中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2267-2282 DOI: 10.7536/PC220131 Previous Articles   Next Articles

• Review •

Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients

Chen Yaqiong1,2, Song Hongdong2, Wu Mao1, Lu Yang1, Guan Xiao2()   

  1. 1 School of Pharmacy, Shanghai University of Medicine & Health Sciences,Shanghai 201318, China
    2 School of Health Sciences and Engineering, University of Shanghai for Science and Technology,Shanghai 200093, China
  • Received: Revised: Online: Published:
  • Contact: Guan Xiao
  • Supported by:
    National Natural Science Foundation of China(32172247)
Richhtml ( 35 ) PDF ( 543 ) Cited
Export

EndNote

Ris

BibTeX

Protein-polysaccharide complex system, as the wall material of bioactive ingredient delivery systems, have multiple advantages that other materials such as synthetic polymers or inorganic materials do not have. The connection mode between protein and polysaccharide, the various forms of protein-polysaccharide complex forming delivery system are reviewed, and the development trend of this field is prospected. According to the structural characteristics of proteins and polysaccharides, the linking methods between the two are divided into non-covalent binding such as physical copolymerization, and covalent binding such as Maillard coupling, chemical cross-linking, and enzyme-catalyzed cross-linking. The binding mechanism of the above connection methods and the influencing factors are expounded. The delivery forms of active ingredients with protein polysaccharide complexes as wall materials are generally divided into emulsion systems, micelles, nanogels, molecular complexes, and shell-core structure systems. According to the characteristics and delivery requirements of different active ingredients, proteins and polysaccharides with suitable structures and types, as well as their connection methods and delivery systems, can be selected in a targeted manner. Moreover, with the gradual development and advancement of research, the development trend in this field is moving towards the direction of intelligence and targeting. At present, the protein-polysaccharide complexes delivery system of active ingredients still faces many challenges in system design, evaluation and application. This requires us to design and evaluate the delivery system of active ingredients in a safe and reasonable manner based on a more comprehensive and in-depth study of its impact and efficacy on active ingredients.

