中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1972-1981 DOI: 10.7536/PC211207 Previous Articles   Next Articles

• Review •

Synthetic Methods and Application of Phosphoester Prodrugs

Zhihua Gong1, Sha Hu1, Xueping Jin2, Lei Yu2, Yuanyuan Zhu3(), Shuangxi Gu1()   

  1. 1 Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology,Wuhan 430205, China
    2 Wuhan Drug Solubilization and Delivery Technology Research Center, Wuhan Vocational College of Software and Engineering,Wuhan 430205, China
    3 School of Chemistry and Environmental Engineering, Wuhan Institute of Technology,Wuhan 430205, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yyzhu531@163.com (Yuanyuan Zhu);shuangxigu@163.com (Shuangxi Gu)
  • Supported by:
    National Natural Science Foundation of China(21877087); National Natural Science Foundation of China(22074114); National Natural Science Foundation of China(20602164); Hubei Provincial Department of Education of China(2020CFB623); Hubei Provincial Department of Education of China(2021CFB556); Key Laboratory for Green Chemical Process of Ministry of Education Open Fund(GCP20200201); Hubei Key Laboratory for Processing and Application of Catalytic Materials(202023504); Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology) Open Fund(40201002)
Richhtml ( 31 ) PDF ( 755 ) Cited
Export

EndNote

Ris

BibTeX

Compared with the original drugs, the phosphoester prodrugs can not only improve the targeting, stability and bioavailability of the drugs, reduce toxicity and side effects, but also mask the unpleasant odor of the drugs, improve water solubility, and provide better access to the drugs. Phosphorylation of hydroxyl-containing drugs is one of the most important methods for their prodrug design. According to different valences of central phosphorus atoms and chemical structures, the phosphorylation reagents include tetracoordinated P(Ⅴ) compounds, tricoordinated P(Ⅲ) compounds and H-phosphite esters. The advances of these reagents in the synthesis of phosphoester prodrugs were reviewed, and the applications of these prodrugs were elaborated. Finally, the advantages and limitations of various phosphorylation reagents were summarized, and the development trend was prospected based on the application cases of continuous flow reaction technology.

Contents

1 Introduction

2 Phosphorylation reagent classification

3 Synthesis method of phosphoester prodrugs

3.1 P(Ⅴ) tetracyclic molecules

3.2 P(Ⅲ) tri coordination molecules

3.3 H-phosphite compounds

4 Conclusion and outlook

Fig. 1 Representative phosphoesters as prodrugs[3]
Fig. 2 Three types of phosphorylation reagents[7]
Fig. 3 Phosphorylation of POCl3 with different hydroxyl-containing drugs[9,13,17]
Fig. 4 Continuous-flow phosphorylation reaction of nucleoside[19]
Fig. 5 Representative chlorophosphoester reagents
Fig. 6 Phosphorylation reaction of chlorophosphoester with hydroxyl compounds[21,22]
Fig. 7 Phosphorylation reaction of fluorophoester with hydroxyl compounds[24,25]
Fig. 8 Phosphorylation reaction of cytidine activated by tert-butyl magnesium chloride[27]
Fig. 9 Phosphorylation reaction of phosphoric acid with hydroxyl compounds
Fig. 10 Phosphorylation reaction of H3PO4/P2O5 system with hydroxyl compounds[32]
Fig. 11 Imidazole-promoted phosphorylation reaction[34]
Fig. 12 Phosphorylation reaction of dibenzyl phosphate with 2-methoxyestradiol[36]
Fig. 13 Phosphorylation reaction of aromatic phosphoester with topotecan[37]
Fig. 14 Esterification of pyrophosphate and alcohols[38]
Fig. 15 Phosphorylation reaction of pyrophosphates with hydroxyl compounds[39,40,43]
Fig. 16 Phosphorylation reaction of PCl3 with hydroxyl compounds[43⇓~45]
Fig. 17 Phosphorylation reaction of phosphoramidites with hydroxyl compounds[49]
Fig. 18 Phosphorylation reaction of hydroxyl compound 40[50]
Fig. 19 Phosphorization reaction of di-tert-butyl N,N-diisopropylphosphoramidite with PF-00835321[52]
Fig. 20 Synthesis of H-phosphite monoester[7]
Fig. 21 Synthesis of 5'-thymine dinucleoside phosphate[53]
Fig. 22 Phosphorylation reaction of H-dibenzyl phosphite with catecholamine[62]
[1]
Schultz C. Bioorg. Med. Chem., 2003, 11(6): 885.

