeO2 nanotube Ca-CeO2/LiTFSI/PEO 1.3×10-4(60 ℃) 0.453 4.5 LiFePO4/Li battery: The initial capacity is 125.7 mAh/g, the capacity after 200 cycles is 102.0 mAh/g, and the capacity retention rate is 82% (0.2 C) 68
10 wt% Sm-
CeO2 nanowire
PVDF-based CPE 9.09×10-5(30 ℃) 0.40 4.89 LiFePO4/Li battery: The initial capacity is 155.1 mAh/g, and the discharge capacity after 130 cycles is 155.3 mAh/g (1 C) 89
8 wt% TDI-
TiO2 nanowire
PEO-TDI-TiO2 1.04×10-3(60 ℃) 0.36 5.5 NCM811/Li battery: The initial discharge capacity is 161.1 mAh/g, and the discharge capacity after 40 cycles is 150.3 mAh/g (0.1 C) 75
10 wt%
CeO2 nanowire
CSPE-10NW 1.1×10-3(60 ℃) 0.47 5.1 LiFePO4/Li battery: The capacity retention rate is 98% and 91% after 100 cycles and 280 cycles, respectively (0.1 C) 67
Gd-CeO2 nanowire es-PVDF-PEO-GDC 2.3×10-4(30 ℃) 0.64 4.5 LiFePO4/Li battery: After 600 cycles, the capacity is still 119.4 mAh/g, and the coulombic efficiency is ~99.8% (1 C) 64
CNF CNF/PEO 3.1×10-5(25 ℃) Li/Li symmetrical battery: stable cycling for more than 280 hours at 0.2 mA/cm2 90
10 wt%
Mg2B2O5 nanowire
PEO-LiTFSI-
10 wt%
Mg2B2O5
3.7×10-4(50 ℃) 0.44 4.75 LiFePO4/Li battery: The capacity retention after 230 cycles is ~120 mAh/g, and coulombic efficiency is ~100% (1 C) 91
3 wt% VSB-
5 nanorod
PEO-LiTFSI-3%VSB-5 4.83×10-5(30 ℃) 0.13 4.13 LiFePO4/Li battery: The capacity remains 157.4 mAh/g after 50 cycles, with excellent cycle performance and rate performance 92
5 wt%
HNT
HNT-PCL 6.62×10-5(30 ℃) 0.65 5.4 LiMn0.5Fe0.5PO4/Li battery: The initial discharge capacity is 134 mAh/g, the capacity after 250 cycles is 117 mAh/g, and the capacity retention rate is 87% (0.2 C) 93
HNT TPU-HNTs-LiFSI-PE 1.87×10-5(60 ℃) 0.24 5.1 NCM/Li battery: The initial capacity is 114 mAh/g, and the capacity retention rate is 89.99% after 300 cycles (0.5 C) 94
10 wt%
SiO2 nanotube
(SNts)
PEO/LiTFSI/SNts 4.35×10-4(30 ℃) 0.65 LiFePO4/Li battery: The initial capacity is 151 mAh/g, the capacity remains 126 mAh/g after 100 cycles, and the capacity retention rate is ~83.4% (0.1 C) 95
1.0 wt% NWCNTs UPHC 1.1×10-3(25 ℃) 0.64 5.08 LSB: The initial capacity is 704.5 mAh/g, the discharge capacity after 300 cycles is 608.8 mAh/g, and the capacity retention rate is 86.4% (0.5 C) 96
Fig.7 The schematic illustration of Li+ conduction mechanism in LiClO4-PAN electrolyte[70]. Copyright 2018, Elsevier
Fig.8 (a) Schematic illustration of the overall procedure for the preparation of G-CFBNs, (b) photograph of CFBN (0.5 wt% FBN), (c) surface (left) and cross-sectional (right) SEM images of CFBN (0.5 wt% FBN), Electrochemical performance of Li/electrolyte/LiFePO4 cells cycled at 25 ℃, where the electrolyte is G-CFBN and LE-Celgard, (d) long-term cycling performance of the cells at 1.0 C, and (e) long-term cycling performance of the cells containing G-CFBN at 10 C[74]. Copyright 2017, Elsevier
Table 3 Main electrochemical properties of composite polymer electrolytes with 2D boron nitride nanosheets
Fig.9 Schematic diagram of SiO2-PEO three-dimensional network promoting ion transport[77]. Copyright 2018, Elsevier
Fig.10 Schematic diagram of composite electrolyte constructed by 3D glass fiber cloth and PEO[78]. Copyright 2021, Elsevier
[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

doi: 10.1038/35104644
[2]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nat. Mater., 2005, 4(5): 366.

