中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1402-1413 DOI: 10.7536/PC210727 Previous Articles   Next Articles

• Review •

A Review of Inorganic Aqueous Flow Battery

Mingjun Nan1, Lin Qiao1(), Yuqin Liu1, Huamin Zhang1,2, Xiangkun Ma1()   

  1. 1 Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
    2 Dalian Institute of Chemical Physics, University of Chinese Academy of Science, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Contact: Lin Qiao, Xiangkun Ma
  • Supported by:
    Fundamental Research Funds for the Central Universities(3132021179); Strategic Priority Research Program of Chinese Academy of Sciences(XDA21070100)
Richhtml ( 71 ) PDF ( 719 ) Cited
Export

EndNote

Ris

BibTeX

Flow battery (FB), an important technology for large-scale energy storage, has the advantages of high safety, long cycle life, environmental friendliness, and so on. FBs can stabilize the fluctuation of renewable energy output, help to promote the large-scale application of renewable energy, and further achieve the goal of peak carbon dioxide emissions and carbon neutrality. Inorganic aqueous flow batteries with high energy efficiency and stable cycle performance are attracting increasing attention. This paper introduces the technology status and application demonstration of the commercial inorganic aqueous flow battery. Then, the principle, current state, and technology challenges of new-type inorganic aqueous flow batteries are summarized. Finally, this paper points out the goals of inorganic aqueous flow batteries for the next 15 years, pointing out the development direction of inorganic aqueous flow batteries.

Contents

1 Introduction

2 Liquid-liquid aqueous flow battery

2.1 Fe-Cr flow battery

2.2 Vanadium flow battery

2.3 Other types of liquid-liquid aqueous flow battery

3 Liquid-deposition aqueous flow battery

3.1 Zn-Br flow battery

3.2 Other types of liquid-deposition aqueous flow battery

4 Conclusion and outlook

Fig. 1 The standard electrode potential of inorganic ion pairs
Fig. 2 The schematic diagram of liquid-liquid aqueous flow battery system structure
Table 1 The typical VFB demonstration projects in China between 2010 to 2021
Fig. 3 The reaction mechanism of V-Mn FB[76]
Fig. 4 (a) The reaction mechanism of V-Fe FB; (b) the CV curve of V-Fe FB[80]
Fig. 5 The development status of ZBFB abroad
Fig. 6 (a) The reaction mechanism of ZISFB; (b) the performance comparison of ZIFB[101]
Fig. 7 (a) The reaction mechanism of ZVFB; (b) The CV of Zn0/2+ and VO2+/ VO 2 + ][102]
Fig. 8 (a) The reaction mechanism of Sn-Fe FB; (b) the efficiency of Sn-Fe FB[108]
Fig. 9 (a) The reaction mechanism of TMSFB; (b) the CV of TiO2+/Ti3+ and Mn2+/Mn3+/MnO2; (c) the battery life of TMSFB[114]
Fig. 10 Forecast of FB development
[1]
Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

doi: 10.1038/nature11475
[2]
Jiang S, Li Y, Lu Q, Hong Y, Wang S. Nat. Commun., 2021, 12: 1938.

doi: 10.1038/s41467-021-22256-3
[3]
Stocks M, Stocks R, Lu B, Cheng C, Blakers A. Joule, 2021, 5(1): 270.

doi: 10.1016/j.joule.2020.11.015
[4]
Guo C, Li C, Zhang K, Cai Z, Shen L. Appl. Energ., 2021, 286: 116513.

doi: 10.1016/j.apenergy.2021.116513
[5]
Olabi A G, Wilberforce T, Abdelkareem M A, Ramadan M. Energies, 2021, 14(8): 2159.

doi: 10.3390/en14082159
[6]
Jian X, Jian W A, Rhy A, Tian L, Shuai M A, Ying J, Yun Q X. J. Energy Storage, 2021, 38: 102508.

doi: 10.1016/j.est.2021.102508
[7]
Zhou Y, Qi H L, Yang J Y, Bo Z, Huang F, Islam M S, Lu X Y, Dai L M, Amal R, Wang C H, Han Z J. Energy Environ. Sci., 2021, 14(4): 1854.

