中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1359-1368 DOI: 10.7536/PC210633 Previous Articles   Next Articles

• Review •

Silk Fibroin-Based 3D Printing Strategies for Biomedical Applications

Xiaoxue Gu, Jing Yu, Mingying Yang, Yajun Shuai()   

  1. Research Institute of Applied Bioresources, College of Animal Science, Zhejiang University,Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Contact: Yajun Shuai
  • Supported by:
    National Natural Science Foundation of China(31800807); Zhejiang Provincial Science and Technology Plans(LY22E030004); Fundamental Research Funds for the Central Universities(2020QNA6028); State of Sericulture Industry Technology System(CARS-18-ZJ0501)
Richhtml ( 36 ) PDF ( 456 ) Cited
Export

EndNote

Ris

BibTeX

Additive manufacturing, also known as three-dimensional (3D) printing, drives comprehensive innovations and upgrades in manufacturing, engineering, medicine, and other fields. 3D printing technology has made great progress in the biomedicine field in the past decade due to its ability to customize the complex 3D microstructures of organisms and construct biomimetic functional living tissues or artificial organs. In addition, silk fibroin (SF) is a natural organic polymer with abundant sources, biodegradable, excellent mechanical properties, and good cytocompatibility, which provides a promising choice for the design of 3D-printing inks. However, as a structural protein, single-component SF has limited physiological functions, and poor stability after printing, which limits the further development of SF in 3D printing and biomedical fields. For these reasons, researchers combined advanced 3D printing technologies with chemical modification methods to make the modified SF easy to be used for 3D printing and develop into a valuable biomaterial. Here, this article reviews the structural characteristics of SF, chemical modification strategies of SF, preparation strategies of printing inks and the latest application progress of 3D printed SF materials in the biomedical field. Meanwhile, we also look forward to the future development trend of 3D printed SF biomaterials, which provides a useful guideline for its application in a wider field.

Contents

1 Introduction

2 The structures and characteristics of SF

3 Preparation strategies of bio-inks

3.1 Compounding with polymers

3.2 Compounding with inorganics

3.3 Self cross-linking

3.4 Chemical modification

4 3D printing technologies

4.1 Inkjet

4.2 Extrusion

4.3 Photo-curing

5 Applications in the field of biomedical

5.1 Blood vessel regeneration

5.2 Cartilage repair

5.3 Bone repair

5.4 Skin healing

6 Conclusions and outlook

Table 1 The properties of bio-inks based on SF
Fig. 1 Cytocompatibility and cellular response of SF-OBC scaffold[36]. (a) The live and dead staining images for 3 days, and (b) and (c) for 7 days. (d) LSCM of LESCs. (e) SEM of the cells/scaffold. (f) is the magnification of (e). (g) and (h) are the immunofluorescence staining of LESCs. (i) Cell viability. Copyright 2021, Springer Nature
Fig. 2 3D printed products using Sil-MA ink showed complex organ structures[40]. Copyright 2018, Nature Communications
Fig. 3 Mechanical stability of hydrogel[60]. (a) Enzymatic reaction high molecular weight silk fibroin (SF-E5) and photocrosslinking reaction high molecular weight Silk fibroin (SF-P5). (b) Enzymatic reaction low molecular weight silk fibroin (SF-E30) and photocrosslinking reaction low molecular weight silk fibroin (SF-P30). Copyright 2019, Advanced Healthcare Materials
Fig. 4 Introduction of inkjet, extrusion, and digit light processing bioprinters
Table 2 Comparison of bioprinter types
Fig. 5 The 3D-printed scaffold material is used for full-thickness skin wounds[96]. (a) Full-thickness skin wounds. (b) A full-thickness skin wound covering the printing scaffold. (c-h) Gross observation of newly formed tissues. Copyright 2017, Springer Nature
[1]
Vepari C, Kaplan D L. Prog. Polym. Sci., 2007, 32(8/9): 991.

doi: 10.1016/j.progpolymsci.2007.05.013
[2]
Wan Q, Yang M, Hu J Q, Lei F, Shuai Y J, Wang J, Holland C, Rodenburg C, Yang M Y. Nat. Commun., 2021, 12: 3711.

