中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1626-1641 DOI: 10.7536/PC220348 Previous Articles   

• Review •

Condensed Matter Chemical Reactions in PaleoChemistry

Timothy D. Huang()   

  1. Chung Hsing University of China, Taichung 402, China
  • Received: Revised: Online: Published:
  • Contact: Timothy D. Huang
Richhtml ( 9 ) PDF ( 149 ) Cited
Export

EndNote

Ris

BibTeX

For the study of paleontology, we must start from the direction of paleontological "changes," go deep inside the fossil bones and cells, and explore what changes had taken place in terms of chemical composition, the structural and morphological changes of the ancient organisms over a very long time ago. What does it change into? What remains and preserved as fossils do we have in our hands today? Then the most important question: what is the chemical mechanism for preserving these organic residues? What is the critical role of condensed matter chemistry in these complex geological events? From the perspective of condensed matter chemistry in this paper, the author tries his best to explore the most fundamental mysteries related to PaleoChemistry in paleontology. Three examples are given to illustrate possible condensed matter chemical reactions, which must have played a critical primary mechanism in PaleoChemistry, waiting for us to uncover. For example, fossils are generally believed to be ancient organisms that changed into stone/rock, from once-living organisms to lifeless inorganic minerals. It is commonly believed that organic matters cannot be preserved for millions or billions of years. However, our team found preserved native collagen Type I in the 195 million years ago Lufengosaurus embryonic bones. Many amino acids were found in the 2.2 billion-year-old fossils. The evidence of steranes proved these organisms were the oldest multicellular eukaryotes. This is one of the most significant discoveries in the life evolution of the Earth. From the examples of these paleontological fossils, it can be seen that condensed matter chemistry is not only a bystander of theoretical chemistry but a key role. Its importance is worthy of our investment in the in-depth study to uncover the mysteries of the fundamental chemistry of countless chemical reactions from ancient organisms to fossils in our hands.

