中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1275-1289 DOI: 10.7536/PC210902 Previous Articles   Next Articles

• Review •

Reactions of Sulfonyl Chlorides and Unsaturated Compounds

Simin Sun, Jiaxi Xu()   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Online: Published:
  • Contact: Jiaxi Xu
  • Supported by:
    National Natural Science Foundation of China(21572017); National Natural Science Foundation of China(21772010)
Richhtml ( 47 ) PDF ( 1816 ) Cited
Export

EndNote

Ris

BibTeX

Sulfonyl chlorides are a class of important organic synthetic intermediates and have been widely applied in organic and medicinal synthesis. Sulfonyl chlorides have been utilized in organic reactions as important and powerful sources of sulfenes, sulfonyl, sulfenyl, aryl, and fluorinated alkyl groups. Reactions of sulfonyl chlorides with alkenes, alkynes, (hetero)aromatics, imines, halogenated aldehydes and ketones, and other unsaturated compounds are summarized in this review, including mainly [2+2] annulations, chlorosulfonylation, sulfonylation, sulfenylation, arylation, and fluoroalkylation. The further development on the reactions of sulfonyl chlorides and unsaturated compounds are discussed and predicted.

Contents

1 Introduction

2 Reactions of sulfonyl chlorides with alkenes, alkynes and (hetero)arenes

2.1 Annulations

2.2 Radical reactions

2.3 Ionic reactions

3 Reactions of sulfonyl chlorides with imines

4 Reactions of sulfonyl chlorides with aldehydes/ketones

5 Reactions of sulfonyl chlorides with other unsaturated compounds

6 Conclusion and outlook

Fig. 1 Drugs containing the sulfonamide groups and the thioether groups[1⇓⇓~4]
Scheme 1 Reaction of sulfonyl chlorides and 1,1-dialkoxyet -hene[11]
Scheme 2 Reaction of sulfonyl chlorides and enamines[18⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
Scheme 3 Annulation of sulfonyl chlorides and N,N-dimethyl prop-1-yn-1-amine[41,42]
Scheme 4 Annulation of sulfonyl chlorides and dialkyl acetylenedicarboxylates[43]
Scheme 5 Reaction of sulfonyl chlorides and arylethenes[44]
Scheme 6 Ruthenium-catalyzed reaction of sulfonyl chlorides with terminal olefins to form chain sulfones[46]
Scheme 7 Copper-catalyzed reaction of sulfonyl chlorides with alkynes[47]
Scheme 8 Copper-catalyzed vicinal chlorosulfonylation of alkenes and alkynes[48]
Scheme 9 Iron-catalyzed chlorosulfonylation of terminal alkynes with arenesulfonyl chlorides[49]
Scheme 10 Metal-free synthesis of vinyl sulfones through sulfonylation of styrenes with sulfonyl chlorides[51]
Scheme 11 Iridium-catalyzed formation of β-hydroxysulfones from sulfonyl chlorides and olefins[52]
Scheme 12 Iridium-catalyzed oxidative sulfonylation of sulfonyl chlorides with alkenes and alkynes[53,54]
Scheme 13 Sulfonyl cyclization of N-propargyl indoles[55]
Scheme 14 Synthesis of diaryl sulfides by the reaction of sulfonyl and indoleazines[56]
Scheme 15 Visible light-induced 3-sulfenylation of N-methylindoles with arenesulfonyl chlorides[57]
Scheme 16 TMAI-mediated arylthiolation of aromatics[58]
Scheme 17 Copper-Catalyzed vicinal chloro-thiolation of alkynes and alkenes with sulfonyl chlorides[59,60]
Scheme 18 Photoredox trifluoromethylation of arenes and heteroarenes[61]
Scheme 19 Photocatalytic vicinal chlorotrifluoromethylation of olefins[64]
Scheme 20 Construction of fluorinated 3,3-disubstituted 2-oxindoles with fluoroalkylsulfonyl chlorides[65]
Scheme 21 Visible light-induced reaction of fluoroalkanesulfonyl chlorides with electron-deficient alkenes[66]
Scheme 22 Metal-free difluoromethylation of olefins[67]
Scheme 23 Copper-catalyzed trifluoromethyl chlorosulfonylation of alkenes[68,69]
Scheme 24 Copper-catalyzed formation of β-trifluoromethyl sultones[70]
Scheme 25 Desulfitative Cross-Coupling of arenesulfonyl chlorides and terminal alkynes[71]
Scheme 26 Desulfitative Mizoroki-Heck Coupling of sulfonyl chlorides with olefins[72]
Scheme 27 Acid-promoted reaction of sulfonyl chlorides with olefins to synthesize β-hydroxysulfones[74]
Scheme 28 TBAI-HBr-mediated arylthiolation of (hetero)aromatics[75]
Scheme 29 (EtO)2P(O)H-induced trifluoromethylthiolation with trifluoromethanesulfonyl chloride[76]
Scheme 30 Ph3P-acid-promoted vicinal chlorotrifluorome-thylthiolation of alkenes with trifluoromethanesulfonyl chloride[77]
Scheme 31 [2+2] Annulation of sulfonyl chlorides with electron-rich imines[86]
Scheme 32 Annulation of sulfonyl chlorides with cyclic and linear imines[92,93]
Scheme 33 Annuloselectivity in the reaction of sulfonyl chlorides and imines[94⇓~96]
Scheme 34 Catalytic asymmetric annulation of alkanesulfonyl chlorides with electron-deficient imines[99]
Scheme 35 Annulation of alkanesulfonyl chlorides and 2-pyridylsulfonyl imines[100]
Scheme 36 Reactions of alkanesulfonyl chlorides with halogenated aldehydes and ketones[101,102,105]
Scheme 37 Asymmetric catalytic synthesis of β-sultones[106,107]
Scheme 38 Tertiary amine-catalyzed and direct synthesis of α-chloroalkanesulfonylhydrazines from sulfonyl chlorides and azodicarboxylates[108]
Scheme 39 Reaction of pyridinium 1,4-zwitterionic thiolates and sulfonyl chlorides[109]
[1]
Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, Messerini L, Vannacci A, Capaccioli S, Perna F, Lulli M, Fabbroni V, Perigli G, Bechi P, Masini E. Mol. Cancer Ther., 2006, 5(11): 2716.