doi: 10.1038/nmat1368
[3]
Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Chem, 2019, 5(1): 74.

doi: 10.1016/j.chempr.2018.12.002
[4]
Li C F, Liu S H, Shi C G, Liang G H, Lu Z T, Fu R W, Wu D C. Nat. Commun., 2019, 10: 1363.

doi: 10.1038/s41467-019-09211-z
[5]
Wang R H, Cui W S, Chu F L, Wu F X. J. Energy Chem., 2020, 48: 145.

doi: 10.1016/j.jechem.2019.12.024
[6]
Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D, Zhi C Y. Chem. Soc. Rev., 2020, 49(1): 180.

doi: 10.1039/C9CS00131J
[7]
Lu Y Y, Tu Z Y, Archer L A. Nat. Mater., 2014, 13(10): 961.

doi: 10.1038/nmat4041
[8]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.

doi: 10.1021/ja3091438 pmid: 23294028
[9]
Xu R, Cheng X B, Yan C, Zhang X Q, Xiao Y, Zhao C Z, Huang J Q, Zhang Q. Matter, 2019, 1(2): 317.

doi: 10.1016/j.matt.2019.05.016
[10]
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy, 2019, 55: 93.

doi: 10.1016/j.nanoen.2018.10.035
[11]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.

doi: 10.1021/cm901452z
[12]
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C. J. Power Sources, 2014, 257: 421.

doi: 10.1016/j.jpowsour.2013.11.103
[13]
Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. Nat. Commun., 2015, 6: 7436.

doi: 10.1038/ncomms8436
[14]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.

doi: 10.1038/s41565-019-0465-3
[15]
Tang W J, Tang S, Guan X Z, Zhang X Y, Xiang Q, Luo J Y. Adv. Funct. Mater., 2019, 29(16): 1900648.

doi: 10.1002/adfm.v29.16
[16]
Zhao C Z, Zhao B C, Yan C, Zhang X Q, Huang J Q, Mo Y F, Xu X X, Li H, Zhang Q. Energy Storage Mater., 2020, 24: 75.
[17]
Wang Q, Yuan B H, Lu Y F, Shen F, Zhao B, Han X G. Nanotechnology, 2021, 32(49): 495401.

doi: 10.1088/1361-6528/ac2093
[18]
Zhao Q, Stalin S, Zhao C Z, Archer L A. Nat. Rev. Mater., 2020, 5(3): 229.

doi: 10.1038/s41578-019-0165-5
[19]
Lim H D, Park J H, Shin H J, Jeong J, Kim J T, Nam K W, Jung H G, Chung K Y. Energy Storage Mater., 2020, 25: 224.
[20]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.

doi: 10.1002/adma.v32.17
[21]
Li L, Deng Y, Chen G. J. Energy Chem., 2020, 50: 154.

doi: 10.1016/j.jechem.2020.03.017
[22]
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Adv. Sci., 2020, 7(5): 1903088.

doi: 10.1002/advs.v7.5
[23]
Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat. Energy, 2019, 4(5): 365.

doi: 10.1038/s41560-019-0349-7
[24]
Zhao C Z, Zhao Q, Liu X, Zheng J X, Stalin S, Zhang Q, Archer L A. Adv. Mater., 2020, 32(12): 1905629.

doi: 10.1002/adma.v32.12
[25]
Wu N, Li Y T, Dolocan A, Li W, Xu H H, Xu B Y, Grundish N S, Cui Z M, Jin H B, Goodenough J B. Adv. Funct. Mater., 2020, 30(22): 2000831.

doi: 10.1002/adfm.v30.22
[26]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.

