中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1088-1108 DOI: 10.7536/PC210626 Previous Articles   Next Articles

• Review •

An Overview on the Synthesis and Reactions of Sulfines

Jun Dong1, Jiaxi Xu2()   

  1. 1. Yancheng Teachers University,Yancheng 224007, China
    2. College of Chemistry, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: Jiaxi Xu
  • Supported by:
    National Natural Science Foundation of China(21372025); National Natural Science Foundation of China(21772010)
Richhtml ( 14 ) PDF ( 788 ) Cited
Export

EndNote

Ris

BibTeX

Sulfines play an important role as reactive intermediates in organic synthesis. Various methods have been developed for the synthesis of sulfines. These methods can be divided into the oxidation reaction of thiocarbonyl compounds, β-elimination reaction of sulfinyl derivatives, the modified Peterson reaction, hetero-Wolff-rearrangement of diazomethyl sulfoxides and so on. In view of the importance of sulfines, a number of reactions have been developed. Sulfines as reactive intermediates can be attacked on their sulfur atom or carbon atom by nucleophiles to generate sulfoxides or new sulfine compounds, respectively. At the same time, sulfines can also be served as nucleophilic reagents to react with other electrophilic reagents. Furthermore, sulfines as dienophiles and acyl/vinyl sulfines as dienes can take place in normal or inverse electron-demand Diels-Alder reactions to obtain cycloadducts. In addition, sulfines can be employed both as dipolarophiles and dipoles to generate heterocyclic products through dipolar cycloaddition reactions. Furthermore, due to the high activity of sulfines, desulfur and dimerize reactions can happen easily under sunlight or heating conditions. It is hoped that this review article can provide some valuable information for the organic chemists who are interested in the reaction of sulfine compounds and promote the development on the synthesis and application of sulfine compounds.