doi: 10.1039/D0EE03167D
[8]
Goodenough J B, Cockrell VH. Accounts Chem. Rec., 2013, 46: 5.
[9]
Qiu H Y, Zhao J W, Zhou X H, Cui GL, Acta Chim. Sinica, 2018, 76: 749.

doi: 10.6023/A18060248
( 邱华玉, 赵井文, 周新红, 崔光磊. 化学学报, 2018, 76: 749.).
[10]
Chang Z H, Wang J T, Wu Z H, Zhao J L, Lu S G. Progress in Chemistry, 2018, 30: 1960.
( 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 化学进展,2018, 30: 1960.).
[11]
Zhuang Q C, Yang Z, Zhang L, Cui Y H. Progress in Chemistry, 2020, 32: 761.
( 庄全超, 杨梓, 张蕾, 崔艳华. 化学进展, 2020, 32: 761.).

doi: 10.7536/PC191116
[12]
Jens N N R, Tatjana H, Peter F. Angew. Chem. Int. Ed., 2014, 54: 9776.

doi: 10.1002/anie.201410823
[13]
Wang W, Luo Q T, Li B, Wei X L, Li L Y, Yang Z G. Adv. Funct. Mater., 2013, 23(8): 970.

doi: 10.1002/adfm.201200694
[14]
Romadina E I, Volodin I A, Stevenson K J, Troshin P A. J. Mater. Chem. A, 2021, 9(13): 8303.

doi: 10.1039/D0TA11860E
[15]
Pang S, Wang X Y, Wang P, Ji Y L. Angewandte Chemie Int. Ed., 2021, 60(10): 4953.

doi: 10.1002/anie.202016889
[16]
Wang C X, Yu B, Liu Y Z, Wang H Z, Zhang Z W, Xie C X, Li X F, Zhang H M, Jin Z. Energy Storage Mater., 2021, 36: 417.
[17]
Lopez-Atalaya M, Codina G, Perez J R, Vazquez J L, Aldaz A. J. Power Sources, 1992, 39(2): 147.

doi: 10.1016/0378-7753(92)80133-V
[18]
Thaller L H. NASA TM-79143, DOE/NASA/1002-79/3, 1979.
[19]
Lin Z Q, Jiang Z Y. Chin. J. Power Sources, 1991(2): 32.
( 林兆勤, 江志韫. 电源技术, 1991(2): 32.).
[20]
Futamata M, Higuchi S, Nakamura O, Ogino I, Takada Y, Okazaki S, Ashimura S, Takahashi S. J. Power Sources, 1988, 24(2): 137.

doi: 10.1016/0378-7753(88)80098-3
[21]
Zhang H M, Zhang Y, Liu Z H, Wang X L. Progress in Chemistry, 2009, 21: 2333.
( 张华民, 张宇, 刘宗浩, 王晓丽. 化学进展, 2009, 21: 2333.).
[22]
Grigorii L, Soloveichi K. Chem. Rev., 2015, 115: 11533.

doi: 10.1021/cr500720t
[23]
Yang L, Wang H, Li X M, Zhao Z, Zuo Y J, Liu Y J, Liu Y. Energy Storage Science and Technology, 2020, 9: 751.
( 杨林, 王含, 李晓蒙, 赵钊, 左元杰, 刘雨佳, 刘赟. 储能科学与技术, 2020, 9: 751.).
[24]
Hagedorn. NASA redox storage system development project. final report. Washington, 1984.
[25]
Wu C, Scherson D, Calvo E J. Electrochem. Soc., 1986, 133: 2109.

doi: 10.1149/1.2108351
[26]
Na C A, Hz A, Xdl A, Cysb C. Electrochimi. Acta, 2020, 336: 135646.

doi: 10.1016/j.electacta.2020.135646
[27]
Jalan V, Morriseau B, Swette L. Office of Scientific and Technical Information (OSTI), 1982.
[28]
Zeng Y K, Zhou X L, Zeng L, Yan X H, Zhao T S. J. Power Sources, 2016, 327: 258.

doi: 10.1016/j.jpowsour.2016.07.066
[29]
Zhang H, Yi T, Li J, Bing X. Electrochimi. Acta, 2017, 248: 603.

