中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1760-1771 DOI: 10.7536/PC220119 Previous Articles   Next Articles

• Review •

Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations

Xiaoguang Li(), Xianglong Pang   

  1. School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • Received: Revised: Online: Published:
  • Contact: Xiaoguang Li
  • Supported by:
    National Natural Science Foundation of China(11974280); National Natural Science Foundation of China(51672224)
Richhtml ( 25 ) PDF ( 329 ) Cited
Export

EndNote

Ris

BibTeX

A liquid plasticine (LP) refers to a self-standing liquid system coated by hydrophobic particles in air environment, which is featured by plasticity and complex shape. As emerging soft matter systems, LPs have been successfully applied in several areas including gas sensing, protein analysis, and photocatalysis, with important and peculiar advantages. In this review, we first analyze the initial development stage of LP study with discussions on liquid shape and surface jamming. Non-wetting droplets including naked droplets supported by superhydrophobic surfaces and particle-covered spherical liquid marbles (LMs) are involved in the discussion and their relationships with LPs are clarified. We then summarize the current progress of LPs, with discussions on the preparations, properties, and applications. Nearly all kinds of LPs are discussed, and particular attention is paid to monolayer nanoparticle covered (mNPc) LPs considering the study on which is currently the most comprehensive and systematic. In the end, we summarize and analyze the concept connotation of liquid plasticine, the key issues in the preparation, the main differences between different LPs, and the application potentials. We also point out several research directions for future study with suggestions on the idea conception.

Contents

1 Introduction

2 Monolayer nanoparticle-covered liquid plasticines (mNPc LPs)

2.1 Liquid surface covered by the nanoparticle monolayer

2.2 Preparations and formation mechanisms of mNPc LPs

2.3 Applications of mNPc LPs

3 Other kinds of LPs

3.1 LPs coated by powder-derived nanoparticles

3.2 LPs coated by mm-sized plates

3.3 LPs coated by micron-sized stearic acid particles

3.4 LPs coated by micron-sized sulfur particles

4 Conclusion and outlook

Fig. 1 (a) Image of a polytetrafluoroethylene LM[38]; (b) Non-spherical bubble (i) and oil droplet-in-water (ii) obtained by interfacial jamming[41]; (c) A dumbbell-shaped LP produced by coalescing two LMs[42]; (d) LPs produced by squeezing particles onto droplet surfaces[43]; (e) A typical process for coalescing two LPs; (f) Demonstration of LPs produced by the coalescence-based joining strategy[44]
Fig. 2 Environmental scanning electron microscopy images: (a) liquid surface covered by a powder consisting of 3 nm SiO2 NP units[56] (b) liquid surface covered by 20 nm SiO2 NP monolayer[57]
Fig. 3 (a) Shaping a LP by local squeezing; (b) Typical LPs obtained by multiple squeezing and rubbing[43]; (c) Schematic of transfer and jamming of monolayer NPs by squeezing; (d) Laser confocal image of a LP surface with the blue areas representing NPs. (e) Interaction energy between two NPs on liquid surface versus their distance, where α = h/2r; (f) Liquid addition and extraction-induced evolutions of droplet shape[44]
Fig. 4 (a) Shape change of a liquid pancake induced by surface jamming; Schematic illustrating the cutting strategy for liquid shaping (b) and real image of a star-shaped LP (c); (d) Shape evolution of a ring-shaped LP during liquid addition; (e) A Chinese character dragon-shaped LP; (f) A large pancake produced by joining several jammed pancakes (i), and the resulting network-shaped LP (ii)[45]
Fig. 5 mNPc LPs with the pH-responsive property[48]
Fig. 6 Electrophoresis phenomena in (a) U-shaped and (b) rod-shaped mNPc LPs; (c) Chemical reaction phenomena in a Z-shaped mNPc LP[44]
Fig. 7 (a) Rod-shaped mNPc LP consisting of phenolphthalein; (b) The final phenomenon after introducing an ammonia droplet; (c) The color evolution of the LP versus the volatilization time of ammonia gas; (d) The forward velocity of the color frontier; (e) The fitting curve of velocity and the fitted gas concentration at the color frontier[46]
Fig. 8 (a) LP-Isoelectrofocusing (IEF) system for protein analysis; (b) Schematic for protein separation; (c) Color distribution after protein separation; (d) LP-derived LMs and available manipulations for subsequent analysis[47]
Fig. 9 English-letter-shaped LPs produced with a powder consisting of SiO2 NPs[49]
Fig. 10 Polyhedral LMs (a) and LP (b) produced with mm-sized hydrophobic sheets; (c) LPs produced with transparent sheets[52]; (d) Illustration of the angular parts of LPs with different sheet sizes (i: 2 mm, ii: 1 mm, iii: 0.2 mm)[53]
Fig. 11 (a) Image of a LP formed by rolling a droplet on the stearic acid powder and the schematic depicting the surface gelation mechanism; (b) Liquid shapes under different pH values, volumes, and rolling durations; (c) Stearic acid LPs with complex shapes; (d) A process for getting two LMs with different colors, based on the channel structure and the cuttable property of the LP[50]
Fig. 12 (a) Schematic depicting interactions between surface components of a S8 particle-covered LM/LP; (b) Demonstration of typical S8 LPs[51]
[1]
Kothare M V. Comput. Chem. Eng., 2006, 30(10/12): 1725.