Contents

1 Introduction

2 Synthesis of sulfines

2.1 Oxidation of thiocarbonyl compounds

2.2 β-Elimination of sulfinyl derivatives

2.3 Modified Peterson reactions

2.4 Heteroatom Wolff-rearrangement reactions

2.5 Miscellaneous methods

3 Reactions of sulfines

3.1 Self reactions

3.2 Reaction with nucleophilic reagents

3.3 Reaction with electrophilic reagents

3.4 Cycloaddition reactions

4 Conclusion and outlook

Fig. 1 Structures of sulfines X(Y)C=S=O
Scheme 1 Synthesis of alkylaminosulfines[30]
Fig. 2 Synthesis of sulfines via oxidation of thiocarbonyl compounds[31⇓⇓⇓-35]
Scheme 2 Synthesis of sulfines via β-elimination of HCl from sulfinyl chlorides[19,36]
Scheme 3 Synthesis of sulfines via β-elimination of chloroform[37]
Scheme 4 Synthesis of sulfine via the base-induced elimination of methyl diarylmethanesulfinates[38]
Scheme 5 Synthesis of sulfines by β-elimination of aromatic heterocycles[39]
Scheme 6 Synthesis of sulfines from dihydrothiophenone and thionyl chloride[41]
Table 1 α-Oxo sulfines derived from doubly activated methylene compounds and their cycloadducts[43]
Scheme 7 Synthesis of sulfines from γ-nitro ketone and thionyl chloride[44]
Scheme 8 Synthesis of α-oxosulfines from oxindoles and thionyl chloride[45]
Scheme 9 Synthesis of sulfines by the Wittig alkylidenation of sulfur dioxide[48]
Scheme 10 Synthesis of sulfines through the reaction of α-silyl carbanions and SO2[49]
Scheme 11 Synthesis of sulfines using vinylsilanes as substrates[49]
Scheme 12 Synthesis of sulfines from sulfinylcarbenes[50]
Scheme 13 Synthesis of sulfines from sulfinylcarbenes through Rh(Ⅱ) catalyzed diazosulfoxide[53]
Scheme 14 Synthesis of sulfines from sulfinylcarbenes through the flash vacuum pyrolysis of phosphorous ylides[55]
Scheme 15 Synthesis of sulfines from allyl vinyl sulfoxides through [3,3]σ shift rearrangement[56]
Scheme 16 Synthesis of γ-unsaturated sulfines from allyl vinyl sulfoxides through [3,3]σ shift rearrangement[57]
Scheme 17 α,α'-Dioxosulfines from 1,4-oxathiine-S-oxides by retro Diels-Alder reactions[58]
Scheme 18 Formation of difluorenylidene from fluorenone sulfine[59]
Scheme 19 Mechanism of photodesulfurization of sulfines[62]
Fig. 3 Reaction potential energy profile for the desulfurization of 3,3-dimethyloxathiirane leading to acetone and disulfur S2[64]>
Scheme 20 Mechanism of thermal decomposition of thiobenzophenone S-oxide[66]
Scheme 21 Direct thioepoxidation of strained cyclic alkenes by the photolytic sulfur-atom transfer from sulfines[68]
Scheme 22 Reaction modes for the reactions of sulfines and nucleophiles
Scheme 23 Reaction of trichloromethylcarbanion with 9-thiofluorenone S-oxide[69]
Scheme 24 Application of sulfines in nucleophilic acylation reactions[70]
Scheme 25 Thiophilic additions of functionalized carbanions to sulfines[72]
Scheme 26 Thiophilic additions of functionalized carbanions to sulfines[72]
Scheme 27 Synthesis of α,β-unsaturated sulfoxides from phosphoryl/phosphinyl-substituted sulfines[73]
Scheme 28 Thiophilic addition of organolithium reagents to aliphatic sulfines[74]
Scheme 29 Reactions of di-tert-butylsulfines with different Grignard reagents[71]
Scheme 30 Fluoride-induced thiophilic reaction of organosilanes with sulfines[75]
Scheme 31 Strong base hydrolysis of carbamoyl chlorosulfines[76]
Scheme 32 Reductive substitution of chlorosulfines with p-toluenesulfinate[77]
Scheme 33 Addtion/elimination reactions of an α-tosyl substituted sulfine with nucleophilic reagents[78]
Scheme 34 Reactions of chlorosulfines with thiophenol and potassium thiocyanate[79]
Scheme 35 Stereochemistry in the reaction of chloro(phenyl)sulfine with thiophenol[79]
Scheme 36 Reactions of arylthio-substituted sulfines and enolate of cyclohexanone[82]
Scheme 37 Reaction of sulfines with amines[83]
Scheme 38 Reaction of sulfines with Et3O+BF4-[84]
Scheme 39 Reaction of sulfines with tetrachloro-ortho-quinone[85]
Scheme 40 Cycloadditions of sulfines with 1,3-dienes[86]
Scheme 41 Stereochemical relationship in the starting sulfines and cycloadducts[86]
Fig. 4 Chiral sulfines in cycloaddition reactions[87]
Scheme 42 Inverse electron-demand Diels-Alder reaction with α-oxosulfines as dienes[42]
Scheme 43 Normal electron-demand Diels-Alder reaction with α-oxosulfines as dienophiles[91]
Fig. 5 Chiral sulfines derived from proline[92]
Scheme 44 Sulfine intermediates trapped by dienophiles and dienes[58]
Scheme 45 Stereoselectivity in the reaction of E/Z sulfines with dienophiles and dienes[58a]
Scheme 46 Intramolecular hetero Diels-Alder reactions of α,α'-dioxosulfines[96]
Scheme 47 Formation and hetero Diels-Alder reaction of α-iminosulfines[97]
Scheme 48 Reaction of conjugated vinyl sulfines as dienes[99]
Scheme 49 Reaction of sulfines and azoalkenes[102]
Scheme 50 Reaction of aromatic sulfines and diazoalkanes[103]
Scheme 51 Reaction of dichlorosulfine and diaryldiazomethanes[105]
Scheme 52 Rearrangement of 2-arylsulfonyl-1,3,4-thiadiazoline 1-oxides[109]
Scheme 53 Stereoselectivity in the reaction of diarylsulfines and nitrilimines[110]
Scheme 54 Reaction of sulfines and benzonitrile oxide and benzonitrile-4-nitrobenzylide[112]
Scheme 55 1,3-Dipolar cycloaddition reaction of sulfines and thiocarbonyl-S-ylide[114]
Scheme 56 1,3-Dipolar cycloaddition reaction of sulfines and thioketones[115]
Scheme 57 1,3-Dipolar cycloaddition reaction of cycloheptatrienethione S-oxide sulfines and enamine[116]
Scheme 58 1,3-Dipolar cycloaddition reaction of thioketene S-oxide and imines[117]
Fig. 6 Situation of reported papers referring sulfines
[1]
Liu N W, Liang S, Manolikakes G. Synthesis, 2016, 48: 1939.