pmid: 17121918
[2]
Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B. J. Med. Chem., 2005, 48(2): 547.

pmid: 15658868
[3]
Ragno R, Coluccia A, La Regina G, de Martino G, Piscitelli F, Lavecchia A, Novellino E, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico M, Silvestri R. J. Med. Chem., 2006, 49(11): 3172.

pmid: 16722636
[4]
Nuth M, Guan H C, Zhukovskaya N, Saw Y L, Ricciardi R P. J. Med. Chem., 2013, 56(8): 3235.

doi: 10.1021/jm301735k
[5]
Sohrabnezhad S, Bahrami K, Hakimpoor F. J. Sulfur Chem., 2019, 40(3): 256.

doi: 10.1080/17415993.2019.1570196
[6]
Yang Z, Xu J. Synthesis, 2014, 44: 1675.
[7]
Yang Z H, Zheng Y P, Xu J X. Synlett, 2012, 24: 2165.

doi: 10.1055/s-0033-1339675
[8]
Yang Z H, Zhou B N, Xu J X. Synthesis, 2014, 46: 225.

doi: 10.1055/s-0033-1338567
[9]
Xu W, Zhang L D, Xu J X. Chem. Reag., 2016, 38(10): 954.
( 许薇, 张丽丹, 许家喜. 化学试剂, 2016, 38(10): 954.)
[10]
Xu J X. Tetrahedron Asymmetry, 2002, 13(11): 1129.

doi: 10.1016/S0957-4166(02)00312-9
[11]
Truce W E, Breiter J J, Abraham D J, Norell J R. J. Am. Chem. Soc., 1962, 84(15): 3030.
[12]
Truce W E, Norell J R. J. Am. Chem. Soc., 1963, 85(20): 3231.

doi: 10.1021/ja00903a039
[13]
Truce W E, Norell J R. Tetrahedron Lett., 1963, 4(20): 1297.

doi: 10.1016/S0040-4039(01)90821-4
[14]
Truce W E, Son P N. J. Org. Chem., 1965, 30(1): 71.

pmid: 5870716
[15]
Truce W E, Abraham D J, Son P N. J. Org. Chem., 1967, 32(4): 990.

pmid: 6042165
[16]
Paquette L A, Houser R W. J. Am. Chem. Soc., 1971, 93(4): 944.