doi: 10.1016/S0968-0896(02)00552-7
[2]
Yao Q L, Ren L J, Ran M G, He J X, Xiang D. Chem. Reag., 2019, 41(2): 139.
( 姚秋丽, 任林静, 冉茂刚, 何佳芯, 向丹. 化学试剂, 2019, 41(2): 139. ).
[3]
Ji X, Wang J, Zhang L, Zhao L X, Jiang H L, Liu H. Acta Pharm. Sin., 2013, 48(5): 621.
( 姬勋, 王江, 张磊, 赵临襄, 蒋华良, 柳红. 药学学报, 2013, 48(5): 621. ).
[4]
Reddy K R, Matelich M C, Ugarkar B G, GÓmez-Galeno J E, DaRe J, Ollis K, Sun Z L, Craigo W, Colby T J, Fujitaki J M, Boyer S H, van Poelje P D, Erion M D. J. Med. Chem., 2008, 51(3): 666.

doi: 10.1021/jm7012216 pmid: 18173234
[5]
Choi J R, Cho D G, Roh K Y, Hwang J T, Ahn S, Jang H S, Cho W Y, Kim K W, Cho Y G, Kim J, Kim Y Z. J. Med. Chem., 2004, 47(11): 2864.

doi: 10.1021/jm0305265
[6]
Du G X, Peng C Y, Fang D. Central South Pharm., 2008, 6(1): 82.
( 杜国新, 彭彩云, 方渡. 中南药学, 2008, 6(1): 82.).
[7]
Stawinski J, Kraszewski A. Acc. Chem. Res., 2002, 35(11): 952.

doi: 10.1021/ar010049p
[8]
Amin S, Alam M M, Akhter M, Najmi A K, Siddiqui N, Husain A, Shaquiquzzaman M. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(3): 211.

doi: 10.1080/10426507.2020.1831499
[9]
Cho M J, Kurtz R R, Lewis C, Machkovech S M, Houser D J. J. Pharm. Sci., 1982, 71(4): 410.

doi: 10.1002/jps.2600710409
[10]
Li P, Ye J Z, Zeng S D, Yang C L. Fish Shellfish. Immunol., 2019, 94: 479.

doi: 10.1016/j.fsi.2019.08.073
[11]
Lan W X, Xiao X, Jiang Y J, Jiang L J, Zhao X, Yu Z Y, Zhu B W, Li C C, Bian L, Wang Z Q. J. Vet. Pharmacol. Ther., 2019, 42(3): 355.

doi: 10.1111/jvp.12761
[12]
Rattanapanadda P, Kuo H C, Vickroy T W, Sung C H, Rairat T, Lin T L, Yeh S Y, Chou C C. Front. Microbiol., 2019, 10: 2430.

doi: 10.3389/fmicb.2019.02430 pmid: 31749775
[13]
Gu S X, Du J W, Ju X L, Chen Q P. Org. Process Res. Dev., 2014, 18(4): 552.