Fig. 1 Schematic diagram of the binding mode of protein and polysaccharide
Fig. 2 (a) Three pH nodes determining protein and polysaccharide aggregation: pHc, pHφ1, pHφ2; and (b) the effect of ionic strength on the pH node (b)[28]. Copyright 2003, ACS
Fig. 3 Effects of different parameters on the process of protein-polysaccharide complex coacervation
Fig. 4 Schematic diagram of the Maillard reaction to form protein-polysaccharide covalent complexes[32], Copyright 2003, China Agricultural University
Fig. 5 EDC/NHS coupling reaction scheme
Fig. 6 DMTMM coupling process of hyaluronic acid and amine-containing compounds
Fig. 7 (a),(b) Mechanism of cross-linking reaction between genipin and compounds containing primary ammonia, (c) Patterns of cross-linking between polysaccharides and proteins via genipin(R1, R2:one of them is protein, the other is aminopolysaccharide)
Fig. 8 Transglutaminase-catalyzed reaction process
Fig. 9 Laccase, peroxidase and tyrosinase enzymatic oxidation mechanism of compounds containing phenolic structures
Table 1 The binding mode of protein-polysaccharide complex and its influencing factors
Fig. 10 Schematic of the delivery system for active ingredients by proteoglycan-saccharide complexes
Table 2 Types and functions of protein-polysaccharide complex delivery system for active ingredients
active ingredients Wall Material/Methods delivery system Function/Purpose ref
Lycopene WPI-SA/ transglutaminase cross-
linked, emulsification
Nanoemul-sion lycopene-loaded emulsion showed better photochemical and gastrointestinal stability, strong anti-inflammatory activity against Caco-2 cells, and increased lycopene uptake by Caco-2 cells 78
Blackberry tree anthocyanins Gelatin-GA/complex coacervation Multiple emulsion Blackberry tree anthocyanins were microencapsulated by a double-emulsion system composed of gelatin and gum arabic, the structure and properties were evaluated, and the effect on the stability of anthocyanins was determined. 4
curcumin Gliadin-Chitosan/ Anti-
solvent dispersion
Pickering emulsion The gliadin-chitosan Pickering emulsion has a high internal phase, is partially wetted, effectively adsorbed and fixed at the oil-water interface, provides steric hindrance, and has suitable viscoelasticity, while protecting curcumin. 75
Canola oil WPC- GA/complex coacervation Pickering double emulsions Pickering O/W/O double emulsion prepared from WPC- GA complex with long-term stability. 79
naringenin β-CN-dextran/ Maillard reaction,
self-assembly
micelle Dextran-induced β-CN glycosylation to improve the stability of naringenin-loaded β-CN micelles in acidic and high calcium environments 80
curcumin OVA-Pul/Maillard reaction,
Heat treatment
nanogel OVA-Pul nanogels have good storage stability and facilitate the controlled release of curcumin during digestion 81
cinnamaldehyde GelatiN- HMP or LMP/
complex coacervation
Molecular complex Pectin type and gelatin conformation significantly affect the overall coordination and properties of cinnamaldehyde microcapsules 82
EGCG hordein-chitosan/Anti-solvent dispersion, Electrostatic deposition Shell-Core particle Chitosan-coated barley soluble pale white shell-structured core nanoparticles have high encapsulation efficiency of EGCG and penetrate into epithelial cells through vesicle-mediated endocytosis and macropinocytosis 22
Hyperoside SPI-SSPS/Anti-solvent dispersion, Electrostatic deposition Shell-Core particle The main forces for the formation of nanoparticles were electrostatic interaction, hydrogen bond interaction and hydrophobic interaction. The encapsulation efficiency is high, and the encapsulated HYP maintains its high antioxidant capacity. 83
Fig. 11 Schematic illustration of the preparation of shell-core structured EGCG-hordein/chitosan (Cs-EHNs) nanoparticles, and their uptake and transcellular permeability in Caco-2/HT29 cells[22]. Copyright 2021, Elsevier
Fig. 12 Thermoresponsive vesicles prepared by modification of bovine serum albumin(BSA)(a) Coupling scheme of thermosensitive substance PNIPAAm polymer and BSA; (b) scheme of protein vesicle microchamber formed by Pickering emulsion; (c) protein vesicle A thermally controlled system is formed that operates by swelling or de-swelling; (d) Corresponding temperature-dependent catalytic reaction rates for free myoglobin (black line) and protein body encapsulated myoglobin (red line) in the presence of two reactants (2-methoxyphenol and H2O2)[102]. Copyright 2013, Nature
Fig. 13 (a) Construction scheme of nanoparticles targeting DNPs, (b) mechanism of insulin uptake by epithelial cells, and (c) schematic diagram of the transport of DNPs from the bile acid pathway through epithelial cells to overcome the multiple barriers of intestinal epithelial cells[103]. Copyright 2013, University of Chinese Academy of Sciences
[1]
Nowak E, Livney Y D, Niu Z, Singh H. Trends in Food Science & Technology, 2019, 91: 557.
[2]
Huang X X, Huang X L, Gong Y S, Xiao H, McClements D J, Hu K. Food Res. Int., 2016, 87: 1.

doi: 10.1016/j.foodres.2016.06.009
[3]
Thongkaew C, Gibis M, Hinrichs J, Weiss J. Food Hydrocolloids, 2014, 41: 103.

doi: 10.1016/j.foodhyd.2014.02.006
[4]
Shaddel R, Hesari J, Azadmard-Damirchi S, Hamishehkar H, Fathi-Achachlouei B, Huang Q. Food Hydrocolloids, 2018, 77: 803.

doi: 10.1016/j.foodhyd.2017.11.024
[5]
Wei Z, Yang W, Fan R, Yuan F, Gao Y. Food Hydrocolloids, 2015, 45: 337.

doi: 10.1016/j.foodhyd.2014.12.008
[6]
Troszynska A, Narolewska O, Robredo S, Estrella I, Hernandez T, Lamparski G, Amarowicz R. Food Quality and Preference, 2010, 21 (5): 463.

doi: 10.1016/j.foodqual.2009.12.005
[7]
Ting Y, Jiang Y, Zhao S, Li C C, Nibber T, Huang Q. Journal of Functional Foods, 2018, 40: 520.

doi: 10.1016/j.jff.2017.11.043
[8]
Chen G, Roy I, Yang C, Prasad P N. Chem Rev, 2016, 116 (5): 2826.