doi: 10.1016/j.compchemeng.2006.05.026
[2]
Abdulkadir T, Stephan J, Khalid A. Chem. Eng. J., 2017, 327: 792.

doi: 10.1016/j.cej.2017.06.161
[3]
Liu Z, Yang T Y, Huang Y X, Liu Y, Chen L C, Deng L B, Shum H C, Kong T T. Adv. Funct. Mater., 2019, 29(19): 1901101.
[4]
Valera F, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral J, Blackmond D. Angew. Chem. Int. Ed., 2010, 49(14): 2478.

doi: 10.1002/anie.200906095
[5]
Hartman R L, McMullen J P, Jensen K F. Angew. Chem. Int. Ed., 2011, 50(33): 7502.

doi: 10.1002/anie.201004637 pmid: 21710673
[6]
Xu L Y, Chen S S, Lu X M, Lu Q H. Natl. Sci. Rev., 2019, 6(6): 1255.

doi: 10.1093/nsr/nwz095
[7]
Su B, Wang S T, Song Y L, Jiang L. Nano Res., 2011, 4(3): 266.

doi: 10.1007/s12274-010-0078-5
[8]
Beckingham L J, Todorovic M, Tello Velasquez J, Vial M L, Chen M, Ekberg J A K, St John J A. J. Biol. Eng., 2019, 13: 41.

doi: 10.1186/s13036-019-0176-1 pmid: 31131022
[9]
Aussillous P, Quéré D. Nature, 2001, 411(6840): 924.

doi: 10.1038/35082026
[10]
Aussillous P, Quéré D. Proc. R. Soc. A, 2006, 462(2067): 973.

doi: 10.1098/rspa.2005.1581
[11]
Ooi C H, Singha P, Nguyen N K, An H, Nguyen V T, Nguyen A V, Nguyen N T. Soft Matter, 2021, 17: 4069.

doi: 10.1039/D1SM00101A
[12]
Li X G, Shi H X, Wang Y Q, Wang H M, Huang J C, Duan M. Soft Matter, 2020, 16(18): 4512.

doi: 10.1039/C9SM02199J
[13]
Dandan M, Erbil H Y. Langmuir, 2009, 25(14): 8362.

doi: 10.1021/la900729d pmid: 19499944
[14]
Zhao Y, Fang J, Wang H X, Wang X G, Lin T. Adv. Mater., 2010, 22(6): 707.

doi: 10.1002/adma.200902512
[15]
Zhao Y, Xu Z G, Niu H T, Wang X G, Lin T. Adv. Funct. Mater., 2015, 25(3): 437.

doi: 10.1002/adfm.201403051
[16]
Zhang L B, Cha D, Wang P. Adv. Mater., 2012, 24(35): 4756.

doi: 10.1002/adma.201201885
[17]
Tan T T Y, Ahsan A, Reithofer M R, Tay S W, Tan S Y, Hor T S A, Chin J M, Chew B K J, Wang X B. Langmuir, 2014, 30(12): 3448.

doi: 10.1021/la500646r
[18]
Han X M, Lee H K, Lee Y H, Hao W, Liu Y J, Phang I Y, Li S Z, Ling X Y. J. Phys. Chem. Lett., 2016, 7(8): 1501.

doi: 10.1021/acs.jpclett.6b00501
[19]
Nakai K, Nakagawa H, Kuroda K, Fujii S, Nakamura Y, Yusa S I. Chem. Lett., 2013, 42(7): 719.