doi: 10.1055/s-0035-1560444
[2]
a Zhang Q L, Xi J F, He Z, Zeng Q L. Synthesis, 2021, 53: 2570; b Wojaczynska E, Wojaczynski J. Chem. Rev., 2020, 120: 4578.

doi: 10.1055/a-1426-4744
[3]
Sundermeyer W. Synthesis, 1988, 1988(5): 349.

doi: 10.1055/s-1988-27572
[4]
Yang Z H, Xu J X. J. Org. Chem., 2014, 79(21): 10703.

doi: 10.1021/jo5020933
[5]
Yang Z H, Chen N, Xu J X. J. Org. Chem., 2015, 80(7): 3611.

doi: 10.1021/acs.joc.5b00312
[6]
Yang Z H, Xu J X. RSC Adv., 2015, 5(96): 78396.

doi: 10.1039/C5RA15717J
[7]
Wu Q Y, Yang Z H, Xu J X. Org. Biomol. Chem., 2016, 14(30): 7258.

doi: 10.1039/C6OB01259K
[8]
Xu W, Fu Z C, Yang Z H, Zhang L D, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5): 335.

doi: 10.1080/10426507.2017.1418741
[9]
Yang Z H, Xu J X. Tetrahedron, 2015, 71(19): 2844.

doi: 10.1016/j.tet.2015.03.076
[10]
Yang Z H, Abdellaoui H, He W, Xu J X. Molecules, 2017, 22(5): 784.

doi: 10.3390/molecules22050784
[11]
Liu J, Hou S L, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(12): 2377.

doi: 10.1080/10426507.2011.608097
[12]
Zajac M, Peters R. Org. Lett., 2007, 9(10): 2007.

doi: 10.1021/ol070644c
[13]
Koch F, Peters R. Angew. Chem. Int. Ed., 2007, 46(15): 2685.

doi: 10.1002/anie.200604796
[14]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(3): 308.

doi: 10.1007/s10593-020-02660-1
[15]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(8): 979.

doi: 10.1007/s10593-020-02763-9
[16]
Fu Z C, Sun S M, Yang A J, Sun F, Xu J X. Chem. Commun., 2019, 55(87): 13124.

doi: 10.1039/C9CC06352H
[17]
Luo Y, Fu Z C, Fu X Y, Du C L, Xu J X. Org. Biomol. Chem., 2020, 18(46): 9526.

doi: 10.1039/D0OB02011G
[18]
Luo Y, Xu J X. Org. Lett., 2020, 22(20): 7780.

doi: 10.1021/acs.orglett.0c02346
[19]
Sheppard W A, Diekmann J. J. Am. Chem. Soc., 1964, 86(9): 1891.

doi: 10.1021/ja01063a075
[20]
a Brodnitz M H, Pascale J V. J. Agr. Food Chem., 1971, 19: 269; b Block E, Revelle L K, Bazzi A A. Tetrahedron Lett., 1980, 21: 1277.

pmid: 5546155
[21]
a Goodman M M, Kirsch G, Knapp Jr. F F. J. Heterocyclic Chem., 1984, 21: 1579; b Baltas M, Cazaux L, Gorrichon-Guigon L, Maroni P, Tisnes P. Tetrahedron Lett., 1985, 26: 4447; c Walsh C. Tetrahedron, 1982, 38: 871.

doi: 10.1002/jhet.5570210602
[22]
Wedekind E, Schenk D, Stüsser R. Ber. Dtsch. Chem. Ges. A/B, 1923, 56(3): 633.

doi: 10.1002/cber.19230560311
[23]
King J F, Durst T. Tetrahedron Lett., 1963, 4: 585.

doi: 10.1016/S0040-4039(01)90678-1
[24]
a Zeng D M, Wang M, Deng W P, Jiang X F. Org. Chem. Front., 2020, 7: 3956; b Wang M, Jiang X F. Chem. Rec., 2021, 21: 1.

doi: 10.1039/D0QO00987C
[25]
King J F, Durst T. J. Am. Chem. Soc., 1963, 85(17): 2676.