doi: 10.1038/s41467-021-23960-w
[3]
Shuai Y J, Yang S X, Li C L, Zhu L J, Mao C B, Yang M Y. J. Mater. Chem. B, 2017, 5(21): 3945.

doi: 10.1039/C7TB00208D
[4]
Yang M Y, Shuai Y J, Zhou G S, Mandal N, Zhu L J. Bio Med. Mater. Eng., 2014, 24(1): 731.
[5]
Yodmuang S, McNamara S L, Nover A B, Mandal B B, Agarwal M, Kelly T A N, Chao P H G, Hung C, Kaplan D L, Vunjak-Novakovic G. Acta Biomater., 2015, 11: 27.

doi: 10.1016/j.actbio.2014.09.032 pmid: 25281788
[6]
Gu M J, Zhao F X, Fan S N, Ma K, Yao X, Zhang Y P. J. Funct. Mater., 2021, 52(6): 6110.
( 谷敏婧, 赵飞翔, 范苏娜, 马凯, 姚响, 张耀鹏. 功能材料, 2021, 52(6): 6110.)
[7]
Liao J G, Li Y Q, Duan X Z, Zhu L L. Progress in Chemistry, 2015, 27(Z1): 220.
( 廖建国, 李艳群, 段星泽, 朱伶俐. 化学进展, 2015, 27(Z1): 220.)
[8]
Shuai Y J, Lu H, Lv R Y, Wang J, Wan Q, Mao C B, Yang M Y. Adv. Healthcare Mater., 2021, 10(8): 2001695.

doi: 10.1002/adhm.202001695
[9]
Shuai Y J, Wang J, Zhang Q, Fang J J, Zhu L J, Yang M Y. Science of Sericulture, 2017, 43(6): 889.
( 帅亚俊, 王捷, 张青, 方建军, 朱良均, 杨明英. 蚕业科学, 2017, 43(6): 889.)
[10]
Dong D D, Zhang J W, Wang J, Yang K, Ma Z L, Zhang W B, Chen Y M, Ma J Z. Acta Polymerica Sinica, 2020, 51(08): 864.
( 董点点, 张静雯, 王军, 杨宽, 马忠雷, 张文博, 陈咏梅, 马建中. 高分子学报, 2020, 51(08): 864.)
[11]
Wang M M, Han Q Q. Chinese Journal of Medical Instrumentation, 2021, 45(03): 301.
( 王苗苗, 韩倩倩. 中国医疗器械杂志, 2021, 45(03): 301.)
[12]
Li S T, Shi X W, Xu B, Zhen P, Li S K. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(9): 1.
( 李胜堂, 石学文, 徐博, 甄平, 李松凯. 中国修复重建外科杂志, 2021, 35(9): 1.)
[13]
Gupta S, Bissoyi A, Bit A. BioNanoScience, 2018, 8(3): 868.

doi: 10.1007/s12668-018-0525-4
[14]
Wu C S, Wang B, Zhang C, Wysk R A, Chen Y W. Crit. Rev. Biotechnol., 2017, 37(3): 333.

doi: 10.3109/07388551.2016.1163321
[15]
Mandrycky C, Wang Z J, Kim K, Kim D H. Biotechnol. Adv., 2016, 34(4): 422.

doi: 10.1016/j.biotechadv.2015.12.011
[16]
Chia H N, Wu B M. J. Biol. Eng., 2015, 9: 4.

doi: 10.1186/s13036-015-0001-4
[17]
Mu X, Fitzpatrick V, Kaplan D L. Adv. Healthcare Mater., 2020, 9(15): 1901552.

doi: 10.1002/adhm.201901552
[18]
Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan D L. Trends Biotechnol., 2021, 39(7): 719.

doi: 10.1016/j.tibtech.2020.11.003
[19]
Jin Z, Li Y R, Yu K, Liu L X, Fu J Z, Yao X H, Zhang A G, He Y. Adv. Sci., 2021, 8(17): 2101394.

doi: 10.1002/advs.202101394
[20]
Rodriguez M J, Brown J, Giordano J, Lin S J, Omenetto F G, Kaplan D L. Biomaterials, 2017, 117: 105.