doi: 10.1246/cl.130240
[20]
Inoue M, Fujii S, Nakamura Y, Iwasaki Y, Yusa S I. Polym. J., 2011, 43(9): 778.

doi: 10.1038/pj.2011.55
[21]
Fujii S, Suzaki M, Armes S P, Dupin D, Hamasaki S, Aono K, Nakamura Y. Langmuir, 2011, 27(13): 8067.

doi: 10.1021/la201317b
[22]
Dupin D, Thompson K L, Armes S P. Soft Matter, 2011, 7(15): 6797.

doi: 10.1039/c1sm05889d
[23]
Dupin D, Armes S P, Fujii S. J. Am. Chem. Soc., 2009, 131(15): 5386.

doi: 10.1021/ja901641v
[24]
Luo X J, Zhang X, Feng Y J. Acta Phys.-Chim. Sin., 2020, 36: 1910007.
罗新杰, 张熙, 冯玉军. 物理化学学报, 2020, 36: 1910007.).
[25]
Sarvi F, Jain K, Arbatan T, Verma P J, Hourigan K, Thompson M C, Shen W, Chan P P Y. Adv. Healthcare Mater., 2015, 4(1): 77.

doi: 10.1002/adhm.201400138
[26]
Vadivelu R K, Kamble H, Munaz A, Nguyen N T. Biomed. Microdevices, 2017, 19(2): 31.

doi: 10.1007/s10544-017-0171-6 pmid: 28421401
[27]
Lin K J, Chen R Y, Zhang L Y, Zang D Y, Geng X G, Shen W. ACS Appl. Mater. Interfaces, 2019, 11(9): 8789.

doi: 10.1021/acsami.8b20169
[28]
Adamatzky A, Tsompanas M A, Draper T C, Fullarton C, Mayne R. ChemPhysChem, 2020, 21(1): 90.

doi: 10.1002/cphc.201900949 pmid: 31696651
[29]
Ghanbari M, Rezazadeh G. Microsyst. Technol., 2020, 26(2): 617.

doi: 10.1007/s00542-019-04528-7
[30]
Yukioka S, Fujiwara J, Okada M, Fujii S, Nakamura Y, Yusa S I. Langmuir, 2020, 36(25): 6971.

doi: 10.1021/acs.langmuir.9b03074
[31]
Tian J F, Arbatan T, Li X, Shen W. Chem. Eng. J., 2010, 165(1): 347.

doi: 10.1016/j.cej.2010.06.036
[32]
Tian J F, Arbatan T, Li X, Shen W. Chem. Commun., 2010, 46(26): 4734.

doi: 10.1039/c001317j
[33]
Xue N, Cao J, Zhang X M, Li C M, Ettelaie R, Liu X, Yang H Q. Carbon, 2021, 179: 541.

doi: 10.1016/j.carbon.2021.04.060
[34]
Fujii S, Sawada S, Nakayama S, Kappl M, Ueno K, Shitajima K, Butt H J, Nakamura Y. Mater. Horiz., 2016, 3(1): 47.

doi: 10.1039/C5MH00203F
[35]
Singha P, Nguyen N K, Zhang J, Nguyen N T, Ooi C H. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 627: 127176.
[36]
Wang R X, Li X G. Powder Technol., 2020, 367: 608.

doi: 10.1016/j.powtec.2020.04.028
[37]
Li X G, Wang R X, Huang S, Wang Y Q, Shi H X. Soft Matter, 2018, 14(48): 9877.

doi: 10.1039/C8SM01846D
[38]
Li X G, Wang R X, Shi H X, Song B H. Appl. Phys. Lett., 2018, 113: 101602.
[39]
Marston J O, Zhu Y, Vakarelski I U, Thoroddsen S T. Powder Technol., 2012, 228: 424.

doi: 10.1016/j.powtec.2012.06.003
[40]
Li X G, Wang Y Q, Yang Y, Wang S H, Zang D Y, Geng X G. Appl. Phys. Lett., 2018, 113: 133702.
[41]
Bala Subramaniam A, Abkarian M, Mahadevan L, Stone H A. Nature, 2005, 438(7070): 930.
[42]
Zhao Y J, Gu H C, Xie Z Y, Shum H C, Wang B P, Gu Z Z. J. Am. Chem. Soc., 2013, 135(1): 54.