doi: 10.1002/aenm.v8.11
[27]
Zhang Z, Wang J, Zhang S, Ying H, Zhuang Z, Ma F, Huang P, Yang T, Han G, Han W Q. Energy Storage Mater., 2021, 43: 229.
[28]
Bao W D, Zhao L Q, Zhao H J, Su L X, Cai X C, Yi B L, Zhang Y, Xie J. Energy Storage Mater., 2021, 43: 258.
[29]
Hoang H A, Le Mong A, Kim D. J. Power Sources, 2021, 507: 230288.

doi: 10.1016/j.jpowsour.2021.230288
[30]
Guo J Q, Chen Y P, Xiao Y B, Xi C P, Xu G, Li B R, Yang C K, Yu Y. Chem. Eng. J., 2021, 422: 130526.

doi: 10.1016/j.cej.2021.130526
[31]
Dhatarwal P, Choudhary S, Sengwa R J. Compos. Commun., 2018, 10: 11.

doi: 10.1016/j.coco.2018.05.004
[32]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.

doi: 10.1002/adma.v31.12
[33]
Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Energy Storage Mater., 2020, 26: 283.
[34]
Bag S, Zhou C T, Kim P J, Pol V G, Thangadurai V. Energy Storage Mater., 2020, 24: 198.
[35]
Yao M, Zhang H T, Xing C X, Li Q G, Tang Y J, Zhang F J, Yang K, Zhang S J. Energy Storage Mater., 2021, 41: 51.
[36]
Yao M, Yu T H, Ruan Q Q, Chen Q J, Zhang H T, Zhang S J. ACS Appl. Mater. Interfaces, 2021, 13(39): 47163.

doi: 10.1021/acsami.1c15038
[37]
Wu F, Zhang K, Liu Y R, Gao H C, Bai Y, Wang X R, Wu C. Energy Storage Mater., 2020, 33: 26.
[38]
Bocharova V, Sokolov A P. Macromolecules, 2020, 53(11): 4141.

doi: 10.1021/acs.macromol.9b02742
[39]
Costa C M, Lee Y H, Kim J H, Lee S Y, Lanceros-MÉndez S. Energy Storage Mater., 2019, 22: 346.
[40]
Wang X E, Kerr R, Chen F F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C. Adv. Mater., 2020, 32(18): 1905219.

doi: 10.1002/adma.v32.18
[41]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 16103.

doi: 10.1038/natrevmats.2016.103
[42]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy, 2018, 46: 176.

doi: 10.1016/j.nanoen.2017.12.037
[43]
Hsu S T, Tran B T, Subramani R, Nguyen H T T, Rajamani A, Lee M Y, Hou S S, Lee Y L, Teng H. J. Power Sources, 2020, 449: 227518.

doi: 10.1016/j.jpowsour.2019.227518
[44]
Zhao Y, Zhang Y G, Gosselink D, Doan T N L, Sadhu M, Cheang H J, Chen P. Membranes, 2012, 2(3): 553.

doi: 10.3390/membranes2030553 pmid: 24958296
[45]
Zhang W Q, Nie J H, Li F, Wang zhong lin, Sun C W. Nano Energy, 2018, 45: 413.

doi: 10.1016/j.nanoen.2018.01.028
[46]
Zhang Z, Huang Y, Gao H, Hang J X, Li C, Liu P B. J. Membr. Sci., 2020, 598: 117800.

doi: 10.1016/j.memsci.2019.117800
[47]
Lopez J, Mackanic D G, Cui Y, Bao Z N. Nat. Rev. Mater., 2019, 4(5): 312.

doi: 10.1038/s41578-019-0103-6
[48]
Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C X, Kaskel S, Zhang Q. ACS Energy Lett., 2020, 5(3): 833.

doi: 10.1021/acsenergylett.9b02660
[49]
Liu S L, Liu W Y, Ba D L, Zhao Y Z, Ye Y H, Li Y Y, Liu J P. Adv. Mater., 2023, 35(2): 2110423.

doi: 10.1002/adma.v35.2
[50]
Xu K. Chem. Rev., 2014, 114(23): 11503.