doi: 10.1021/acs.chemrev.5b00148
[9]
Zhao Y, Cao W Q, Liu Y. Chemical Research in Chinese Universitie, 2020, 41 (5): 909.
赵宇, 曹琬晴, 刘阳. 高等学校化学学报, 2020, 41 (5): 909.).
[10]
Fonte P, Araujo F, Silva C, Pereira C, Reis S, Santos H A, Sarmento B. Biotechnol Adv, 2015, 33 (6 Pt 3): 1342.
[11]
Nur M, Vasiljevic T. Int J Biol. Macromol., 2017, 103: 889.

doi: 10.1016/j.ijbiomac.2017.05.138
[12]
Wang S Y, Feng Y M, Wu J L, Chen X, Feng J W, Shi X D, Cai X X, Zhang F. Food Sci., 2021, 42(17): 1.

doi: 10.1111/j.1365-2621.1977.tb01204.x
汪少芸, 冯雅梅, 伍久林, 陈旭, 冯佳雯, 施晓丹, 蔡茜茜, 张芳. 食品科学, 2021, 42(17): 1. ).
[13]
Beneke C E, Viljoen A M, Hamman J H. Molecules, 2009, 14 (7): 2602.

doi: 10.3390/molecules14072602
[14]
Cortes-Morales E A, Mendez-Montealvo G, Velazquez G. Adv Colloid Interface Sci, 2021, 295: 102398.

doi: 10.1016/j.cis.2021.102398
[15]
Feki A, Hamdi M, Jaballi I, Zghal S, Nasri M, Ben Amara I. Carbohydr Polym, 2020, 236: 116046.

doi: 10.1016/j.carbpol.2020.116046
[16]
Devi N, Sarmah M, Khatun B, Maji T K. Adv. Colloid Interface Sci., 2017, 239: 136.

doi: 10.1016/j.cis.2016.05.009
[17]
Wei Z H, Huang Q R. J. Agric. Food Chem., 2019, 67(5): 1344.

doi: 10.1021/acs.jafc.8b06063
[18]
Zhang Z, Hao G, Liu C, Fu J, Hu D, Rong J, Yang X. Food Res. Int., 2021, 147: 110564.

doi: 10.1016/j.foodres.2021.110564
[19]
Laplante S, Turgeon S L, Paquin P. Carbohydrate Polymers, 2006, 65 (4): 479.

doi: 10.1016/j.carbpol.2006.02.024
[20]
Chen Y Q, Song H D, Huang K, Guan X. Food Funct., 2021, 12(19): 9165.

doi: 10.1039/D1FO01411K
[21]
Tiebackx F W. Colloid and Polymer Science, 1911, 8 (4): 198.
[22]
Song H D, He A J, Guan X, Chen Z Y, Bao Y Z, Huang K. Int. J. Biol. Macromol., 2022, 196: 144.

doi: 10.1016/j.ijbiomac.2021.12.024
[23]
Ji N. Doctoral Dissertation of Jiangnan University, 2019.
姬娜. 江南大学博士论文, 2019.).
[24]
Lim H P, Ooi C W, Tey B T, Chan eng-seng. React. Funct. Polym., 2017, 120: 20.

doi: 10.1016/j.reactfunctpolym.2017.08.015
[25]
Lu M L, Li Z J, Liang H, Shi M X, Zhao L H, Li W, Chen Y Y, Wu J D, Wang S S, Chen X D, Yuan Q P, Li Y. Food Hydrocoll., 2015, 51: 476.

doi: 10.1016/j.foodhyd.2015.05.036
[26]
Ru Q M, Wang Y W, Lee J, Ding Y T, Huang Q R. Carbohydr. Polym., 2012, 88(3): 838.

doi: 10.1016/j.carbpol.2012.01.019
[27]
Hu B, Wang S S, Li J, Zeng X X, Huang Q R. J. Phys. Chem. B, 2011, 115(23): 7515.

doi: 10.1021/jp2013557
[28]
Weinbreck F, de Vries R, Schrooyen P, de Kruif C G. Biomacromolecules, 2003, 4(2): 293.

pmid: 12625724
[29]
Eghbal N, Choudhary R. LWT, 2018, 90: 254.