doi: 10.1021/op500038s
[14]
Ju X L, Gu S X, Zhao Y, Chen Q P, Du J W. CN 103242363A, 2013.
[15]
Chen Q, Ju X L, Gu S X, Wang C L, Sun X M, Du J W, Wu D L, Luo C Q, Wu Z Y, Guo J W, Guan Z X. 2014-12-12.
( 陈清平, 巨修练, 古双喜, 王存亮, 孙先明, 杜嘉文, 吴东林, 罗澄清, 伍重远, 郭建武, 关早霞. 氟苯尼考磷酸二酯合成及小试工艺研究. 湖北省科技成果登记证书. 2014-12-12.).
[16]
Chen S H. J. Shanxi Med.Univ., 2002, 33(2): 116.
( 陈树红. 山西医科大学学报, 2002, 33(2): 116.).
[17]
Li J J, Xu L. Chin. J. Pharm., 2018, 49(4): 466.
( 李坚军, 许磊. 中国医药工业杂志, 2018, 49(4): 466. ).
[18]
Fan Y, Cao Y, Zang W, Cheng Y, Yu Y, An J, Gong Y, Wu G, Zhang Y, Chen J, Zhang C, Xue J, Wang X, Liu X. CN 110066301 A, 2019.
[19]
Zhu C J, Tang C L, Cao Z, He W, Chen Y, Chen X C, Guo K, Ying H J. Org. Process Res. Dev., 2014, 18(11): 1575.

doi: 10.1021/op5002066
[20]
Croft S L, Hogg J, Gutteridge W E, Hudson A T, Randall A W. J. Antimicrob. Chemother., 1992, 30(6): 827.

doi: 10.1093/jac/30.6.827
[21]
Mäntylä A, Garnier T, Rautio J, Nevalainen T, Vepsälainen J, Koskinen A, Croft S L, Järvinen T. J. Med. Chem., 2004, 47(1): 188.

pmid: 14695832
[22]
Elder F C T, Feil E J, Snape J, Gaze W H, Kasprzyk-Hordern B. Environ. Int., 2020, 139: 105681.

doi: 10.1016/j.envint.2020.105681
[23]
Murray J I, Woscholski R, Spivey A C. Chem. Commun., 2014, 50(88): 13608.

doi: 10.1039/C4CC05388E
[24]
Ali M A, Tsai T H, Braun P V. ACS Omega, 2018, 3(11): 14665.

doi: 10.1021/acsomega.8b01519
[25]
Ozaki S, Watanabe Y. e-EROS Encyclopedia of Reagents for Organic Synthesis, 2001, 1. DOI: 10.1002/047084289X.rd026.

doi: 10.1002/047084289X.rd026
[26]
Misiura K, Szymanowicz D, Kuśnierczyk H. Bioorg. Med. Chem., 2001, 9(6): 1525.

doi: 10.1016/S0968-0896(01)00025-6
[27]
Hayakawa Y, Wakabayashi S, Nobori T, Noyori R. Tetrahedron Lett., 1987, 28(20): 2259.
[28]
Barker R, Olsen K W, Shaper J H, Hill R L. J. Biol. Chem., 1972, 247(22): 7135.

pmid: 4674085
[29]
Torijano-GutiÉrrez S, Díaz-Oltra S, Falomir E, Murga J, Carda M, Marco J A. Bioorg. Med. Chem., 2013, 21(23): 7267.

doi: 10.1016/j.bmc.2013.09.064
[30]
Shao Y Y, Wang X Q, Zhou Y, Jiang Y M, Wu R M, Lu C F. Toxicology, 2021, 461: 152923.

doi: 10.1016/j.tox.2021.152923
[31]
Su C, Liu S Q, Ma X Y, Liu J J, Liu J W, Lei M, Cao Y O. Cell Biol. Int., 2021, 45(12): 2420.

doi: 10.1002/cbin.11684
[32]
Gu J, Wu J, Ning X. CN 110407868A, 2019.
[33]
Mizuno C S, Ma G, Khan S, Patny A, Avery M A, Rimando A M. Bioorg. Med. Chem., 2008, 16: 3800.

doi: 10.1016/j.bmc.2008.01.051
[34]
Sakakura A, Katsukawa M, Ishihara K. Org. Lett., 2005, 7(10): 1999.