doi: S0142-9612(16)30673-1 pmid: 27940389
[21]
Shi W L, Sun M Y, Hu X Q, Ren B, Cheng J, Li C X, Duan X N, Fu X, Zhang J Y, Chen H F, Ao Y F. Adv. Mater., 2017, 29(29): 1701089.

doi: 10.1002/adma.201701089
[22]
Singh Y P, Bandyopadhyay A, Mandal B B. ACS Appl. Mater. Interfaces, 2019, 11(37): 33684.

doi: 10.1021/acsami.9b11644
[23]
Vyas C, Zhang J, Øvrebø Ø, Huang B Y, Roberts I, Setty M, Allardyce B, Haugen H, Rajkhowa R, Bartolo P. Mater. Sci. Eng. C, 2021, 118: 111433.

doi: 10.1016/j.msec.2020.111433
[24]
Konwarh R. Curr. Sci. India, 2020, 118 (3): 345.
[25]
Rockwood D N, Preda R C, Yücel T, Wang X Q, Lovett M L, Kaplan D L. Nat. Protoc., 2011, 6(10): 1612.

doi: 10.1038/nprot.2011.379
[26]
Shuai Y J, Mao C B, Yang M Y. ACS Appl. Mater. Interfaces, 2018, 10(38): 31988.

doi: 10.1021/acsami.8b11811
[27]
Hakimi O, Knight D P, Vollrath F, Vadgama P. Compos. B Eng., 2007, 38(3): 324.

doi: 10.1016/j.compositesb.2006.06.012
[28]
Laity P R, Gilks S E, Holland C. Polymer, 2015, 67: 28.

doi: 10.1016/j.polymer.2015.04.049
[29]
Bhattacharjee M, Chawla S, Chameettachal S, Murab S, Bhavesh N S, Ghosh S. Biomed. Mater., 2016, 11(2): 025014.

doi: 10.1088/1748-6041/11/2/025014
[30]
Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. J. Biomed. Mater. Res., 2004, 71A(3): 528.

doi: 10.1002/jbm.a.30186
[31]
Murab S, Chameettachal S, Bhattacharjee M, Das S, Kaplan D L, Ghosh S. Tissue Eng. A, 2013, 19(15/16): 1733.

doi: 10.1089/ten.tea.2012.0385
[32]
Hölzl K, Lin S M, Tytgat L, van Vlierberghe S, Gu L X, Ovsianikov A. Biofabrication, 2016, 8(3): 032002.

doi: 10.1088/1758-5090/8/3/032002
[33]
Tao H, Marelli B, Yang M M, An B, Onses M S, Rogers J A, Kaplan D L, Omenetto F G. Adv. Mater., 2015, 27(29): 4273.

doi: 10.1002/adma.201501425
[34]
Mehrotra S, Melo B A G, Hirano M, Keung W, Li R A, Mandal B B, Shin S R. Adv. Funct. Mater., 2020, 30(12): 2070079.

doi: 10.1002/adfm.202070079
[35]
Rider P, Brook I, Smith P, Miller C. Micromachines, 2018, 9(2): 46.

doi: 10.3390/mi9020046
[36]
Huang L, Yuan W, Hong Y, Fan S N, Yao X, Ren T, Song L J, Yang G S, Zhang Y P. Cellulose, 2021, 28(1): 241.

doi: 10.1007/s10570-020-03526-7
[37]
Huang L, Du X Y, Fan S N, Yang G H, Shao H L, Li D J, Cao C B, Zhu Y F, Zhu M F, Zhang Y P. Carbohyd. Polym., 2019, 221: 146.

doi: S0144-8617(19)30595-8 pmid: 31227153
[38]
Rider P, Zhang Y, Tse C, Zhang Y, Jayawardane D, Stringer J, Callaghan J, Brook I M, Miller C A, Zhao X B, Smith P J. J. Mater. Sci., 2016, 51(18): 8625.

doi: 10.1007/s10853-016-0121-3
[39]
Ghosh S, Parker S T, Wang X Y, Kaplan D L, Lewis J A. Adv. Funct. Mater., 2008, 18(13): 1883.

doi: 10.1002/adfm.200800040
[40]
Kim S H, Yeon Y K, Lee J M, Chao J R, Lee Y, Seo Y B, Lee O J, Yoon S. Nat. Commun., 2018, S 9 (1): 1.