doi: 10.1016/j.lwt.2017.12.036
[30]
Chen C, Chen F S, Liu B Y. The Food Industry, 2019, 40 (2): 225.
陈晨, 陈复生, 刘伯业. 食品工业, 2019, 40 (2): 225.).
[31]
Zhou Y, Petrova S P, Edgar K J. Carbohydr. Polym., 2021, 274: 118662.

doi: 10.1016/j.carbpol.2021.118662
[32]
Liu F G. Doctoral Dissertation of China Agricultural University, 2017.
刘夫国. 中国农业大学博士论文, 2017.).
[33]
Aoki T, Iskandar S, Yoshida T, Takahashi K, Hattori M. Biosci. Biotechnol. Biochem., 2006, 70(10): 2349.

doi: 10.1271/bbb.50398
[34]
Consoli L, Dias R A O, Rabelo R S, Furtado G F, Sussulini A, Cunha R L, Hubinger M D. Food Hydrocoll., 2018, 84: 458.

doi: 10.1016/j.foodhyd.2018.06.017
[35]
Liu Q, Li M, Xiong L, Qiu L Z, Bian X L, Sun C R, Sun Q J. Food Hydrocoll., 2019, 92: 86.

doi: 10.1016/j.foodhyd.2019.01.054
[36]
Zhou H H, Sun X Y, Zhang L L, Zhang P, Li J, Liu Y N. Langmuir, 2012, 28(41): 14553.

doi: 10.1021/la303062j
[37]
Martinez-Alvarenga M S, Martinez-Rodriguez E Y, Garcia-Amezquita L E, Olivas G I, Zamudio-Flores P B, Acosta-Muniz C H, Sepulveda D R. Food Hydrocoll., 2014, 38: 110.

doi: 10.1016/j.foodhyd.2013.11.006
[38]
Liu Q, Cui H, Muhoza B, Hayat K, Hussain S, Tahir M U, Zhang X, Ho C T. LWT, 2021, 148.
[39]
Silvan J M, Assar S H, Srey C, Dolores Del Castillo M, Ames J M. Food Chem., 2011, 128 (1): 208.

doi: 10.1016/j.foodchem.2011.03.047
[40]
Zhu D, Damodaran S, Lucey J A. Journal of Agricultural and Food Chemistry, 2008, 56 (16): 7113.

doi: 10.1021/jf800909w
[41]
Wang D, Mao L, Dai L, Yuan F, Gao Y. Food Hydrocolloids, 2018, 80: 281.

doi: 10.1016/j.foodhyd.2017.11.031
[42]
Kaczmarek B, Sionkowska A, Kozlowska J, Osyczka A M. Int. J. Biol. Macromol., 2018, 107 (Pt A): 247.
[43]
Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Int. J. Biol. Macromol., 2019, 126: 620.

doi: S0141-8130(18)32335-3 pmid: 30562517
[44]
Bart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H. Lab Chip, 2009, 9 (24): 3481.

doi: 10.1039/b914270c
[45]
Nakajima N, Ikada Y. Bioconjugate Chem., 1995, 6(1): 123.

pmid: 7711098
[46]
D’Este M, Eglin D, Alini M. Carbohydr. Polym., 2014, 108: 239.

doi: 10.1016/j.carbpol.2014.02.070
[47]
Farkas P, Bystricky S. Carbohydrate Polymers, 2007, 68 (1): 187.

doi: 10.1016/j.carbpol.2006.07.013
[48]
Farkas P, Cizova A, Bekesova S, Bystricky S. Int. J. Biol. Macromol., 2013, 60: 325.

doi: 10.1016/j.ijbiomac.2013.06.014
[49]
Labre F, Mathieu S, Chaud P, Morvan P Y, VallÉe R, Helbert W, Fort S. Carbohydr. Polym., 2018, 184: 427.

doi: 10.1016/j.carbpol.2017.12.069
[50]
Golunova A, Velychkivska N, Miksovska Z, Chochola V, Jaros J, Hampl A, Pop-Georgievski O, Proks V. Int. J. Mol. Sci., 2021, 22 (11).
[51]
Zhang C, Wang P, Li J, Zhang H, Weiss J. Food Hydrocolloids, 2021, 119.
[52]
Shanmugam M K, Shen H Y, Tang F R, Arfuso F, Rajesh M, Wang L Z, Kumar A P, Bian J S, Goh B C, Bishayee A, Sethi G. Pharmacol. Res., 2018, 133: 195.