doi: 10.1021/cr500003w
[51]
Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q. Chem. Rev., 2020, 120(9): 4169.

doi: 10.1021/acs.chemrev.9b00760
[52]
Boaretto N, Meabe L, Martinez-Ibanez M, Armand M, Zhang H. J. Electrochem. Soc., 2020, 167: 070524.

doi: 10.1149/1945-7111/ab7221
[53]
Cao D X, Sun X, Li Q, Natan A, Xiang P Y, Zhu H L. Matter, 2020, 3(1): 57.

doi: 10.1016/j.matt.2020.03.015
[54]
Li J H, Cai Y F, Wu H M, Yu Z A, Yan X Z, Zhang Q H, Gao T Z, Liu K, Jia X D, Bao Z N. Adv. Energy Mater., 2021, 11(15): 2003239.

doi: 10.1002/aenm.v11.15
[55]
Zhang Q Q, Liu K, Ding F, Liu X J. Nano Res., 2017, 10(12): 4139.

doi: 10.1007/s12274-017-1763-4
[56]
Jia M Y, Khurram Tufail M, Guo X X. ChemSusChem, 2023, 16(2): e202201801.

doi: 10.1002/cssc.v16.2
[57]
Lv F, Liu K X, Wang Z Y, Zhu J F, Zhao Y, Yuan S. J. Colloid Interface Sci., 2021, 596: 257.

doi: 10.1016/j.jcis.2021.02.095
[58]
Li C, Huang Y, Feng X S, Zhang Z, Gao H, Huang J X. J. Colloid Interface Sci., 2021, 594: 1.

doi: 10.1016/j.jcis.2021.02.128
[59]
Lee T K, Andersson R, Dzulkurnain N A, Hernández G, Mindemark J, Brandell D. Batter. Supercaps, 2021, 4(4): 653.

doi: 10.1002/batt.v4.4
[60]
Song Y L, Yang L Y, Li J W, Zhang M Z, Wang Y H, Li S N, Chen S M, Yang K, Xu K, Pan F. Small, 2021, 17(42): 2102039.

doi: 10.1002/smll.v17.42
[61]
Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem. Commun., 2012, 17: 18.

doi: 10.1016/j.elecom.2012.01.008
[62]
Ju S H, Lee Y S, Sun Y K, Kim D W. J. Mater. Chem. A, 2013, 1(2): 395.

doi: 10.1039/C2TA00556E
[63]
Lee Y S, Lee J H, Choi J A, Yoon W Y, Kim D W. Adv. Funct. Mater., 2013, 23(8): 1019.

doi: 10.1002/adfm.v23.8
[64]
Gao L, Luo S B, Li J X, Cheng B W, Kang W M, Deng N P. Energy Storage Mater., 2021, 43: 266.
[65]
Khan S, Fang C Y, Ma Y C, Haq M U, Nisar M, Xu G, Liu Y, Han G R. J. Electrochem. Soc., 2021, 168(2): 022504.

doi: 10.1149/1945-7111/abe28b
[66]
Liu W, Lin D C, Sun J, Zhou G M, Cui Y. ACS Nano, 2016, 10(12): 11407.

doi: 10.1021/acsnano.6b06797
[67]
Ao X, Wang X, Tan J, Zhang S, Su C, Dong L, Tang M, Wang Z, Tian B, Wang H. Nano Energy, 2021, 79: 105475.

doi: 10.1016/j.nanoen.2020.105475
[68]
Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C, Zhao H J, Cui G L, Zhang S Q. Adv. Energy Mater., 2020, 10(21): 2000049.

doi: 10.1002/aenm.v10.21
[69]
Li C, Huang Y, Chen C, Feng X S, Zhang Z. Appl. Surf. Sci., 2021, 563: 150248.

doi: 10.1016/j.apsusc.2021.150248
[70]
Jia W S, Li Z L, Wu Z R, Wang L P, Wu B, Wang Y H, Cao Y, Li J Z. Solid State Ion., 2018, 315: 7.

doi: 10.1016/j.ssi.2017.11.026
[71]
Pu J, Zhang K, Wang Z H, Li C W, Zhu K P, Yao Y G, Hong G. Adv. Funct. Mater., 2021, 31(48): 2106315.