doi: 10.1016/j.electacta.2017.08.016
[30]
Wang S L, Xu Z Y, Wu X L, Zhao H, Zhao J L, Liu J G, Yan C W, Fan X Z. Electrochimica Acta, 2021, 368: 137524.

doi: 10.1016/j.electacta.2020.137524
[31]
Rychcik M, Skyllas-Kazacos M. J. Power Sources, 1988, 22(1): 59.

doi: 10.1016/0378-7753(88)80005-3
[32]
Sukkar T, Skyllas-Kazacos M. J. Appl. Electrochem., 2004, 34(2): 137.

doi: 10.1023/B:JACH.0000009931.83368.dc
[33]
Prifti H, Parasuraman A, Winardi S, Lim T M, Skyllas-Kazacos M. Membranes, 2012, 2(2): 275.

doi: 10.3390/membranes2020275 pmid: 24958177
[34]
Sun B, Skyllas-Kazacos M. Electrochimica Acta, 1992, 37(7): 1253.

doi: 10.1016/0013-4686(92)85064-R
[35]
Rui X H, Oo M O, Sim D H, Raghu S C, Yan Q Y, Lim T M, Skyllas-Kazacos M. Electrochimica Acta, 2012, 85: 175.

doi: 10.1016/j.electacta.2012.08.119
[36]
Noack J, Roznyatovskaya N, Kunzendorf J, Skyllas-Kazacos M, Menictas C, Tübke J. J. Energy Chem., 2018, 27(5): 1341.

doi: 10.1016/j.jechem.2018.03.021
[37]
Cao L Y, Skyllas-Kazacos M, Menictas C, Noack J. J. Energy Chem., 2018, 27(5): 1269.

doi: 10.1016/j.jechem.2018.04.007
[38]
Skyllas-Kazacos M, Cao L Y, Kazacos M, Kausar N, Mousa A. ChemInform, 2016, 47(37): 1521.
[39]
Rahman F, Skyllas-Kazacos M. J. Power Sources, 2009, 189(2): 1212.

doi: 10.1016/j.jpowsour.2008.12.113
[40]
Mousa A, Skyllas-Kazacos M. ChemElectroChem, 2017, 4(1): 130.

doi: 10.1002/celc.201600426
[41]
Yan Y T, Skyllas-Kazacos M, Bao J. J. Energy Storage, 2017, 11: 104.

doi: 10.1016/j.est.2017.01.007
[42]
Yan Y T, Li Y F, Skyllas-Kazacos M, Bao J. J. Power Sources, 2016, 322: 116.

doi: 10.1016/j.jpowsour.2016.05.011
[43]
Skyllas-Kazacos M, Kazacos M. J. Power Sources, 2011, 196(20): 8822.

doi: 10.1016/j.jpowsour.2011.06.080
[44]
Tang A, Bao J, Skyllas-Kazacos M. J. Power Sources, 2011, 196(24): 10737.

doi: 10.1016/j.jpowsour.2011.09.003
[45]
Skyllas-Kazacos M, Goh L. J. Membr. Sci., 2012, 399/400: 43.

doi: 10.1016/j.memsci.2012.01.024
[46]
Qiao L, Liu S M, Cheng H D, Ma X K. Membranes, 2022, 12(4): 388.

doi: 10.3390/membranes12040388
[47]
Yuan Z Z, Zhu X X, Li M R, Lu W J, Li X F, Zhang H M. Angew. Chem. Int. Ed., 2016, 55(9): 3058.

doi: 10.1002/anie.201510849
[48]
Moore M, Counce R. M, Watson J, Zawodzinsk T. J. Adv. Chem. Eng., 2015, 5: 1000140.
[49]
Kazacos M, Cheng M, Skyllas-Kazacos M. J. Appl. Electrochem., 1990, 20(3): 463.

doi: 10.1007/BF01076057
[50]
Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B. Adv. Energy Mater., 2011, 1: 394.

doi: 10.1002/aenm.201100008
[51]
Ahn Y, Kim D. Energy Storage Mater., 2020, 31: 105.
[52]
Ye J, Zhao X, Ma Y, Su J, Sun L. Adv. Energy Mater., 2020, 10: 1904041.