doi: S1043-6618(17)31356-7 pmid: 29758279
[53]
Butler M F, Ng Y F, Pudney P D A. J. Polym. Sci. A Polym. Chem., 2003, 41(24): 3941.

doi: 10.1002/pola.10960
[54]
Adamiak K, Sionkowska A. Int. J. Biol. Macromol., 2020, 161: 550.

doi: 10.1016/j.ijbiomac.2020.06.075
[55]
Mi F L. Biomacromolecules, 2005, 6(2): 975.

doi: 10.1021/bm049335p
[56]
Wu T, Liu C, Hu X. Food Chem., 2022, 372: 131332.

doi: 10.1016/j.foodchem.2021.131332
[57]
Buchert J, Ercili Cura D, Ma H R, Gasparetti C, Monogioudi E, Faccio G, Mattinen M, Boer H, Partanen R, Selinheimo E, Lantto R, Kruus K. Annu. Rev. Food Sci. Technol., 2010, 1: 113.

doi: 10.1146/annurev.food.080708.100841
[58]
Isaschar-Ovdat S, Fishman A. Trends Food Sci. Technol., 2018, 72: 134.

doi: 10.1016/j.tifs.2017.12.011
[59]
Yang R, Zuo P, Zhang M, Meng D M, Wang B W, Zhen T Y. Food Hydrocoll., 2019, 94: 500.

doi: 10.1016/j.foodhyd.2019.03.049
[60]
Li X Q, Li S Q, Liang X P, McClements D J, Liu X B, Liu F G. Trends Food Sci. Technol., 2020, 103: 78.

doi: 10.1016/j.tifs.2020.06.014
[61]
Chen T H, Small D A, Wu L Q, Rubloff G W, Ghodssi R, Vazquez-Duhalt R, Bentley W E, Payne G F. Langmuir, 2003, 19(22): 9382.

doi: 10.1021/la0347096
[62]
Chen T H, Embree H D, Brown E M, Taylor M M, Payne G F. Biomaterials, 2003, 24(17): 2831.

doi: 10.1016/S0142-9612(03)00096-6
[63]
Zhang Q, Jeganathan B, Dong H M, Chen L Y, Vasanthan T. Food Chem., 2021, 344: 128569.

doi: 10.1016/j.foodchem.2020.128569
[64]
Jiang L, Ren Y M, Xiao Y H, Liu S S, Zhang J H, Yu Q, Chen Y, Xie J H. Carbohydr. Polym., 2020, 242: 116424.

doi: 10.1016/j.carbpol.2020.116424
[65]
Wang L, Cao Y P, Zhang K, Fang Y P, Nishinari K, Phillips G O. Colloids Surf. A Physicochem. Eng. Aspects, 2015, 482: 604.

doi: 10.1016/j.colsurfa.2015.07.011
[66]
Xiong W F, Deng Q C, Li J, Li B, Zhong Q X. Food Hydrocoll., 2020, 98: 105282.

doi: 10.1016/j.foodhyd.2019.105282
[67]
Ghaedi N, Hosseini E. LWT, 2021, 152: 112352.

doi: 10.1016/j.lwt.2021.112352
[68]
Lin J W, Meng H C, Yu S J, Wang Z M, Ai C, Zhang T, Guo X M. Food Hydrocoll., 2021, 112: 106306.

doi: 10.1016/j.foodhyd.2020.106306
[69]
Choi Y R, Kim E H, Lim S, Choi Y S. Biochem. Eng. J., 2018, 129: 50.

doi: 10.1016/j.bej.2017.10.016
[70]
Li J L, Cheng Y Q, Wang P, Zhao W T, Yin L J, Saito M. Food Hydrocoll., 2012, 26(2): 448.

doi: 10.1016/j.foodhyd.2010.11.015
[71]
Wang D, Lv P F, Zhang L, Yang S Q, Gao Y X. J. Agric. Food Chem., 2019, 67(43): 12054.

doi: 10.1021/acs.jafc.9b04557
[72]
Huang X L, Dai Y Q, Cai J X, Zhong N J, Xiao H, McClements D J, Hu K. Food Hydrocoll., 2017, 64: 157.

