中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1249-1251 DOI: 10.7536/PC220624 Previous Articles   Next Articles

Special Issue: 中国化学印记

• Imprint of Chinese Chemistry •

Origin of Structure and Voltage Fade of High-Capacity Li-Rich Mn-Rich Cathode for Li-Ion Batteries and Its Solution

Zu-Wei Yin1, Shi-Gang Sun2()   

  1. 1 College of Energy, Xiamen University, Xiamen 361005, China
    2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Online: Published:
  • Contact: Shi-Gang Sun
Richhtml ( 49 ) PDF ( 581 ) Cited
Export

EndNote

Ris

BibTeX

Oxygen loss is the current mainstream explanation for voltage decay of Li-rich Mn-rich oxide cathode (LMR), which is conflictive with the ineffectiveness of trivial to stabilize its lattice oxygen and voltage decay. The unclear voltage decay mechanism of high-capacity Li-rich cathode hinders its commercial applications. In this finding, the driving force of voltage decay in LMR is attributed to its lattice displacement/strain, which is concluded by state-of-the-art multiscale characterizations and theoretical calculations, and harmonizes many aspects in this field. Dispersing the Li@Mn6 units in layered structure is an effective method to stabilize the structure of LMR.

[1]
Zheng J, Ye Y, Pan F. National Science Review, 2020, 7: 242.

doi: 10.1093/nsr/nwz178
[2]
Assat G, Tarascon J M. Nature Energy, 2018, 3: 373.

doi: 10.1038/s41560-018-0097-0
[3]
Yin Z W, Li J T, Huang L, Pan F, Sun S G. Chinese Journal of Structural Chemistry, 2020, 39: 20.
[4]
Zheng Z, Weng M Y, Yang L Y, Hu Z X, Chen Z F, Pan F. Chinese Journal of Structural Chemistry, 2020, 38: 2020.
[5]
Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M, Wang C. Nature Nanotechnology, 2019, 14: 602.

doi: 10.1038/s41565-019-0428-8
[6]
Singer A, Zhang M, Hy S, Cela D, Fang C, Wynn T A, Qiu B, Xia Y, Liu Z, Ulvestad A, Hua N, Wingert J, Liu H, Sprung M, Zozulya A V, Maxey E, Harder R, Meng Y S, Shpyrko O G. Nature Energy, 2018, 3: 641.

doi: 10.1038/s41560-018-0184-2
[7]
Liu T C, Liu J J, Li L X, Yu L, Diao J C, Zhou T, Li S N, Dai A, Zhao W G, Xu S Y, Ren Y, Wang L G, Wu T P, Qi R, Xiao Y G, Zheng J X, Cha W, Harder R, Robinson I, Wen J G, Lu J, Pan F, Amine K. Nature, 2022, 606: 305.

doi: 10.1038/s41586-022-04689-y
[8]
Yin Z W, Peng X X, Li J T, Shen C H, Deng Y P, Wu Z G, Zhang T, Zhang Q, Mo Y, Wang K, Huang L, Zheng H, Sun S G. ACS Applied Materials & Interfaces, 2019, 11: 16214.
[9]
Zheng J, Gu M, Genc A, Xiao J, Xu P, Chen X, Zhu Z, Zhao W, Pullan L, Wang C, Zhang J G. Nano letters, 2014, 14: 2628.

doi: 10.1021/nl500486y
[10]
Huang W, Lin C, Qiu J, Li S, Chen Z, Chen H, Zhao W, Ren G, Li X, Zhang M, Pan, F. Chem., 2022, DOI: 10.1016/j.chempr.2022.04.012.

doi: 10.1016/j.chempr.2022.04.012
[11]
Huang W, Yang L, Chen Z, Liu T, Ren G, Shan P, Zhang B, Chen S, Li S, Li J, Lin C, Zhao W, Qiu J, Fang J, Zhang M, Dong C, Li F, Yang Y, Sun C, Ren Y, Huang Q, Hou G, Dou S, Lu J, Amine K, Pan F. Advanced Materials, 2022, 2202745.
No related articles found!