doi: 10.1021/ja00733a027
[17]
Shipov A G, Kisin A V, Baukov Y I. Zh. Obshch. Khim., 1979, 49: 1170.
[18]
Stork G, Borowitz I J. J. Am. Chem. Soc., 1962, 84(2): 313.

doi: 10.1021/ja00861a042
[19]
Opitz G, Adolph H. Angew. Chem. Int. Ed. Engl., 1962, 1(2): 113.
[20]
Paquette L A. J. Org. Chem., 1964, 29(10): 2851.

doi: 10.1021/jo01033a009
[21]
Paquette L A. J. Org. Chem., 1964, 29(10): 2854.

doi: 10.1021/jo01033a010
[22]
Borowitz I J. J. Am. Chem. Soc., 1964, 86(6): 1146.

doi: 10.1021/ja01060a038
[23]
Paquette L A, Rosen M. J. Org. Chem., 1968, 33(5): 2130.

doi: 10.1021/jo01269a101
[24]
Paquette L A, Freeman J P, Houser R W. J. Org. Chem., 1969, 34(10): 2901.

doi: 10.1021/jo01262a020
[25]
Paquette L A, Rosen M, Stucki H. J. Org. Chem., 1968, 33(8): 3020.

doi: 10.1021/jo01272a003
[26]
Wells J N, Abbott F S. J. Med. Chem., 1966, 9(4): 489.

pmid: 5968011
[27]
Chen S C, Chow Y L. Can. J. Chem., 1974, 52(12): 2283.

doi: 10.1139/v74-329
[28]
King J F, Beatson R P, Buchshriber J M. Can. J. Chem., 1977, 55(12): 2323.

doi: 10.1139/v77-319
[29]
Ferri R A, Pitacco G, Valentin E. Tetrahedron, 1978, 34(16): 2537.

doi: 10.1016/0040-4020(78)88384-7
[30]
Ried W, Bopp H. Chem. Ber., 1978, 111(4): 1527.

doi: 10.1002/cber.19781110433
[31]
Benedetti F, Pitacco G, Valentin E. Tetrahedron, 1979, 35(19): 2293.

doi: 10.1016/0040-4020(79)80124-6
[32]
Block E, Aslam M. Tetrahedron Lett., 1982, 23(41): 4203.

doi: 10.1016/S0040-4039(00)88704-3
[33]
Fatutta S, Pitacco G, Valentin E. J. Chem. Soc., Perkin Trans. 1, 1983: 2735.
[34]
Birkofer L, Quittmann W. Chem. Ber., 1986, 119(1): 257.

doi: 10.1002/cber.19861190123
[35]
Sedergran T C, Dittmer D C. J. Org. Chem., 1987, 52(4): 695.

doi: 10.1021/jo00380a043
[36]
Schwan A L, John W. Can. J. Chem., 1988, 66: 155.

doi: 10.1139/v88-024
[37]
Kitane S, Vebrel J, Cerutti E, Berrada M. Bull. Soc. Chim. Belges, 2010, 98(2): 109.

doi: 10.1002/bscb.19890980205
[38]
King J F, Lam J Y L. J. Org. Chem., 1993, 58(12): 3429.

doi: 10.1021/jo00064a037
[39]
Woolhouse A D, Gainsford G J, Crump D R. J. Heterocycl. Chem., 1993, 30(4): 873.

doi: 10.1002/jhet.5570300405
[40]
Opitz G, Deißler M, Rieth K, Wegner R, Irngartinger H, Nuber B. Liebigs Ann., 1995, 1995(12): 2151.

doi: 10.1002/jlac.1995199512301
[41]
Eckroth D R, Love G M. J. Org. Chem., 1969, 34(4): 1136.

doi: 10.1021/jo01256a084
[42]
Rosen M H. Tetrahedron Lett., 1969, 10(8): 647.

doi: 10.1016/S0040-4039(01)87772-8
[43]
Sun S M, Zhang M Y, Xu J X. Org. Chem. Front., 2022, 9(12): 3335.

doi: 10.1039/D2QO00556E
[44]
Truce W, Goralski C. J. Org. Chem., 1970, 35(12): 4220.

doi: 10.1021/jo00837a613
[45]
Liu L X, Xue P, Chen Q L, Wang C M. Tetrahedron Lett., 2021, 80: 153319.