Fig. 1 Soft-Bodied Fossils Are Not Simply Rotten Carcasses-Toward a Holistic Understanding of Exceptional Fossil Preservation; Luke A. Parry et al
Fig. 2 A solid Paleoproterozoic fossil was “gently” treated with a focused ion beam (FIB) to burn off much of the organic residue in the fossil
Fig. 3 Overlapping quadruple images of the same embryonic femur of Lufengosaurus. Combining the information of the three optical images and the neutron scan image of 6.7 μm, more multivariate analysis and discussion can be done. These imaging data are obtained nondestructively from the same sample at the same location, achieving true “in situ same-point multiplex analysis”, avoiding differences between similar but different specimens (e.g. different microsections)
Fig. 4 A scan of the embryo bone of lufenglong showing the distribution and arrangement of chemical components in the fossil bone. Blue is apatite group minerals, green is carbonate, and red is collagen
Fig. 5 2.2 billion years ago, the oldest multicellular eukaryote, Liangshania shrimpy, showing the distribution and arrangement of its chemical composition; Red and magenta are organic compounds (amino acids), green and blue are titanium and iron ions, respectively
Fig. 6 Using synchrotron radiation and Fourier transform infrared spectroscopy microscopy, we found evidence of organic residues in the bones of 195-million-year-old dinosaur embryos
Fig. 7 X-ray fluorescence scanning of the maxilla of Lufengosaurus embryo shows the distribution of organic sulfur. The main component of bone is apatite, so the coloring of these two elements: calcium is green, phosphorus is mixed with blue as the background color, and organic sulfur is expressed in red. Many red dots and patches are visible in the image, indicating that these areas contain organic sulfur
Fig. 8 (top) Infrared spectra of type I collagen preserved in dinosaur bones, excluding bacterial and watering contamination; Raman spectroscopy shows that the red dot on the right is a ball of hematite; (Bottom) TXM of synchrotron radiation provides the morphological configuration of hematite pellets, which are confirmed not as red blood
Fig. 9 The lanthanide rare earth elements in adult and embryo of Lufengosaurus and Yimenosaaurus differ by about ten times
Fig. 10 Characteristic peak of infrared spectrum of alkyl group. C—H, stretch, range 2800~3000 cm-1, strong; Methyl group symmetric and asymmetric(νsCH3 and νas CH3) and methylene symmetric and asymmetric(νsCH2 and νas CH2)
Fig. 11 Infrared spectra of pure calcite synthesized in laboratory, natural and in nacre bead. Natural calcite collected in Montana, USA; Below, the mother-pearl shell powder (calcite) shows a decrease in alkyl group with increasing temperature
Fig. 12 Comparison of the spectra of various biological fossils in different geological periods, different burial environments and different biological fossils. Except J, which is the mammal fossil retrieved from Penghu Ditch, all the others have obvious alkyl peaks
Fig. 13 Carbonate gluing of small serrations on teeth of carnivorous dinosaurs
Fig. 14 Solid fossils of two types of multicellular eukaryotes in the Paleoproterozoic, 2.2 billion years ago; Left: Liangshania shrimpy, larger ones can be more than one centimeter in length; Right: Lianshania peanuti, less than 1 mm in length
Fig. 15 Alkanes ratio of solid fossils of two Paleoproterozoic multicellular eukaryotes 2.2 billion years ago; Top: sterane/hopane ratio, > 1 for eukaryotes; Bottom: the proportion of steranes in Shrimpy
Fig. 16 Measurement of cell size of two Paleoproterozoic multicellular eukaryotic solid fossils 2.2 billion years ago; Upper: Liangshania shrimpy, average 12.6×2.9 μm; Bottom: Liangshania peanuti, average 20.5×5.2 μm
Fig. 17 Various intracellular organelles in the body of Liangshania shrimpy and Liangshania peanuti 2.2 billion years ago in Ancient Proterozoic
Fig. 18 Body amino acid composition of the Paleoproterozoic Shrimpy
Fig. 19 Raman spectra of Shrimpy show that metals in the body are bound to amino acids
Fig. 20 Four metals in XRF Protoproterozoic Shrimpy and Peanut
Fig. 21 The third evidence of these biological cells can be seen through the 3D Raman scan of Shrimpy and Peanut. Above is a 3D Raman scan of a Shrimpy. Below are images of Peanut. These images show the outline of organic matter, which should correspond to their cells.
Fig. 22 Raman spectra of Shrimpy and Peanut with two incident laser wavelengths, showing the position and intensity changes of D and G band peaks
Fig. 23 Schematic diagram of variation of Raman spectral shift intensity
Fig. 24 Comprehensive schematic diagram of geological and chemical environment of Shrimpy etc. The vertical axis is only for relative values
[1]
Huang T D. An Introduction to PaleoChemistry. Beijing: Science Press, 2021.
(黄大一. 古生物化学入门. 北京: 科学出版社, 2021.).
[2]
Reisz R R, Huang T D, Roberts E M, Peng S, Sullivan C, Stein K, LeBlanc A R H, Shieh D, Chang R S, Chiang C C, Yang C W, Zhong S M. Nature, 2013, 496(7444): 210.

doi: 10.1038/nature11978
[3]
Lee Y C, Chiang C C, Huang P Y, Chung C Y, Huang T D, Wang C C, Chen C I, Chang R S, Liao C H, Reisz R R. Nat. Commun., 2017, 8: 14220.

doi: 10.1038/ncomms14220
[4]
Parry L A, Smithwick F, NordÉn K K, Saitta E T, Lozano-Fernandez J, Tanner A R, Caron J B, Edgecombe G D, Briggs D E G, Vinther J. BioEssays, 2018, 40(1): 1700167.

doi: 10.1002/bies.201700167
[5]
“Morphology Definition of Morphology by Oxford Dictionary on Lexico. com also meaning of Morphology”. Lexico Dictionaries English.[2022-03-01]https://www.lexico.com/.
[6]
Bennett V. Patterns in palaeontology: old shapes, new tricks—the study of fossil morphology by, 2013,3: 3.
[7]
Yan R H, Harrison T, Cater E, Bevitt J V, Huang T D. Dinosaur Embryology: in situ in loco 3D Chemical Composition of Lufengosaurus Embryo bone, in publication.
[8]
Zheng W X, Schweitzer M H,. Chemical Analyses of Fossil Bone, Bell Lynne S.. (Ed.), Forensic Microscopy for Skeletal Tissues: Methods and Protocols, Methods in Molecular Biology, Totowa: Humana Press.2012. 915. DOI:10.1007/978-1-61779-977-8_10.
[9]
Brink K S, Reisz R R, LeBlanc A R H, Chang R S, Lee Y C, Chiang C C, Huang T, Evans D C. Sci. Rep., 2015, 5: 12338.