pmid: 15876039
[35]
Zheng S, Ni J, Li Y, Lu M, Hu W. Pharmacol. Res., 2021, 169:105685.

doi: 10.1016/j.phrs.2021.105685
[36]
Edsall A B, Agoston G E, Treston A M, Plum S M, McClanahan R H, Lu T S, Song W, Cushman M. J. Med. Chem., 2007, 50(26): 6700.

doi: 10.1021/jm070639e
[37]
Xu M. WO 2021032075 A1, 2021.
[38]
Cramer F, Wittmann R. Angew. Chem., 1960, 72(17): 628.
[39]
Kern J C, Cancilla M, Dooney D, Kwasnjuk K, Garbaccio R M. J. Am. Chem. Soc., 2016, 138: 1430.

doi: 10.1021/jacs.5b12547
[40]
Wang P, Liu W, Li N, Pu F, Zhang H. CN 112094311 A, 2020.
[41]
Hao H X, Wang J K, Wang Y L. J. Chem. Eng. Data, 2004, 49:1697.

doi: 10.1021/je0498412
[42]
Hata T, Furusawa K, Sekine M. J. Chem. Soc., Chem. Commun., 1975(6): 196.
[43]
Senthilvelan A, Shanmugasundaram M, Kore A R. Nucleosides Nucleotides Nucleic Acids, 2020, 39(7): 1011.

doi: 10.1080/15257770.2020.1738457 pmid: 32189563
[44]
Yoshikawa M, Sakuraba M, Kusashio K. B. Bull. Chem. Soc. Jpn., 1970, 43:456.
[45]
Bentley A, Butters M, Green S P, Learmonth W J, MacRae J A, Morland M C, O’Conno G, Skuse J. Org. Process Res. Dev., 2002, 6(2): 109.

doi: 10.1021/op010064+
[46]
Sobue S, Tan K, Haug-Pihale G. Br. J. Clin. Pharmacol., 2005, 59(2): 160.

doi: 10.1111/j.1365-2125.2004.02234.x
[47]
Durgam G G, Tsukahara R, Makarova N, Walker M D, Fujiwara Y, Pigg K R, Baker D L, Sardar V M, Parrill A L, Tigyi G, Miller D D. Bioorg. Med. Chem. Lett., 2006, 16(3): 633.

doi: 10.1016/j.bmcl.2005.10.031
[48]
Beier M, Pfleiderer W. Helvetica Chimica Acta, 1999, 82(6): 879.

doi: 10.1002/(SICI)1522-2675(19990609)82:6【-逻*辑*与-】#x00026;lt;879::AID-HLCA879【-逻*辑*与-】#x00026;gt;3.0.CO;2-5
[49]
Durgam G G, Virag T, Walker M D, Tsukahara R, Yasuda S, Liliom K, van Meeteren L A, Moolenaar W H, Wilke N, Siess W, Tigyi G, Miller D D. J. Med. Chem., 2005, 48(15): 4919.

doi: 10.1021/jm049609r
[50]
Grzesk G, Karasek D, Kusiak M. J. Cardiovasc. Pharmacol., 2020, 75(5): 421.

doi: 10.1097/FJC.0000000000000806
[51]
Hoffman R L, Kania R S, Brothers M A, Davies J F, Ferre R A, Gajiwala K S, He M Y, Hogan R J, Kozminski K, Li L Y, Lockner J W, Lou J H, Marra M T, Mitchell L J Jr, Murray B W, Nieman J A, Noell S, Planken S P, Rowe T, Ryan K, Smith G J III, Solowiej J E, Steppan C M, Taggart B. J. Med. Chem., 2020, 63(21): 12725.

doi: 10.1021/acs.jmedchem.0c01063 pmid: 33054210
[52]
Boras B, Jones R M, Anson B J, Dan A, Allerton C. bioRxiv, 2020, DOI: 10.1101/2020.09.12.293498.