doi: 10.1016/j.tetlet.2021.153319
[46]
Kamigata N, Sawada H, Suzuki N, Kobayashi M. Phosphorus Sulfur Relat. Elem., 1984, 19(2): 199.
[47]
Liu X Y, Duan X H, Pan Z L, Han Y, Liang Y M. Synlett, 2005, 36: 1752.
[48]
Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal., 2019, 9: 1103.

doi: 10.1021/acscatal.8b04188
[49]
Zeng X M, Ilies L, Nakamura E. Org. Lett., 2012, 43: 954.
[50]
Chen D, Lin L, Peng X Y, Yu X Y, Yang Z L, Liu Y T, Zhang X B, Li J H, Jiang H Z. Tetrahedron Lett., 2021, 75: 153203.

doi: 10.1016/j.tetlet.2021.153203
[51]
Wang X, Hu B, Yang P, Zhang Q, Li D. Tetrahedron, 2020, 76(15): 131082.

doi: 10.1016/j.tet.2020.131082
[52]
Pagire S K, Paria S, Reiser O. Org. Lett., 2016, 18(9): 2106.

doi: 10.1021/acs.orglett.6b00734
[53]
Niu T F, Cheng J, Zhuo C L, Jiang D Y, Shu X G, Ni B Q. Tetrahedron Lett., 2017, 58(37): 3667.
[54]
Niu T F, Jiang D Y, Ni B Q. Tetrahedron Lett., 2017, 58(45): 4299.
[55]
Zhang P B, Shi S S, Gao X, Han S, Lin J M, Zhao Y F. Org. Biomol. Chem., 2019, 17(11): 2873.

doi: 10.1039/C9OB00218A
[56]
Wu Q, Zhao D B, Qin X R, Lan J B, You J S. Chem. Commun., 2011, 47(32): 9188.

doi: 10.1039/c1cc13633j
[57]
Chen M, Huang Z T, Zheng Q Y. Chem. Commun., 2012, 48(95): 11686.

doi: 10.1039/c2cc36866h
[58]
Zhao F, Tan Q, Wang D H, Deng G J. Green Chem., 2020, 22(2): 427.

doi: 10.1039/C9GC03384J
[59]
Liang S S, Jiang L Q, Yi W B, Wei J J. Org. Lett., 2018, 20(22): 7024.

doi: 10.1021/acs.orglett.8b02929
[60]
Wei J J, Liang S S, Jiang L Q, Mumtaz Y, Yi W B. J. Org. Chem., 2020, 85(2): 977.

doi: 10.1021/acs.joc.9b02920
[61]
Nagib D A, MacMillan D W C. Nature, 2011, 480(7376): 224.

doi: 10.1038/nature10647
[62]
Natarajan P, Bala A N, Mehta S K, Bhasin K K. Tetrahedron, 2016, 72(19): 2521.

doi: 10.1016/j.tet.2016.03.087
[63]
Pagire S K, Hossain A, Reiser O. Org. Lett., 2018, 20(3): 648.

doi: 10.1021/acs.orglett.7b03790
[64]
Oh S H, Malpani Y R, Ha N, Jung Y S, Han S B. Org. Lett., 2014, 16(5): 1310.

doi: 10.1021/ol403716t
[65]
Tang X J, Thomoson C S, Dolbier W R. Org. Lett., 2014, 16(17): 4594.

doi: 10.1021/ol502163f
[66]
Tang X J, Dolbier W R. Angew. Chem. Int. Ed., 2015, 54(14): 4246.

doi: 10.1002/anie.201412199
[67]
Thomoson C S, Tang X J, Dolbier W R. J. Org. Chem., 2015, 80(2): 1264.

pmid: 25513895
[68]
Bagal D B, Kachkovskyi G, Knorn M, Rawner T, Bhanage B M, Reiser O. Angew. Chem. Int. Ed., 2015, 54(24): 6999.

doi: 10.1002/anie.201501880
[69]
Reiser O. Acc. Chem. Res., 2016, 49(9): 1990.

doi: 10.1021/acs.accounts.6b00296
[70]
Rawner T, Knorn M, Lutsker E, Hossain A, Reiser O. J. Org. Chem., 2016, 81(16): 7139.

doi: 10.1021/acs.joc.6b01001
[71]
Reddy Dubbaka S, Vogel P. Adv. Synth. Catal., 2004, 346(13/15): 1793.