doi: 10.1038/s41467-017-02088-w
[41]
Dong T, Mi R X, Wu M, Zhong N P, Zhao X, Chen X, Shao Z Z. J. Mater. Chem. B, 2019, 7(27): 4328.

doi: 10.1039/c9tb00783k
[42]
Kim E, Seok J M, Bae S B, Park S A, Park W H. Biomacromolecules, 2021, 22(5): 1921.

doi: 10.1021/acs.biomac.1c00034
[43]
Compaan A M, Christensen K, Huang Y. ACS Biomater. Sci. Eng., 2017, 3(8): 1519.

doi: 10.1021/acsbiomaterials.6b00432
[44]
Mannoor M S, Jiang Z W, James T, Kong Y L, Malatesta K A, Soboyejo W O, Verma N, Gracias D H, McAlpine M C. Nano Lett., 2013, 13(6): 2634.

doi: 10.1021/nl4007744 pmid: 23635097
[45]
Chimene D, Lennox K K, Kaunas R R, Gaharwar A K. Ann. Biomed. Eng., 2016, 44(6): 2090.

doi: 10.1007/s10439-016-1638-y pmid: 27184494
[46]
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Chem. Rev., 2016, 116(3): 1496.

doi: 10.1021/acs.chemrev.5b00303
[47]
Sakai S, Yoshii A, Sakurai S, Horii K, Nagasuna O. Mater. Today Bio., 2020, 8: 100078.
[48]
Pudkon W, Laomeephol C, Damrongsakkul S, Kanokpanont S, Ratanavaraporn J. Molecules, 2021, 26(13): 3887.

doi: 10.3390/molecules26133887
[49]
Zhang J, Allardyce B J, Rajkhowa R, Kalita S, Dilley R J, Wang X G, Liu X. Mater. Sci. Eng. C, 2019, 103: 109784.

doi: 10.1016/j.msec.2019.109784
[50]
Zheng Z Z, Wu J B, Liu M, Wang H, Li C M, Rodriguez M J, Li G, Wang X Q, Kaplan D L. Adv. Healthcare Mater., 2018, 7(6): 1701026.

doi: 10.1002/adhm.201701026
[51]
Du X Y, Wei D X, Huang L, Zhu M, Zhang Y P, Zhu Y F. Mater. Sci. Eng. C, 2019, 103: 109731.

doi: 10.1016/j.msec.2019.05.016
[52]
Ajiteru O, Sultan M T, Lee Y J, Seo Y B, Hong H, Lee J S, Lee H N, Suh Y J, Ju H W, Lee O J, Park H S, Jang M, Kim S H, Park C H. Nano Lett., 2020, 20(9): 6873.

doi: 10.1021/acs.nanolett.0c02986
[53]
Gong D F, Lin Q R, Shao Z Z, Chen X, Yang Y H. RSC Adv., 2020, 10(45): 27225.

doi: 10.1039/D0RA04789A
[54]
Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P. J. Biotechnol., 2006, 125(2): 281.

doi: 10.1016/j.jbiotec.2006.03.003
[55]
Murphy A R, John P S, Kaplan D L. Biomaterials, 2008, 29(19): 2829.

doi: 10.1016/j.biomaterials.2008.03.039
[56]
Costa J B, Silva-Correia J, Oliveira J M, Reis R L. Adv. Healthcare Mater., 2017, 6(22): 1701021.

doi: 10.1002/adhm.201701021
[57]
Hong H, Seo Y B, Kim D Y, Lee J S, Lee Y J, Lee H N, Ajiteru O, Sultan M T, Lee O J, Kim S H, Park C H. Biomaterials, 2020, 232: 119679.

doi: 10.1016/j.biomaterials.2019.119679
[58]
Shin D, Hyun J. J. Ind. Eng. Chem., 2021, 95: 126.

doi: 10.1016/j.jiec.2020.12.011
[59]
Whittaker J L, Choudhury N R, Dutta N K, Zannettino A. J. Mater. Chem. B, 2014, 2(37): 6259.