doi: 10.1101/2020.09.12.293498
[53]
Lin C X, Fu H, Tu G Z, Zhao Y F. ChemInform, 2003, 34(46): 203.
[54]
Eenkhoorn J A, Osmund D, Snieckus V. Can. J. Chem., 2011, 51: 792.

doi: 10.1139/v73-120
[55]
Lera M, Hayes C. J. Org. Lett., 2000, 2: 3873.

doi: 10.1021/ol0066173
[56]
Yasuike S, Dong Y, Kakusawa N, Matsumura M. Chem. Pharm. Bull., 2015, 63: 130.

doi: 10.1248/cpb.c14-00727
[57]
Hazeri N, Maghsoodlou M T, Habibi-Khorassani S M, Aboonajmi J, Lashkari M, Sajadikhah S S. Res. Chem. Intermed., 2014, 40(5): 1781.

doi: 10.1007/s11164-013-1081-8
[58]
Dal-Maso A D, Legendre F, Blonski C, Hoffmann P. Synth.Commun., 2008, 38: 1688.
[59]
Hu A F, Xu P X, Zhu M X, Ji T, Tang G, Zhao Y F. Synth.Commun., 2009, 39: 1342.
[60]
Liu D, Wikström H V, Dijkstra D, Vries J B D, Venhuis B J. J. Med. Chem., 2006, 49:1494.

doi: 10.1021/jm051111h
[61]
Kostakis I K, Pouli N, Marakos P, Kousidou O C, Roussidis A, Tzanakakis G N, Karamanos N K. Bioorg. Med. Chem., 2008, 16(6): 3445.

doi: 10.1016/j.bmc.2007.03.003
[62]
Morten J, Erhad A, Martin J, Klaus-Gjervig J, Ask P, Benny B A. WO 2020234276 A1, 2020.
[63]
Kirby S A, Dowd C S. Med. Chem. Res., 2022, 31, 207-216.

doi: 10.1007/s00044-021-02766-x
[64]
Liu J, Xu S J, Ju X L. J. Wuhan Inst. Technol., 2021, 43(5):487.
( 刘洁, 徐诗琦, 巨修练. 武汉工程大学学报, 2021, 43: 487.).
[65]
Liu D, Zhu Y Y, Gu S X, Chen F E. Chin. J. Org. Chem., 2021, 41(3): 1002.

doi: 10.6023/cjoc202007051
( 刘玎, 朱园园, 古双喜, 陈芬儿. 有机化学, 2021, 41: 1002.).

doi: 10.6023/cjoc202007051
[1] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[2] Gao Li, Yan-Mei Li. Truncated and Modified Aβ Species in Alzheimer’s Disease [J]. Progress in Chemistry, 2020, 32(1): 14-22.
[3] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[4] Shu Xin, Li Zhaoxiang, Xia Jiangbin. Synthetic Methods for Poly(thiophene)s [J]. Progress in Chemistry, 2015, 27(4): 385-394.
[5] Gao Feifei, Wang Yuebo. Electrochemical Detection of Protein Phosphorylation [J]. Progress in Chemistry, 2014, 26(05): 856-865.
[6] Ren Tianbin, Xia Wenjuan, Wu Wei, Li Yongyong*. Stimuli-Responsive and Polymeric Prodrugs [J]. Progress in Chemistry, 2013, 25(05): 775-784.
[7] Zhang Jianjun, Gao Yuan, Sun Wanjin. Albumin as Drug Carriers [J]. Progress in Chemistry, 2011, 23(8): 1747-1754.
[8] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[9] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[10] Yangang Wang,Yaojun Wang,Changlin Li,Xiaohui Liu,Yanqin Wang**,Guanzhong Lu. Synthetic Methods of Mesostructured Metal Oxides/Composites [J]. Progress in Chemistry, 2006, 18(10): 1338-1344.
[11] Zongbin Wu1|Peng Tian2**|Zhongmin Liu2,Zongqiang Mao1. Progress in Porous Phosphonates [J]. Progress in Chemistry, 2006, 18(09): 1092-1100.