doi: 10.1002/adsc.200404146
[72]
Dubbaka S R, Vogel P. Chem. Eur. J., 2005, 11(9): 2633.

doi: 10.1002/chem.200400838
[73]
Dubbaka S R, Zhao D B, Fei Z F, Volla C M R, Dyson P J, Vogel P. Synlett, 2006, 18: 3155.
[74]
Xi C J, Lai C B, Chen C, Wang R J. Synlett, 2004(9): 1595.
[75]
Wang D Y, Guo S M, Zhang R X, Lin S, Yan Z H. RSC Adv., 2016, 6(59): 54377.

doi: 10.1039/C6RA02302A
[76]
Jiang L Q, Yi W B, Liu Q R. Adv. Synth. Catal., 2016, 358: 3700.

doi: 10.1002/adsc.201600651
[77]
Jiang L Q, Ding T Q, Yi W B, Zeng X, Zhang W. Org. Lett., 2018, 20(8): 2236.

doi: 10.1021/acs.orglett.8b00581 pmid: 29624070
[78]
Baganz H, Dransch G. Chem. Ber., 1960, 93(4): 784.

doi: 10.1002/cber.19600930406
[79]
Baxter N J, Rigoreau L J M, Laws A P, Page M I. J. Am. Chem. Soc., 2000, 122(14): 3375.

doi: 10.1021/ja994293b
[80]
Barwick M, Abu-Izneid T, Novak I. J. Phys. Chem. A, 2008, 112(43): 10993.

doi: 10.1021/jp805024y pmid: 18828576
[81]
Hinchliffe P S, Wood J M, Davis A M, Austin R P, Beckett R P, Page M I. Org. Biomol. Chem., 2003, 1(1): 67.

pmid: 12929392
[82]
Page M I. Acc. Chem. Res., 2004, 37(5): 297.

doi: 10.1021/ar0200899
[83]
Tsang W Y, Ahmed N, Harding L P, Hemming K, Laws A P, Page M I. J. Am. Chem. Soc., 2005, 127(25): 8946.

pmid: 15969560
[84]
Page M I, Hinchliffe P S, Wood J M, Harding L P, Laws A P. Bioorg. Med. Chem. Lett., 2003, 13(24): 4489.

doi: 10.1016/j.bmcl.2003.08.082
[85]
Llinás A, Ahmed N, Cordaro M, Laws A P, Frère J M, Delmarcelle M, Silvaggi N R, Kelly J A, Page M I. Biochemistry, 2005, 44(21): 7738.

doi: 10.1021/bi050110o
[86]
Tsuge O, Iwanami S. Bull. Chem. Soc. Jpn., 1970, 43(11): 3543.

doi: 10.1246/bcsj.43.3543
[87]
Szymonifka M J, Heck J V. Tetrahedron Lett., 1989, 30(22): 2869.

doi: 10.1016/S0040-4039(00)99145-7
[88]
Grunder E, Leclerc G. Synthesis, 1989, 1989(2): 135.

doi: 10.1055/s-1989-27176
[89]
Grunder-Klotz E, Ehrhardt J D. Tetrahedron Lett., 1991, 32(6): 751.

doi: 10.1016/S0040-4039(00)74875-1
[90]
Gordeev M F, Gordon E M, Patel D V. J. Org. Chem., 1997, 62(23): 8177.

doi: 10.1021/jo9713316
[91]
Liu J, Hou S L, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(12): 2377.

doi: 10.1080/10426507.2011.608097
[92]
Yang Z H, Xu J X. J. Org. Chem., 2014, 79(21): 10703.

doi: 10.1021/jo5020933
[93]
Yang Z H, Xu J X. Tetrahedron, 2015, 71(19): 2844.

doi: 10.1016/j.tet.2015.03.076
[94]
Yang Z H, Chen N, Xu J X. J. Org. Chem., 2015, 80(7): 3611.

doi: 10.1021/acs.joc.5b00312
[95]
Yang Z H, Xu J X. RSC Adv., 2015, 5(96): 78396.

doi: 10.1039/C5RA15717J
[96]
Wu Q Y, Yang Z H, Xu J X. Org. Biomol. Chem., 2016, 14(30): 7258.

doi: 10.1039/C6OB01259K
[97]
Yang Z H, Hassane A, He W, Xu J X. Molecules, 2017, 22: 784.