doi: 10.1016/j.foodhyd.2016.10.029
[73]
Feng J, Wu S S, Wang H, Liu S B. J. Funct. Foods, 2016, 27: 55.

doi: 10.1016/j.jff.2016.09.002
[74]
Li Z, Gu L W. J. Agric. Food Chem., 2014, 62(6): 1301.

doi: 10.1021/jf404621f
[75]
Zeng T, Wu Z L, Zhu J Y, Yin S W, Tang C H, Wu L Y, Yang X Q. Food Chem., 2017, 231: 122.

doi: S0308-8146(17)30512-5 pmid: 28449988
[76]
Shi Y Q, Liang R, Chen L, Liu H, Goff H D, Ma J G, Zhong F. Food Hydrocoll., 2019, 87: 582.

doi: 10.1016/j.foodhyd.2018.08.039
[77]
Faridi Esfanjani A, Jafari S M, Assadpour E. Food Chem., 2017, 221: 1962.

doi: S0308-8146(16)31998-7 pmid: 27979187
[78]
Liu F, Liang X, Yan J, Zhao S, Li S, Liu X, Ngai T, McClements D J. Biomaterials, 2022, 280: 121265.

doi: 10.1016/j.biomaterials.2021.121265
[79]
Estrada-Fernández A G, Román-Guerrero A, JimÉnez-Alvarado R, Lobato-Calleros C, Alvarez-Ramirez J, Vernon-Carter E J. J. Food Eng., 2018, 221: 35.

doi: 10.1016/j.jfoodeng.2017.10.006
[80]
Li M, Wen X, Wang K L, Liu Z H, Ni Y Y. Food Chem., 2022, 387: 132914.

doi: 10.1016/j.foodchem.2022.132914
[81]
Zeng Q, Zeng W, Jin Y, Sheng L. Food Chem., 2022, 367: 130716.

doi: 10.1016/j.foodchem.2021.130716
[82]
Muhoza B, Xia S, Cai J, Zhang X, Duhoranimana E, Su J. Food Hydrocolloids, 2019, 87: 712.

doi: 10.1016/j.foodhyd.2018.08.051
[83]
Wu D, Tang L, Zeng Z, Zhang J, Hu X, Pan Q, Geng F, Li H. Food Chem., 2022, 386: 132837.

doi: 10.1016/j.foodchem.2022.132837
[84]
Tian S W, Mao G L, Zhang J Y, Li N, Jiang M Y, Wu W. Prog. Chem., 2020, 32(4): 434.
田诗伟, 毛国梁, 张珈瑜, 历娜, 姜梦圆, 吴韦. 化学进展, 2020, 32(4): 434. ).

doi: 10.7536/PC190633
[85]
Wei Z H, Huang Q R. Food Hydrocoll., 2019, 89: 590.

doi: 10.1016/j.foodhyd.2018.11.037
[86]
Neamtu I, Rusu A G, Diaconu A, Nita L E, Chiriac A P. Drug Deliv., 2017, 24(1): 539.

doi: 10.1080/10717544.2016.1276232
[87]
Yu Q L, Li Z, Dou C Y, Zhao Y P, Gong J X, Zhang J F. Prog. Chem., 2020, 32(S1): 179.
于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. 化学进展, 2020, 32(S1): 179. ).
[88]
Papagiannopoulos A, Vlassi E, Radulescu A. Carbohydr. Polym., 2019, 218: 218.

doi: 10.1016/j.carbpol.2019.04.077
[89]
Tai M R, Cai H Y, Li R, Chen J P, Jia X J, Song B B, Liu X F, Tang Z D, Ji H W, Zhong S Y. Food and Fermentation Industries. 2022, 48 (3): 291.
太敏瑞, 蔡泓滢, 李瑞, 陈建平, 贾学静, 宋兵兵, 刘晓菲, 唐振冬, 吉宏武, 钟赛意. 食品与发酵工业, 2022, 48 (3): 291.).
[90]
Liu C, Zhang Z, Kong Q J, Zhang R G, Yang X B. RSC Adv., 2019, 9(18): 10004.

doi: 10.1039/C8RA07783E
[91]
Chen Y C, Yu S H, Tsai G J, Tang D W, Mi F L, Peng Y P. J. Agric. Food Chem., 2010, 58(11): 6728.