doi: 10.1021/ja00900a042
[26]
a Zwanenburg B, Thijs L, Strating J. Recl. Trav. Chim. Pays-Bas., 1971, 90: 614; b Zwanenburg B, Thijs L, Tangerman A. Tetrahedron, 1971, 27: 1731.
[27]
a Hummelink T W. J. Cryst. Mol. Struct. 1974, 4: 87; b Britton T C, Lobl T J, Chidester C G. J. Org. Chem., 1984, 49: 4773.

doi: 10.1007/BF01374436
[28]
Hermans P A. Synthesis and reactions of chiral sulfines. Radboud University Nijmegen, 1990.
[29]
Kitamura J. Pharmac. Soc. Japan, 1938, 58: 246.
[30]
Walter W. Justus Liebigs Ann. Chem., 1960, 633(1): 35.

doi: 10.1002/jlac.19606330107
[31]
Strating J, Thijs L, Zwanenburg B. Tetrahedron Lett., 1966, 7(1): 65.

doi: 10.1016/S0040-4039(01)99631-5
[32]
Marrière E, Chevrie D, Metzner P. J. Chem. Soc., Perkin Trans, 1, 1997(14): 2019.
[33]
Zwanenburg B, Thys L, Strating J. Tetrahedron Lett., 1967, 8(36): 3453.

doi: 10.1016/S0040-4039(01)89819-1
[34]
Chevrie D, Metzner P. Tetrahedron Lett., 1998, 39(49): 8983.

doi: 10.1016/S0040-4039(98)02033-4
[35]
Leriverend C, Metzner P, Capperucci A, Degl’Innocenti A. Tetrahedron, 1997, 53(4): 1323.

doi: 10.1016/S0040-4020(96)01071-X
[36]
Strating J, Thijs L, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 83(6): 631.

doi: 10.1002/recl.19640830614
[37]
a Braverman S, Grinstein D, Gottlieb H E. Tetrahedron, 1997, 53: 13933; b Braverman S, Grinstein D, Gottlieb H E. Tetrahedron Lett., 1994, 35: 953.

doi: 10.1016/S0040-4020(97)00904-6
[38]
Kice J L, Rudzinski J J. J. Am. Chem. Soc., 1987, 109(8): 2414.

doi: 10.1021/ja00242a027
[39]
Morita H, Takeda M, Yoshimura T, Fujii T, Ono S, Shimasaki C. J. Org. Chem., 1999, 64(18): 6730.

doi: 10.1021/jo990610l
[40]
Oka K, Hara S. J. Org. Chem., 1978, 43(23): 4533.

doi: 10.1021/jo00417a034
[41]
Faull A W, Hull R. J. Chem. Soc., Perkin Trans. 1, 1981: 1078.
[42]
Lenz B G, Haltlwanger R C, Zwanenburg B. J. Chem. Soc., Chem. Commun., 1984(8): 502.
[43]
Lenz B G, Regeling H, van Rozendaal H L M, Zwanenburg B. J. Org. Chem., 1985, 50(16): 2930.

doi: 10.1021/jo00216a024
[44]
Black D, Fallon G D, Gatehouse B M, Wishart J D. Aust. J. Chem., 1984, 37(4): 777.

doi: 10.1071/CH9840777
[45]
Bergman J, Romero I. J. Heterocyclic Chem., 2010, 47(5): 1215.

doi: 10.1002/jhet.453
[46]
Ohoka M, Kojitani T, Yanagida S, Okahara M, Komori S. J. Org. Chem., 1975, 40(24): 3540.

doi: 10.1021/jo00912a015
[47]
Capozzi G, Corti A, Menichetti S, Nativi C. Phosphorus Sulfur Silicon Relat. Elem., 1997, 120(1): 317.

doi: 10.1080/10426509708545527
[48]
Zwanenburg B, Venier C G, Porskamp P A T W, van der Leij M. Tetrahedron Lett., 1978, 19(9): 807.

doi: 10.1016/S0040-4039(01)85403-4
[49]
van der Leij M, Zwanenburg B. Tetrahedron Lett., 1978, 19(36): 3383.

doi: 10.1016/S0040-4039(01)85647-1
[50]
Franck-Neumann M, Lohmann J J. Tetrahedron Lett., 1979, 20(26): 2397.