doi: 10.1002/aenm.201904041
[53]
Qian P H, Wang H X, Jiang Y H, Zhou Y, Shi H F. J. Mater. Chem. A, 2021, 9(7): 4240.

doi: 10.1039/D0TA11037J
[54]
Di M, Hu L, Gao L, Yan X, He G. Chem. Eng. J., 2020, 399: 125833.

doi: 10.1016/j.cej.2020.125833
[55]
Xu W X, Zhao Y Y, Yuan Z Z, Li X F, Zhang H M, Vankelecom I F J. Adv. Funct. Mater., 2015, 25(17): 2583.

doi: 10.1002/adfm.201500284
[56]
Yuan Z Z, Li X F, Duan Y Q, Zhao Y Y, Zhang H M. Polym. Chem., 2015, 6(30): 5385.

doi: 10.1039/C5PY00482A
[57]
Yuan Z Z, Li X F, Zhao Y Y, Zhang H M. ACS Appl. Mater. Interfaces, 2015, 7(34): 19446.

doi: 10.1021/acsami.5b05840
[58]
Zhang H Z, Zhang H M, Zhang F X, Li X F, Li Y, Vankelecom I. Energy Environ. Sci., 2013, 6(3): 776.

doi: 10.1039/c3ee24174b
[59]
Yuan Z Z, Duan Y Q, Zhang H Z, Li X F, Zhang H M, Vankelecom I. Energy Environ. Sci., 2016, 9(2): 441.

doi: 10.1039/C5EE02896E
[60]
Lu W J, Yuan Z Z, Zhao Y Y, Li X F, Zhang H M, Vankelecom I F J. Energy Environ. Sci., 2016, 9(7): 2319.

doi: 10.1039/C6EE01371F
[61]
Lu W J, Yuan Z Z, Li M R, Li X F, Zhang H M, Vankelecom I. Adv. Funct. Mater., 2017, 27(4): 1604587.

doi: 10.1002/adfm.201604587
[62]
Wang R, Li Y. Energy Storage Mater., 2020, 31: 23051.
[63]
Yu L H, Lin F, Xu L, Xi J Y. J. Energy Chem., 2019, 35: 55.

doi: 10.1016/j.jechem.2018.11.004
[64]
Wang R, Li Y S, Wang Y N, Fang Z. Appl. Energy, 2020, 261: 114369.

doi: 10.1016/j.apenergy.2019.114369
[65]
Sun J, Jiang H R, Zhang B W, Chao C Y H, Zhao T S. Appl. Energy, 2020, 259: 114198.

doi: 10.1016/j.apenergy.2019.114198
[66]
Wei L, Zhao T S, Zeng L, Zeng Y K, Jiang H R. J. Power Sources, 2017, 341: 318.

doi: 10.1016/j.jpowsour.2016.12.016
[67]
Jiang H R, Sun J, Wei L, Wu M C, Shyy W, Zhao T S. Energy Storage Mater., 2020, 24: 529.
[68]
Largent R, Skylas-Kazacos M, Chieng, J. 23rd Photovoltaic Specialists Conference, Louisville, Kentucky, IEEE, 1993: 1119.
[69]
Shibata A, Sato K. Journal of Power Engineering, 1999, 13: 130.

doi: 10.1049/pe:19990305
[70]
Xie C X, Zheng Q, Li X F, Zhang H M. Energy Storage Sci. Technol., 2017, 6(5): 1050.
( 谢聪鑫, 郑琼, 李先锋, 张华民. 储能科学与技术, 2017, 6(5): 1050.)
[71]
Ma X, Zhang H, Xu X. The International Coaltion for Energy Storage and Innovation, Dalian, China, 2019..
[72]
Li X F, Zhang H M, Mai Z S, Zhang H Z, Vankelecom I. Energy Environ. Sci., 2011, 4(4): 1147.

doi: 10.1039/c0ee00770f
[73]
Zhang M, Moore M, Watson J J. Electrochem. Soc., 2012, 159: A1183.