doi: 10.1021/jf1005116
[92]
Wei Z H, Gao Y X. LWT Food Sci. Technol., 2016, 71: 295.

doi: 10.1016/j.lwt.2016.04.007
[93]
Xia S Q, Li Y Q, Xia Q Y, Zhang X M, Huang Q R. Food Hydrocoll., 2015, 43: 228.

doi: 10.1016/j.foodhyd.2014.05.022
[94]
Liu F G, Sun C X, Wang D, Yuan F, Gao Y X. RSC Adv., 2015, 5(95): 78215.

doi: 10.1039/C5RA15261E
[95]
Liu F G, Wang D, Xu H G, Sun C X, Gao Y X. Food Chem., 2016, 196: 338.

doi: 10.1016/j.foodchem.2015.09.047
[96]
Liu F G, Ma C C, Zhang R J, Gao Y X, Julian McClements D. Food Chem., 2017, 221: 395.

doi: 10.1016/j.foodchem.2016.10.057
[97]
Chen F P, Ou S Y, Tang C H. J. Agric. Food Chem., 2016, 64(24): 5053.

doi: 10.1021/acs.jafc.6b01176
[98]
Hu X L, Zhang Y Q, Xie Z G, Jing X B, Bellotti A, Gu Z. Biomacromolecules, 2017, 18(3): 649.

doi: 10.1021/acs.biomac.6b01704
[99]
Wang X H, Wang X Y, Jin S X, Muhammad N, Guo Z J. Chem. Rev., 2019, 119(2): 1138.

doi: 10.1021/acs.chemrev.8b00209
[100]
Jing X D, Sun Y, Yu B, Shen Y Q, Hu H, Cong H L. Progress in Chemistry, 2021, 33 (6): 926.
荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 化学进展, 2021, 33 (6): 926.).

doi: 10.7536/PC200728
[101]
Li S, Lv H Y, Chen Y, Song H D, Zhang Y, Wang S, Luo L, Guan X. Carbohydr. Polym., 2022, 286: 119273.

doi: 10.1016/j.carbpol.2022.119273
[102]
Huang X, Li M, Green D C, Williams D S, Patil A J, Mann S. Nat. Commun., 2013, 4: 2239.

doi: 10.1038/ncomms3239 pmid: 23896993
[103]
Fan W W. Doctoral Dissertation of University of Chinese Academy of Sciences, 2019.
范卫伟. 中国科学院大学博士论文, 2019.).
[104]
Fan W W, Xia D N, Zhu Q L, Li X Y, He S F, Zhu C L, Guo S Y, Hovgaard L, Yang M S, Gan Y. Biomaterials, 2018, 151: 13.

doi: 10.1016/j.biomaterials.2017.10.022
[105]
Nizzero S, Goel S, Hinkle L E, Wu X Y, Li C, Ferrari M, Shen H F. Sci. Adv., 2020, 6(26): eaba0145.

doi: 10.1126/sciadv.aba0145
[106]
Wang G, Zhao L C, jiang Q K, Sun Y X, Zhao D Y, Sun M C, He Z G, sun J, Wang Y. Asian J. Pharm. Sci., 2020, 15(2): 158.
[1] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[2] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[3] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[4] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[5] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[6] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[7] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[8] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[9] Lingchuang Bai, Jing Zhao, Yakai Feng. Multifunctional Gene Delivery Systems to Promote the Proliferation of Endothelial Cells [J]. Progress in Chemistry, 2019, 31(2/3): 300-310.
[10] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[11] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[12] Shuai Zhou, Wei Chen, Zilin Xiao, Sheng Ye, Chendi Ding, Jiajun Fu*. Smart Drug and Gene Co-Delivery System for Cancer Therapy [J]. Progress in Chemistry, 2017, 29(5): 502-512.
[13] Zhan Peng, Wang Xueshun, Liu Xinyong. Contemporary Molecular Targeted Drug in the Context of “Precision Medicine”: An Attempting Discussion of “Precision Drug Design” [J]. Progress in Chemistry, 2016, 28(9): 1363-1386.
[14] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[15] Yu Jing, Ha Wei, Shi Yanping. Intelligent Hydrogel-Based Dual Drug Delivery System [J]. Progress in Chemistry, 2015, 27(11): 1640-1648.