doi: 10.1016/S0040-4039(01)86302-4
[51]
a Rosati R L, Kapili L V, Morrissey P, Retsema J A. J. Med. Chem., 1990, 33: 291; b Rosati R L, Kapili L V, Morrissey P, Bordner J, Subramanian E. J. Am. Chem. Soc., 1990, 104: 4262.

doi: 10.1021/jm00163a048 pmid: 2404120
[52]
Maguire A R, Kelleher P G, Ferguson G, Gallagher J F. Tetrahedron Lett., 1998, 39(18): 2819.
[53]
Maguire A R, Kelleher P G, Lawrence S E. Tetrahedron Lett., 1998, 39(22): 3849.

doi: 10.1016/S0040-4039(98)00630-3
[54]
O’Sullivan O, Collins S, Maguire A. Synlett, 2008, 2008(5): 659.

doi: 10.1055/s-2008-1032105
[55]
Aitken R A, Drysdale M J, Ryan B M. J. Chem. Soc., Chem. Commun., 1993(22): 1699.
[56]
a Block E, Ahmad S, Catalfamo J L, Jain M K, Apitz-Castro R. J. Am. Chem. Soc., 1986, 108: 7045; b Block E, Ahmad S,. J. Am. Chem. Soc., 1985 107: 6731.

doi: 10.1021/ja00282a033
[57]
Baudin J B, Commenil M G, Julia S A, Wang Y. Synlett, 1992, 1992(11): 909.

doi: 10.1055/s-1992-21538
[58]
a Capozzi G, Fratini P, Menichetti S, Nativi C. Tetrahedron., 1996, 52: 12233; b Capozzi G, Fratini P, Menichetti S, Nativi C. Tetrahedron Lett., 1995, 36: 5089.

doi: 10.1016/0040-4020(96)00710-7
[59]
a Schultz A G, Schlessinger R H. J. Chem. Soc. D: Chem. Commun., 1970, 747; b Schultz A G, Schlessinger R H. J. Chem. Soc. D: Chem. Commun., 1970, 748.
[60]
Schlessinger R H, Schultz A G. Tetrahedron Lett., 1969, 10(52): 4513.

doi: 10.1016/S0040-4039(01)88738-4
[61]
Carlsen L, Harrit N, Holm A. J. Chem. Soc., Perkin Trans. 1, 1976(13): 1404.
[62]
Karlstroem G, Roos B O, Carlsen L. Chemischer Informationsdienst, 1984, 15(26): 98426106.
[63]
Schreiner P R, Reisenauer H P, Romanski J, Mloston G. J. Am. Chem. Soc., 2010, 132(21): 7240.

doi: 10.1021/ja100670q pmid: 20450152
[64]
Reisenauer H P, Mloston G, Romanski J, Schreiner P R. Eur. J. Org. Chem., 2011, 2011(31): 6269.

doi: 10.1002/ejoc.201100695
[65]
Mignolet B, Curchod B F E, Martínez T J. Angew. Chem. Int. Ed., 2016, 55(48): 14993.

doi: 10.1002/anie.201607633 pmid: 27781367
[66]
Carlsen L, Holm A, Koch E, Stilkerieg B. Acta Chem. Scand., Ser. B, 1977, B31: 679.
[67]
a Lemarie M, Pham T N, Metzner P. Tetrahedron Lett., 1991, 32: 7411; b Le Nocher A M, Metzner P. Tetrahedron Lett., 1991, 32: 747;

doi: 10.1016/0040-4039(91)80120-U
[68]
Adam W, Deeg O, Weinkötz S. J. Org. Chem., 1997, 62(21): 7084.

doi: 10.1021/jo971133e
[69]
Venier C G, Gibbs C G, Crane P T. J. Org. Chem., 1974, 39(4): 501.

doi: 10.1021/jo00918a019
[70]
a Zwanenburg B, KieŁbasiński P. Tetrahedron, 1979, 35: 169; b Veenstra G E, Zwanenburg B,. Tetrahedron, 1978, 34: 1585.

doi: 10.1016/0040-4020(79)85022-X
[71]
Ohno A, Uohama M, Nakamura K, Oka S. J. Org. Chem., 1979, 44(13): 2244.

doi: 10.1021/jo01327a044
[72]
Loontjes J A, van der Leij M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1980, 99(2): 39.