doi: 10.3390/molecules22050784
[98]
Xu W, Fu Z C, Yang Z H, Zhang L D, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5): 335.

doi: 10.1080/10426507.2017.1418741
[99]
Zajac M, Peters R. Org. Lett., 2007, 9(10): 2007.

doi: 10.1021/ol070644c
[100]
Zajac M, Peters R. Chem. Eur. J., 2009, 15(33): 8204.

doi: 10.1002/chem.200900496
[101]
Borrmann D, Wegler R. Chem. Ber., 1966, 99(4): 1245.

doi: 10.1002/cber.19660990427
[102]
Truce W E, Liu L K. Chem. Ind., 1969, 457.
[103]
Liu S J, Zhou B, Yang H Y, He Y T, Jiang Z X, Kumar S, Wu L, Zhang Z Y. J. Am. Chem. Soc., 2008, 130(26): 8251.

doi: 10.1021/ja711125p
[104]
Ghosh A K, Kumaragurubaran N, Hong L, Lei H, Hussain K A, Liu C F, Devasamudram T, Weerasena V, Turner R, Koelsch G, Bilcer G, Tang J. J. Am. Chem. Soc., 2006, 128(16): 5310.

doi: 10.1021/ja058636j pmid: 16620080
[105]
Truce W E, Kao Liu L L. Tetrahedron Lett., 1970, 11(7): 517.

doi: 10.1016/0040-4039(70)89014-1
[106]
Koch F, Peters R. Angew. Chem. Int. Ed., 2007, 46(15): 2685.

doi: 10.1002/anie.200604796
[107]
Koch F M, Peters R. Chem. Eur. J., 2011, 17(13): 3679.

doi: 10.1002/chem.201003542
[108]
Zhou B N, Xu J X. Org. Biomol. Chem., 2016, 14(21): 4918.

doi: 10.1039/C6OB00648E
[109]
Cheng B, Li Y T, Zhang X P, Duan S G, Li H, He Y X, Li Y, Wang T M, Zhai H B. Org. Lett., 2020, 22(15): 5817.

doi: 10.1021/acs.orglett.0c01888 pmid: 32648762
[110]
Dong J, Xu J X. Prog. Chem., 2022, 34(5): 1088.

doi: 10.7536/PC210626
( 董军, 许家喜. 化学进展, 2022, 34(5): 1088.)

doi: 10.7536/PC210626
[111]
Liang Y, Jiao L, Zhang S W, Xu J X. J. Org. Chem., 2005, 70(1): 334.

pmid: 15624943
[112]
Jiao L, Liang Y, Xu J X. J. Am. Chem. Soc., 2006, 128(18): 6060.

pmid: 16669675
[113]
Liang Y, Jiao L, Zhang S W, Yu Z X, Xu J X. J. Am. Chem. Soc., 2009, 131(4): 1542.

doi: 10.1021/ja808046e pmid: 19132931
[114]
Qi H Z, Li X Y, Xu J X. Org. Biomol. Chem., 2011, 9(8): 2702.

doi: 10.1039/c0ob00783h
[115]
Li B N, Wang Y K, Du D M, Xu J X. J. Org. Chem., 2007, 72(3): 990.

doi: 10.1021/jo0622734
[116]
Fu Z C, Xu J X. Prog. Chem., 2018, 30(8): 1047.
( 符志成, 许家喜. 化学进展, 2018, 30(8): 1047.)

doi: 10.7536/PC180113
[117]
Xu J X. Beilstein J. Org. Chem., 2020, 16: 1357.

doi: 10.3762/bjoc.16.116
[118]
Xu J X. Asian J. Org. Chem., 2020, 9(7): 1008.

doi: 10.1002/ajoc.202000219
[119]
Fu Z C, Xu J X. Prog. Chem., 2021, 33(6): 895.
( 符志成, 许家喜. 化学进展, 2021, 33(6): 895.)

doi: 10.7536/PC200758
[120]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(3): 308.

doi: 10.1007/s10593-020-02660-1
[121]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(8): 979.

doi: 10.1007/s10593-020-02763-9
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[3] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[4] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[5] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.
[6] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[7] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[11] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[12] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[13] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[14] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[15] Zehuai Mou, Yinjun Wang, Hongyan Xie. Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers [J]. Progress in Chemistry, 2020, 32(12): 1885-1894.