doi: 10.1002/adfm.v31.48
[72]
Zheng Y P, Li H H, Yuan H Y, Fan H H, Li W L, Zhang J P. Appl. Surf. Sci., 2018, 434: 596.

doi: 10.1016/j.apsusc.2017.10.230
[73]
Li M T, Zhu W S, Zhang P F, Chao Y H, He Q, Yang B L, Li H M, Borisevich A, Dai S. Small, 2016, 12(26): 3535.

doi: 10.1002/smll.201600358
[74]
Shim J, Kim H J, Kim B G, Kim Y S, Kim D G, Lee J C. Energy Environ. Sci., 2017, 10(9): 1911.

doi: 10.1039/C7EE01095H
[75]
Zhang X L, Guo W Y, Zhou L Z, Xu Q J, Min Y L. J. Mater. Chem. A, 2021, 9(36): 20530.

doi: 10.1039/D1TA05410D
[76]
Du L L, Zhang B, Wang X F, Dong C H, Mai L Q, Xu L. Chem. Eng. J., 2023, 451: 138787.

doi: 10.1016/j.cej.2022.138787
[77]
Lin D C, Yuen P Y, Liu Y Y, Liu W, Liu N, Dauskardt R H, Cui Y. Adv. Mater., 2018, 30(32): 1802661.

doi: 10.1002/adma.v30.32
[78]
Zhang Z, Huang Y, Gao H, Li C, Huang J X, Liu P B. J. Membr. Sci., 2021, 621: 118940.

doi: 10.1016/j.memsci.2020.118940
[79]
Wang J, Yang J, Shen L, Guo Q Y, He H, Yao X Y. ACS Appl. Energy Mater., 2021, 4(4): 4129.

doi: 10.1021/acsaem.1c00468
[80]
Hu J L, Chen K Y, Yao Z G, Li C L. Sci. Bull., 2021, 66(7): 694.

doi: 10.1016/j.scib.2020.11.017
[81]
Tseng Y C, Ramdhani F I, Hsiang S H, Lee T Y, Teng H, Jan J S. J. Membr. Sci., 2022, 641: 119891.

doi: 10.1016/j.memsci.2021.119891
[82]
Wang S S, Zhou L, Tufail M K, Yang L, Zhai P F, Chen R J, Yang W. Chem. Eng. J., 2021, 415: 128846.

doi: 10.1016/j.cej.2021.128846
[83]
Yao M, Ruan Q Q, Yu T H, Zhang H T, Zhang S J. Energy Storage Mater., 2022, 44: 93.
[84]
Sasikumar M, Krishna R H, Raja M, Therese H A, Balakrishnan N T M, Raghavan P, Sivakumar P. J. Alloys Compd., 2021, 882: 160709.

doi: 10.1016/j.jallcom.2021.160709
[85]
Chen N, Xing Y, Wang L L, Liu F, Li L, Chen R J, Wu F, Guo S J. Nano Energy, 2018, 47: 35.

doi: 10.1016/j.nanoen.2018.02.036
[86]
Judez X, Piszcz M, Coya E, Li C M, Aldalur I, Oteo U, Zhang Y, Zhang W, Rodriguez-Martinez L M, Zhang H, Armand M. Solid State Ion., 2018, 318: 95.

doi: 10.1016/j.ssi.2017.07.021
[87]
Tinghua X, Jian S, Shuhong Y, Dandan W, Yaping L, Qingqing P, Du P, Huiling Z, Ying B. Solid State Ionics, 2018, 326: 110.

doi: 10.1016/j.ssi.2018.09.020
[88]
Zhou D, Liu R L, He Y B, Li F Y, Liu M, Li B H, Yang Q H, Cai Q, Kang F Y. Adv. Energy Mater., 2016, 6(7): 1502214.

doi: 10.1002/aenm.v6.7
[89]
Peiqi L, Peng L, Haoqing L, Ziyang D, Zhenbao Z, Dengjie C. J. Membr. Sci., 2019, 580: 92.