doi: 10.1002/recl.19800990202
[73]
Porskamp P A T W, Lammerink B H M, Zwanenburg B. J. Org. Chem., 1984, 49(2): 263.

doi: 10.1021/jo00176a010
[74]
Alayrac C, Cerreta F, Chapron I, Corbin F, Metzner P. Tetrahedron Lett., 1996, 37(26): 4507.

doi: 10.1016/0040-4039(96)00869-6
[75]
a Capperucci A, Degl’Innocenti A, Leriverend C, Metzner P. J. Org. Chem., 1996, 61: 7174; b Capperucci A, Degl’Innocenti A, Leriverend C, Metzner P. Phosphorus Sulfur Silicon Relat. Elem., 1994, 95/96: 343.

pmid: 11667622
[76]
Phillips W G, Ratts K W. J. Org. Chem., 1972, 37(24): 3818.

doi: 10.1021/jo00797a011
[77]
Veenstra G E, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 95(1): 28.

doi: 10.1002/recl.19760950109
[78]
van der Leij M, Strijtveen H J M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1980, 99(2): 45.

doi: 10.1002/recl.19800990203
[79]
Zwanenburg B, Thijs L, Strating J. Recl. Trav. Chim. Pays-Bas, 2010, 89(7): 687.

doi: 10.1002/recl.19700890704
[80]
a Carlsen L, Holm A, Snyder J P, Koch E, Stilkerieg B. Tetrahedron, 1977, 33: 2231; b Holm A, Carlsen L,. Tetrahedron, 1973, 14: 3203.

doi: 10.1016/0040-4020(77)80008-2
[81]
Bunnenberg R, Jochims J C. Chem. Ber., 1981, 114(3): 1132.

doi: 10.1002/cber.19811140330
[82]
van der Leij M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1980, 99(2): 49.

doi: 10.1002/recl.19800990204
[83]
Cerreta F, Leriverend C, Metzner P. Tetrahedron Lett., 1993, 34(42): 6741.

doi: 10.1016/S0040-4039(00)61689-1
[84]
Lenz B G, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 103(12): 342.

doi: 10.1002/recl.19841031203
[85]
Strating J, Thijs L, Zwanenburg B. Tetrahedron Lett., 1967, 86: 641.
[86]
Zwanenburg B, Thijs L, Broens J B, Strating J. Recl. Trav. Chim. Pays-Bas, 1972, 91(4): 443.

doi: 10.1002/recl.19720910408
[87]
Porskamp P A T W, Haltiwanger R C, Zwanenburg B. Tetrahedron Lett., 1983, 24(19): 2035.

doi: 10.1016/S0040-4039(00)81837-7
[88]
Porskamp P A T W, van de Wijdeven A M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1983, 102(12): 506.

doi: 10.1002/recl.19831021202
[89]
Porskamp P A T W, van der Leij M, Lammerink B H M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1983, 102(9): 400.

doi: 10.1002/recl.19831020904
[90]
Lenz B G, Regeling H, Zwanenburg B. Tetrahedron Lett., 1984, 25(51): 5947.

doi: 10.1016/S0040-4039(01)81728-7
[91]
de Laet R C, van Breemen A J J M, Derksen A J, van Klaveren M, Zwanenburg B. Phosphorus Sulfur Silicon Relat. Elem., 1993, 74(1/4): 371.

doi: 10.1080/10426509308038120
[92]
van den Broek L A G M, Porskamp P A T W, Haltiwanger R C, Zwanenburg B. J. Org. Chem., 1984, 49(10): 1691.

doi: 10.1021/jo00184a004
[93]
a Block E, Wall A. J. Org. Chem., 1987, 52: 809; b Block E, Wall A, Zubieta J. J. Am. Chem. Soc., 1985, 107: 1783; c Block E, Wall A. Tetrahedron Lett., 1985, 26: 1425.

doi: 10.1021/jo00381a020
[94]
Barbaro G, Battaglia A, Giorgianni P, Bonini B F, Maccagnani G, Zani P. J. Org. Chem., 1991, 56(7): 2512.

doi: 10.1021/jo00007a045
[95]
Schmid T, Hanack M, Maichle C, Strähle J. Angew. Chem., 1993, 105(2): 300.

doi: 10.1002/ange.19931050235
[96]
Capozzi G, Menichetti S, Nativi C, Provenzani A. Eur. J. Org. Chem., 2000, 2000(22): 3721.