doi: 10.1149/2.041208jes
[74]
Xue F Q, Wang Y L, Wang W H, Wang X D. Electrochimica Acta, 2008, 53(22): 6636.

doi: 10.1016/j.electacta.2008.04.040
[75]
Park S, Lee H, Lee H J, Kim H. J. Power Sources, 2020, 451: 227746.

doi: 10.1016/j.jpowsour.2020.227746
[76]
Reynard D, Maye S, Peljo P, Chanda V, Girault H H, Gentil S. Chem. Eur. J., 2020, 26(32): 7250.

doi: 10.1002/chem.202000340
[77]
Kaliyaraj S, Subramanian S, Pitchai R, Mani U. Electrochimi. Acta, 2020, 345: 136245.

doi: 10.1016/j.electacta.2020.136245
[78]
Kaku H, Dong Y R, Hanafusa K, Moriuchi K, Shigematsu T. ECS Trans., 2016, 72(10): 1.
[79]
Kaku H, Kawagoe Y, Dong Y R, Tatsumi R, Moriuchi K, Shigematsu T. ECS Trans., 2017, 77(11): 173.
[80]
Wang W, Kim S, Chen B W, Nie Z M, Zhang J L, Xia G G, Li L Y, Yang Z G. Energy Environ. Sci., 2011, 4(10): 4068.

doi: 10.1039/c0ee00765j
[81]
Zhou H T, Zhang H M, Zhao P, Yi B L. Electrochimica Acta, 2006, 51(28): 6304.

doi: 10.1016/j.electacta.2006.03.106
[82]
Zhao P, Zhang H M, Zhou H T, Yi B L. Electrochimica Acta, 2005, 51(6): 1091.

doi: 10.1016/j.electacta.2005.06.008
[83]
Zhou H T, Zhang H M, Zhao P, Yi B L. Electrochemistry, 2006, 74(4): 296.

doi: 10.5796/electrochemistry.74.296
[84]
Walsh F C. Pure Appl. Chem., 2001, 73(12): 1819.

doi: 10.1351/pac200173121819
[85]
Zhou H T, Zhang H M, Zhao P, Yi B L. Renewable Energy Resources, 2005, 3: 62.
( 周汉涛, 张华民, 赵平, 衣宝廉. 可再生能源, 2005, 3: 62.).
[86]
Wen Y, Cheng J, Zhang H M, Yang Y S. Battery Bimonthly, 2008, 38: 247.
( 文越华, 程杰, 张华民, 杨裕生. 电池, 2008, 38: 247.).
[87]
Li Z J, Weng G M, Zou Q L, Cong G T, Lu Y C. Nano Energy, 2016, 30: 283.

doi: 10.1016/j.nanoen.2016.09.043
[88]
Gong K, Xu F, Grunewald J B, Ma X Y, Zhao Y, Gu S, Yan Y S. ACS Energy Lett., 2016, 1(1): 89.

doi: 10.1021/acsenergylett.6b00049
[89]
Sreenath S, Sharma N K, Nagarale R K. RSC Adv., 2020, 10(73): 44824.

doi: 10.1039/D0RA08316J
[90]
Shin M, Noh C, Chung Y, Kwon Y. Chem. Eng. J., 2020, 398: 125631.

doi: 10.1016/j.cej.2020.125631
[91]
Khor A, Leung P, Mohamed M R, Flox C, Xu Q, An L, Wills R G A, Morante J R, Shah A A. Mater. Today Energy, 2018, 8: 80.
[92]
Jens N, Roznyatovskaya N, Tatjana H, Peter F. Angew. Chem. Int. Ed., 2014, 54: 9776.

doi: 10.1002/anie.201410823
[93]
Lu W J, Xie C X, Zhang H M, Li X F. ChemSusChem, 2018, 11(23): 3996.

doi: 10.1002/cssc.201801657
[94]
Zhou D B, Yu Z Y. Battery Bimonthly, 2004, 6, 442.
( 周德璧, 于中一. 电池, 2004, 6, 442.).
[95]
Lin H. Master’s Dissertation of Northeast Electric Power University, 2019.
( 林航. 东北电力大学硕士论文, 2019.).
[96]
Biswas S, Senju A, Mohr R, Hodson T, Karthikeyan N, Knehr K W, Hsieh A G, Yang X F, Koel B E, Steingart D A. Energy Environ. Sci., 2017, 10(1): 114.