doi: 10.1039/c4tb00698d pmid: 32262143
[60]
Cui X L, Solim an B G, Alcala-Orozco C R, Li J, Vis M A M, Santos M, Wise S G, Levato R, Malda J, Woodfield T B F, Rnjak-Kovacina J, Lim K S. Adv. Healthcare Mater., 2020, 9(22): 2001801.

doi: 10.1002/adhm.202001801
[61]
Zhong N P, Dong T, Chen Z C, Guo Y W, Shao Z Z, Zhao X. J. Biomater. Appl., 2019, 34(1): 3.

doi: 10.1177/0885328219845092
[62]
Li X D, Liu B X, Pei B, Chen J W, Zhou D Z, Peng J Y, Zhang X Z, Jia W, Xu T. Chem. Rev., 2020, 120(19): 10793.

doi: 10.1021/acs.chemrev.0c00008
[63]
Zhao Y H, Niu C M, Shi J Q, Wang Y Y, Yang Y M, Wang H B. Neural Regen. Res., 2018, 13 (8): 1455.

doi: 10.4103/1673-5374.235303 pmid: 30106059
[64]
Mu Q Y, Wang L, Dunn C K, Kuang X, Duan F, Zhang Z, Qi H J, Wang T J. Addit. Manuf., 2017, 18: 74.
[65]
de Gans B J, Duineveld P C, Schubert U S. Adv. Mater., 2004, 16(3): 203.

doi: 10.1002/adma.200300385
[66]
Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22(6): 673.

doi: 10.1002/adma.200901141
[67]
Calvert P. Chem. Mater., 2001, 13(10): 3299.

doi: 10.1021/cm0101632
[68]
Limem S, Calvert P, Kim H J, Kaplan D L. J. Imaging Sci. Technol., 2006, 2006 (3): 99.
[69]
Ozbolat I T, Hospodiuk M. Biomaterials, 2016, 76: 321.

doi: 10.1016/j.biomaterials.2015.10.076
[70]
Placone J K, Engler A J. Adv. Healthcare Mater., 2018, 7(8): 1701161.

doi: 10.1002/adhm.201701161
[71]
Chawla S, Midha S, Sharma A, Ghosh S. Adv. Healthcare Mater., 2018, 7(8): 1701204.

doi: 10.1002/adhm.201701204
[72]
Das S, Pati F, Chameettachal S, Pahwa S, Ray A R, Dhara S, Ghosh S. Biomacromolecules, 2013, 14(2): 311.

doi: 10.1021/bm301193t
[73]
Chameettachal S, Midha S, Ghosh S. ACS Biomater. Sci. Eng., 2016, 2(9): 1450.

doi: 10.1021/acsbiomaterials.6b00152
[74]
Nemir S, West J L. Ann. Biomed. Eng., 2010, 38(1): 2.

doi: 10.1007/s10439-009-9811-1
[75]
Woodfield T B F, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk C A, Biomaterials, 2004, 25(18): 4149.

pmid: 15046905
[76]
Mirfakhrai T, Madden J D W, Baughman R H. Mater. Today, 2007, 10(4): 30.
[77]
Jose R R, Brown J E, Polido K E, Omenetto F G, Kaplan D L. ACS Biomater. Sci. Eng., 2015, 1(9): 780.

doi: 10.1021/acsbiomaterials.5b00160
[78]
Zhu W, Ma X Y, Gou M L, Mei D Q, Zhang K, Chen S C. Curr. Opin. Biotechnol., 2016, 40: 103.

doi: 10.1016/j.copbio.2016.03.014
[79]
Grogan S P, Chung P H, Soman P, Chen P, Lotz M K, Chen S C, D’Lima D D. Acta Biomater., 2013, 9(7): 7218.

doi: 10.1016/j.actbio.2013.03.020 pmid: 23523536
[80]
Zheng X Y, Smith W, Jackson J, Moran B, Cui H C, Chen D, Ye J C, Fang N, Rodriguez N, Weisgraber T, Spadaccini C M. Nat. Mater., 2016, 15(10): 1100.

doi: 10.1038/nmat4694
[81]
Zeng Y, Yan Y Z, Yan H F, Liu C C, Li P R, Dong P, Zhao Y, Chen J M. J. Mater. Sci., 2018, 53(9): 6291.