doi: 10.1038/srep12338 pmid: 26216577
[10]
Wang C C, Song Y F, Song S R, Ji Q, Chiang C C, Meng Q J, Li H B, Hsiao K, Lu Y C, Shew B Y, Huang T, Reisz R R. Sci. Rep., 2015, 5: 15202.

doi: 10.1038/srep15202
[11]
Huang T D, Huang C L, Lin C T, Knell M, Yang W J. Western Pacific Earth Sciences, 2009, 9: 15.
(黄大一, 黄春兰, 林启灿, Mike Knell, 杨文质. 西太平洋地质科学, 2009, 9:15.).
[12]
Wang S L, Huang T D, Yan R H, Chen H W, Zhang S T, Li X B, KÓtai L, Reisz R R. Frontiers in Earth Science, 2020, 8: 230.

doi: 10.3389/feart.2020.00230
[13]
Huang T D, Lee Y C, Chiang C C, Reisz R R. The Generality of Preservation of Organic Remains in Body Fossils by FTIR Spectra Comparison. Biopetrology, 2022, 1(1):48-60. http://biepetrology,com/tdhtgo.
[14]
Verma D, Katti K, Katti D. Spectrochimica Acta Part A, 2006, 64: 1051.

doi: 10.1016/j.saa.2005.09.014
[15]
He C K. Science Development, 2011,(458).
(何传坤. 科学发展, 2011,(458).).
[16]
Brink K, Chen Y C, Wu Y N, Liu W M, Shieh D, Huang T, Sun C, Reisz R. J. R. Soc. Interface, 2016, 13: 20160626.
[17]
Liu J P, Zeng W T, Xu Y F, Sun B D, Hu S B, Liu G C, Song D H, Lü B Y, Wang X F. Geological Bulletin of China, 2018, 37(11):2055.
(刘军平, 曾文涛, 徐云飞, 孙柏东, 胡绍斌, 刘桂春, 宋冬虎, 吕勃烨, 王晓峰. 地质通报, 2018, 37(11):2055.).
[18]
Liu J P, Li J, Sun B D, Hu S B, Zeng W T, Liu Fagang, Sun Z M, Cong F, Xu Y F. Sedimentary Geology and Tethyan Geology, 2018, 38(1):37.
(刘军平, 李静, 孙柏东, 胡绍斌, 曾文涛, 刘发刚, 孙志明, 丛峰, 徐云飞. 沉积与特提斯地质, 2018, 38(01):37.).
[19]
Liu J P, Li J, Wang W, Sun B D, Zeng W T, Song D H, Guan X Q, Lü B Y, Hao X F, Sun P. Sedimentary Geology and Tethyan Geology, 2019, 39(4):57.
(刘军平, 李静, 王伟, 孙柏东, 曾文涛, 宋冬虎, 关学卿, 吕勃烨, 郝学锋, 孙鹏. 沉积与特提斯地质, 2019, 39(04):57.).
[20]
Liu J P, Li J, Wang G H, Sun B D, Hu S B, Yu S Y, Wang X H, Song D H. Geological Review, 2020, 66(2):350.
(刘军平, 李静, 王根厚, 孙柏东, 胡绍斌, 俞赛赢, 王小虎, 宋冬虎. 地质论评, 2020, 66(02):350.).
[21]
Li J, Liu G C, Liu J P, Hu S B, Zeng W T, Sun B D, Zhang H, Deng R H, Zhang Z B, Liu F G, Duan X D, Yu S Y, Wang X F, Zhao Y J, Zhou K. Geological Bulletin of China, 2018, 37(11):1957.
(李静, 刘桂春, 刘军平, 胡绍斌, 曾文涛, 孙柏东, 张虎, 邓仁宏, 张志斌, 刘发刚, 段向东, 俞赛赢, 王晓峰, 赵云江, 周坤. 地质通报, 2018, 37(11):1957.).
[22]
Li J, Liu J P, Sun B D, Liu G C, Hu S B, Zeng W T, Zhang H, Deng R H, Yu S Y. Geological Bulletin of China, 2018, 37( 11):2087.
(李静, 刘军平, 孙柏东, 刘桂春, 胡绍斌, 曾文涛, 张虎, 邓仁宏, 俞赛赢. 地质通报, 2018, 37(11):2087.).
[23]
Summons R E, Bradley A S, Jahnke L L, Waldbauer J R. Phil. Trans. R. Soc. B, 2006, 361(1470): 951.