doi: 10.1021/ja310389w
[43]
Li X G, Shen J. Chem. Commun., 2013, 49(85): 10016.
[44]
Li X G, Xue Y H, Lv P Y, Lin H, Du F, Hu Y Y, Shen J, Duan H L. Soft Matter, 2016, 12(6): 1655.

doi: 10.1039/C5SM02765A
[45]
Li X G, Shi H X, Wang Y Q, Wang R X, Huang S, Huang J C, Geng X G, Zang D Y. Adv. Mater. Interfaces, 2018, 5(2): 1701139.
[46]
Li X G, Shi H X, Hu Y Y. Soft Matter, 2019, 15(15): 3085.

doi: 10.1039/C9SM00362B
[47]
Niu J C, Shi H X, Wei H G, Gao B, Li J X, Xu F, Li X G, Li F. Anal. Chem., 2020, 92(13): 9048.

doi: 10.1021/acs.analchem.0c01237
[48]
Kano S, Tsunekawa Y, Fujii S, Nakamura Y, Yusa S I. Chem. Lett., 2021, 50: 1274.

doi: 10.1246/cl.210104
[49]
Liu J L, Zuo P C. Eur. Phys. J. E, 2016, 39(2): 17.

doi: 10.1140/epje/i2016-16017-6
[50]
Mahmoudi Salehabad S, Azizian S, Fujii S. Langmuir, 2019, 35(27): 8950.

doi: 10.1021/acs.langmuir.9b01473 pmid: 31179706
[51]
Salehabad S M, Azizian S. ACS Appl. Mater. Interfaces, 2020, 12(38): 43201.
[52]
Geyer F, Asaumi Y, Vollmer D, Butt H J, Nakamura Y, Fujii S. Adv. Funct. Mater., 2019, 29(25): 1808826.
[53]
Fujiwara J, Geyer F, Butt H J, Hirai T, Nakamura Y, Fujii S. Adv. Mater. Interfaces, 2020, 7(24): 2001573.
[54]
Bormashenko E, Pogreb R, Musin A, Balter R, Whyman G, Aurbach D. Powder Technol., 2010, 203(3): 529.

doi: 10.1016/j.powtec.2010.06.019
[55]
McHale G, Newton M I. Soft Matter, 2011, 7(12): 5473.

doi: 10.1039/c1sm05066d
[56]
Cui B Y, Yuan Z D. Chemistry, 2020, 83(9): 850.
崔博雅, 袁振东. 化学通报, 2020, 83(9): 850. ).
[57]
Wang F Q, Wang Q, Li C X, Zhu F Y, Shen Z J. Coal Mine Blasting, 2021, 39: 29.
汪凤琪, 汪泉, 李成孝, 朱福园, 沈占军. 煤矿爆破, 2021, 39: 29.).
[58]
Bhosale P S, Panchagnula M V, Stretz H A. Appl. Phys. Lett., 2008, 93(3): 034109.
[59]
Li X G, Wang Y Q, Huang J C, Yang Y, Wang R X, Geng X G, Zang D Y. Appl. Phys. Lett., 2017, 111: 261604.
[60]
Li X G. Adv. Colloid Interface Sci., 2019, 271: 101988.
[61]
Li X G, Wang Y Q, Wang R X, Wang S H, Zang D Y, Geng X G. Adv. Mater. Interfaces, 2018, 5(15): 1800356.
[1] Wei Wang, Rui Xie, Xiaojie Ju, Zhuang Liu, Liangyin Chu*. Progress on Control of Meso-Scale Structures for Droplet-Template Syntheses of Particle Materials [J]. Progress in Chemistry, 2018, 30(1): 44-50.
[2] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[3] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[4] Yan Chao, Li Mei, Lu Qinghua. Progress in Liquid Marbles [J]. Progress in Chemistry, 2011, 23(4): 649-656.
[5] Jianhai Xu,Mei Li,Yan Zhao,Qinghua Lu**. Advanced of Wetting Behavior Research on the Superhydrophobic Surface with Micro- and Nano-Structures [J]. Progress in Chemistry, 2006, 18(11): 1425-1433.
[6] Ma Lei,Chen Bin,Wu Lizhu**,Peng Mingli,Zhang Liping,Tung Chenho**. Asymmetric Photochemical Reactions Conducted within Microreactors [J]. Progress in Chemistry, 2004, 16(03): 386-.