doi: 10.1007/s10853-018-1992-2
[82]
Na K, Shin S, Lee H, Shin D, Baek J, Kwak H, Park M, Shin J, Hyun J. J. Ind. Eng. Chem., 2018, 61: 340.

doi: 10.1016/j.jiec.2017.12.032
[83]
Melchels F P W, Feijen J, Grijpma D W. Biomaterials, 2010, 31(24): 6121.

doi: 10.1016/j.biomaterials.2010.04.050 pmid: 20478613
[84]
Lin H, Zhang D N, Alexander P G, Yang G, Tan J, Cheng A W M, Tuan R S. Biomaterials, 2013, 34(2): 331.

doi: 10.1016/j.biomaterials.2012.09.048
[85]
Zhang A P, Qu X, Soman P, Hribar K C, Lee J W, Chen S C, He S L. Adv. Mater., 2012, 24(31): 4266.

doi: 10.1002/adma.201202024
[86]
Shin S, Kwak H, Hyun J. ACS Appl. Mater. Interfaces, 2018, 10(28): 23573.

doi: 10.1021/acsami.8b05963
[87]
Jeyaraj R, G N, Kirby G, Rajadas J, Mosahebi A, Seifalian A M, Tan A. Mater. Sci. Eng. C, 2015, 54: 225.

doi: 10.1016/j.msec.2015.05.045
[88]
Stocco E, Barbon S, Dalzoppo D, Lora S, Sartore L, Folin M, Parnigotto P P, Grandi C. Biomed Res. Int., 2014, 2014: 762189.
[89]
Do A V, Khorsand B, Geary S M, Salem A K. Adv. Healthcare Mater., 2015, 4(12): 1742.

doi: 10.1002/adhm.201500168
[90]
Xiao W Q, Li J L, Qu X H, Wang L L, Tan Y F, Li K J, Li H, Yue X Z, Li B, Liao X L. Mat. Sci. Eng. C-Mater., 2019, 99: 57.

doi: 10.1016/j.msec.2019.01.079
[91]
Zhao R, Yang X, Zhu X D, Zhang X D. Progress in Chemistry, 2021, 33 (04): 533.
( 赵睿, 杨晓, 朱向东, 张兴栋. 化学进展, 2021, 33 (04) : 533.)
[92]
Sun L, Parker S T, Syoji D, Wang X L, Lewis J A, Kaplan D L. Adv. Healthc. Mater., 2012, 1(6): 729.

doi: 10.1002/adhm.201200057
[93]
Bouwstra J A, Honeywell-Nguyen P L. Adv. Drug Deliv. Rev., 2002, 54: S41.

doi: 10.1016/S0169-409X(02)00114-X
[94]
Lin J Y, Luo S H, Yang C L, Xiao Y, Yang L T, Wang C Y. Progress in Chemistry, 2021, 33 (04): 581.
( 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 化学进展, 2021, 33 (04): 581.)
[95]
Chawla S, Ghosh S. Acta Biomater., 2018, 69: 131.

doi: 10.1016/j.actbio.2018.01.002
[96]
Xiong S, Zhang X Z, Lu P, Wu Y, Wang Q, Sun H, Heng B C, Bunpetch V, Zhang S F, Ouyang H. Sci. Rep., 2017, 7: 4288.

doi: 10.1038/s41598-017-04149-y pmid: 28655891
[97]
Kim S H, Seo Y B, Yeon Y K, Song S H, Lee K H, Park C H. Biomaterials, 2020, 260: 120281.

doi: 10.1016/j.biomaterials.2020.120281
[1] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[2] Lijuan He, Delong Kong, Caihong Xu, Chaoshuai Lei, Wenjing Li, Yingmin Zhao. 3D Printing of Polymer Precursor Derived High Performance Ceramics [J]. Progress in Chemistry, 2020, 32(12): 1978-1989.
[3] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[4] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[5] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[6] Yi Han, Haiqing Dong, Sheng Li, Weida Li, Yongyong Li. Islet Encapsulation and Its Application in Islet Transplantation [J]. Progress in Chemistry, 2018, 30(11): 1660-1668.
[7] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[8] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[9] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[10] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[11] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[12] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[13] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[14] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[15] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.