doi: 10.1039/C6EE02782B
[97]
van Egmond W J, Saakes M, Porada S, Meuwissen T, Buisman C J N, Hamelers H V M. J. Power Sources, 2016, 325: 129.

doi: 10.1016/j.jpowsour.2016.05.130
[98]
Zhang L Q, Zhang H M, Lai Q Z, Li X F, Cheng Y H. J. Power Sources, 2013, 227: 41.

doi: 10.1016/j.jpowsour.2012.11.033
[99]
Li B, Nie Z M, Vijayakumar M, Li G S, Liu J, Sprenkle V, Wang W. Nat. Commun., 2015, 6: 6303.

doi: 10.1038/ncomms7303
[100]
Xie C X, Zhang H M, Xu W B, Wang W, Li X F. Angew. Chem. Int. Ed., 2018, 57(35): 11472.

doi: 10.1002/anie.201806827
[101]
Xie C X, Liu Y, Lu W J, Zhang H M, Li X F. Energy Environ. Sci., 2019, 12(6): 1834.

doi: 10.1039/C8EE02825G
[102]
Ulaganathan M, Suresh S, Mariyappan K, Periasamy P, Pitchai R. ACS Sustainable Chem. Eng., 2019, 7(6): 6053.

doi: 10.1021/acssuschemeng.8b06194
[103]
Clarke R. WO 03/ 017408 A1, 2003.
[104]
Clarke R. US 2004/ 0197649 A1, 2004.
[105]
Clarke R. US 7560189 B2, 2009.
[106]
Xie C X, Li T Y, Deng C Z, Song Y, Zhang H M, Li X F. Energy Environ. Sci., 2020, 13(1): 135.

doi: 10.1039/C9EE03702K
[107]
Chen F Y, Sun Q, Gao W, Liu J G, Yan C W, Liu Q Y. J. Power Sources, 2015, 280: 227.

doi: 10.1016/j.jpowsour.2015.01.049
[108]
Zhou X L, Lin L Y, Lv Y H, Zhang X Y, Wu Q X. J. Power Sources, 2018, 404: 89.

doi: 10.1016/j.jpowsour.2018.10.011
[109]
Zeng Y K, Yang Z F, Lu F, Xie Y L. Appl. Energy, 2019, 255: 113756.

doi: 10.1016/j.apenergy.2019.113756
[110]
McGrath M J, Patterson N, Manubay B C, Hardy S H, Malecha J J, Shi Z X, Yue X J, Xing X, Funke H H, Gin D L, Liu P, Noble R D. Ind. Eng. Chem. Res., 2019, 58(49): 22250.

doi: 10.1021/acs.iecr.9b04592
[111]
Hawthorne K L, Petek T J, Miller M A, Wainright J S, Savinell R F. J. Electrochem. Soc., 2014, 162(1): A108.

doi: 10.1149/2.0591501jes
[112]
Hawthorne K L, Wainright J S, Savinell R F. J. Electrochem. Soc., 2014, 161(10): A1662.

doi: 10.1149/2.0761410jes
[113]
Yu S C, Yue X J, Holoubek J, Xing X, Pan E, Pascal T, Liu P. J. Power Sources, 2021, 513: 230457.

doi: 10.1016/j.jpowsour.2021.230457
[114]
Qiao L, Xie C X, Nan M J, Zhang H M, Ma X K, Li X F. J. Mater. Chem. A, 2021: 12606.
[1] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[2] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[3] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[4] Wang Gang, Chen Jinwei, Wang Xueqin, Tian Jing, Liu Xiaojiang, Wang Ruilin. Electrolyte for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(07): 1102-1112.
[5] . Membranes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2010, 22(0203): 384-387.
[6] Zhang Huamin Zhang Yu Liu Zonghao Wang Xiaoli. Redox Flow Battery Technology [J]. Progress in Chemistry, 2009, 21(11): 2333-2340.
Viewed
Full text


Abstract

A Review of Inorganic Aqueous Flow Battery