doi: 10.1098/rstb.2006.1837
[24]
Sessions A L, Doughty D M, Welander P V, Summons R E, Newman D K. Current Biology, 2009, 19:R567. DOI:10.1016/j.cub.2009.05.054.

doi: 10.1016/j.cub.2009.05.054
[25]
Wang Z D, Fingas M, Yang C, Christensen J H.. Environmental Forensics. Amsterdam: Elsevier, 1964. 339-407.
[26]
Williams M R. Master Dissertation of University of California Riverside, 2012.
[27]
Williams T A, Foster P G, Cox C J, Embley T M. Nature, 2013, 504(7479): 231.

doi: 10.1038/nature12779
[28]
Salvador-Castell M, Tourte M, Oger P M. Int. J. Mol. Sci., 2019, 20(18): 4434.

doi: 10.3390/ijms20184434
[29]
van Maldegem L M, Nettersheim B J, Leider A, Brocks J J, Adam P, Schaeffer P, Hallmann C. Nat. Ecol. Evol., 2021, 5(2): 169.

doi: 10.1038/s41559-020-01336-5 pmid: 33230255
[30]
Bobrovskiy I, Hope J M, Nettersheim B J, Volkman J K, Hallmann C, Brocks J J. Nat. Ecol. Evol., 2021, 5(2): 165.

doi: 10.1038/s41559-020-01334-7 pmid: 33230256
[31]
Chu S W, Chen I H, Liu T M, Chen P C, Sun C K, Lin B L. Opt. Lett., 2001, 26(23): 1909.

pmid: 18059734
[32]
Sonay A Y, Pantazis P. SPIE Proceedings Clinical and Preclinical Optical Diagnostics, 2017, 10411:104110D.
[33]
Carlisle E M, Jobbins M, Pankhania V, Cunningham J A, Donoghue P C J. Sci. Adv., 2021, 7(5): eabe9487.

doi: 10.1126/sciadv.abe9487
[34]
Needham T E. Doctoral Dissertation of University of Rhode Island, 1970. 159. http://digitalcommons.uri.edu/ oa_diss/159.
[35]
Rasmussen C J. Nutritional Supplements for Endurance Athletes. In: Nutritional Supplements in Sports and Exercise. Humana Press, 2008. DOI: 10.1007/978-1-59745-231-1_11.
[36]
Chowdhury N, Bagchi A,. Bioinformation, 2018, 14(6): 315.

doi: 10.6026/97320630014315 pmid: 30237677
[37]
(Hertrampf, Olivares. Int. J. Vitam. Nutr. Res., 2004, 74(6): 435.

pmid: 15743019
[38]
Ghasemi S, Khoshgoftarmanesh A H, Hadadzadeh H, Jafari M. J. Plant Growth Regul., 2012, 31(4): 498.

doi: 10.1007/s00344-012-9259-7
[39]
Dickson A G. Mar. Chem., 1993, 44(2/4): 131.

doi: 10.1016/0304-4203(93)90198-W
[40]
Bush M F, Oomens J, Saykally R J, Williams E R. J. Am. Chem. Soc., 2008, 130(20): 6463.

doi: 10.1021/ja711343q
[41]
Kouketsu Y, Mizukami T, Mori H, Endo S, Aoya M, Hara H, Nakamura D, Wallis S. Island Arc, 2014, 23(1): 33.

doi: 10.1111/iar.12057
[42]
Wang J K. Instruments Today, 2002, 23(4):46.
(王俊凯. 科仪新知, 2002, 23(4):46.).
[43]
Poulton S W, Bekker A, Cumming V M, Zerkle A L, Canfield D E, Johnston D T. Nature, 2021, 592(7853): 232.

doi: 10.1038/s41586-021-03393-7
[44]
Ostrander C M, Johnson A C, Anbar A D. Annu. Rev. Earth Planet. Sci., 2021, 49: 337.

doi: 10.1146/annurev-earth-072020-055249
[45]
Huang T D, Lee Y C, Chiang C C, Reisz R R. Biopetrology, 2022, 1(1):48. http://biopetrology.com/tdhtgo.
[1] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.