doi: 10.1016/j.memsci.2019.03.006
[90]
Hengfei Q, Kun F, Ying Z, Yuhang Y, Mingyao S, Yudi K, Soo-Hwan J, Feng J, Lifeng C. Energy Storage Mater., 2020, 28: 293.
[91]
Sheng O W, Jin C B, Luo J M, Yuan H D, Huang H, Gan Y P, Zhang J, Xia Y, Liang C, Zhang W K, Tao X Y. Nano Lett., 2018, 18(5): 3104.

doi: 10.1021/acs.nanolett.8b00659
[92]
Wu Z J, Xie Z K, Yoshida A, Wang J, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. J. Colloid Interface Sci., 2020, 565: 110.

doi: 10.1016/j.jcis.2020.01.005
[93]
Xu H L, Ye W, Wang Q R, Han B, Wang J, Wang C Y, Deng Y H. J. Mater. Chem. A, 2021, 9(15): 9826.

doi: 10.1039/D1TA00745A
[94]
Shen Z C, Zhong J W, Xie W H, Chen J B, Ke X, Ma J M, Shi Z C. Acta Metall. Sin. Engl. Lett., 2021, 34(3): 359.
[95]
Hu J, Wang W H, Zhu X J, Liu S B, Wang Y J, Xu Y J, Zhou S K, He X C, Xue Z G. J. Membr. Sci., 2021, 618: 118697.

doi: 10.1016/j.memsci.2020.118697
[96]
Wang X L, Hao X J, Cai D, Zhang S E, Xia X H, Tu J P. Chem. Eng. J., 2020, 382: 122714.

doi: 10.1016/j.cej.2019.122714
[97]
An H W, Liu Q S, An J L, Liang S T, Wang X F, Xu Z W, Tong Y J, Huo H, Sun N, Wang Y L, Shi Y F, Wang J J. Energy Storage Mater., 2021, 43: 358.
[98]
Yin X S, Wang L, Kim Y, Ding N, Kong J H, Safanama D, Zheng Y, Xu J W, Repaka D V M, Hippalgaonkar K, Lee S W, Adams S, Zheng G W. Adv. Sci., 2020, 7(19): 2001303.

doi: 10.1002/advs.v7.19
[99]
Li Y H, Zhang L B, Sun Z J, Gao G X, Lu S Y, Zhu M, Zhang Y F, Jia Z Y, Xiao C H, Bu H T, Xi K, Ding S J. J. Mater. Chem. A, 2020, 8(19): 9579.

doi: 10.1039/D0TA03677C
[100]
Kim D, Liu X, Yu B Z, Mateti S, O'dell L A, Rong Q Z, Chen Y. Adv. Funct. Mater., 2020, 30(15): 1910813.

doi: 10.1002/adfm.v30.15
[101]
Zhang Z Y, Antonio R G, Leong Choy K. J. Power Sources, 2019, 435: 226736.

doi: 10.1016/j.jpowsour.2019.226736
[102]
Hyun W J, de Moraes A C M, Lim J M, Downing J R, Park K Y, Tan M T Z, Hersam M C. ACS Nano, 2019, 13(8): 9664.

doi: 10.1021/acsnano.9b04989 pmid: 31318524
[103]
Shen B, Zhang T W, Yin Y C, Zhu Z X, Lu L L, Ma C, Zhou F, Yao H B. Chem. Commun., 2019, 55(53): 7703.

doi: 10.1039/C9CC02124H
[1] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[2] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[3] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[4] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[5] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[6] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[7] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[8] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[9] Li Jiaoyang, Wang Li, He Xiangming. Phosphorus-Based Composite Anode Materials for Secondary Batteries [J]. Progress in Chemistry, 2016, 28(2/3): 193-203.
[10] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[11] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[12] Li Dan, Liu Yurong, Lin Baoping, Sun Ying, Yang Hong, Zhang Xueqin. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2015, 27(4): 404-415.
[13] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[14] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[15] Yu Feng Zhang Jingjie Wang Changyin Yuan Jing Yang Yanfeng Song Guangzhi. Crystal Structure and Electrochemical Performance of Lithium Ion Battery Cathode Materials [J]. Progress in Chemistry, 2010, 22(01): 9-18.