doi: 10.1002/1099-0690(200011)2000:22【-逻*辑*与-】#x00026;lt;3721::AID-EJOC3721【-逻*辑*与-】#x00026;gt;3.0.CO;2-B
[97]
Capozzi G, Menichetti S, Nativi C, Vergamini C. Synthesis, 1998, 1998(6): 915.

doi: 10.1055/s-1998-2088
[98]
a Karakasa T, Ohmura H, Motoki S. Chem. Lett., 1980, 9: 825; b Karakasa T, Motoki S. Tetrahedron Lett., 1979, 20: 3961.

doi: 10.1246/cl.1980.825
[99]
Braverman S, Grinstein D, Gottlieb H E. J. Chem. Soc., Perkin Trans, 1, 1998(1): 103.
[100]
El-Sayed I. Monatshefte Für Chemie / Chem. Mon., 2005, 136(4): 543.
[101]
Ogurok V M, Siry S A, Rusanov E B, Shermolovych Y G. J. Fluor. Chem., 2016, 189: 119.

doi: 10.1016/j.jfluchem.2016.08.004
[102]
Bonini B F, Maccagnani G, Mazzanti G, Rosini G, Foresti E. J. Chem. Soc., Perkin Trans. 1, 1981: 2322.
[103]
Bonini B F, Maccagnani G, Wagenaar A, Thijs L, Zwanenburg B. J. Chem. Soc., Perkin Trans. 1, 1972: 2490.
[104]
Venier C G, Gibbs C G. Tetrahedron Lett., 1972, 13(22): 2293.

doi: 10.1016/S0040-4039(01)84831-0
[105]
Thijs L, Strating J, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 91(11): 1345.

doi: 10.1002/recl.19720911109
[106]
Bonini B F, Maccagnani G. Tetrahedron Lett., 1973, 14(37): 3585.

doi: 10.1016/S0040-4039(01)86977-X
[107]
Thijs L, Wagenaar A, van Rens E M M, Zwanenburg B. Tetrahedron Lett., 1973, 14(37): 3589.

doi: 10.1016/S0040-4039(01)86978-1
[108]
Zwanenburg B, Wagenaar A. Tetrahedron Lett., 1973, 14(50): 5009.

doi: 10.1016/S0040-4039(01)87635-8
[109]
Zwanenburg B, Wagenaar A, Thijs L, Strating J. J. Chem. Soc., Perkin Trans. 1, 1973: 73.
[110]
Bonini B F, Maccagnani G, Thijs L, Zwanenburg B. Tetrahedron Lett., 1973, 14(37): 3569.

doi: 10.1016/S0040-4039(01)86972-0
[111]
Bonini B F, Maccagnani G, Mazzanti G, Thijs L, Ambrosius H P M M, Zwanenburg B. J. Chem. Soc., Perkin Trans. 1, 1977(12): 1468.
[112]
Bonini B F, Maccagnani G, Mazzanti G, Zwanenburg B. Gazz. Chim. Ital., 1977, 107: 289.
[113]
Bonini B F, Beulen M W J, Comes-Franchini M, Mazzanti G, van de Voort H H J M, Zwanenburg B. Phosphorus Sulfur Silicon Relat. Elem., 1996, 108(1/4): 289.

doi: 10.1080/10426509608029661
[114]
Mloston G, Linden A, Heimgartner H. Helv. Chim. Acta, 1996, 79(1): 31.

doi: 10.1002/hlca.19960790105
[115]
Huisgen R, Mloston G, Polborn K. J. Org. Chem., 1996, 61(19): 6570.

pmid: 11667522
[116]
Machiguchi T, Hasegawa T, Otani H, Yamabe S, Mizuno H. J. Am. Chem. Soc., 1994, 116(1): 407.

doi: 10.1021/ja00080a061
[117]
Schaumann E, Ehlers J, Behrens U. Angew. Chem. Int. Ed. Engl., 1978, 17(6): 455.

doi: 10.1002/anie.197804551
[118]
Wu Z, Xu J, Sokolenko L, Yagupolskii Y L, Feng R J, Liu Q, Lu Y, Zhao L L, Fernández I, Frenking G, Trabelsi T, Francisco J S, Zeng X Q. Chem. Eur. J., 2017, 23(65): 16566.

doi: 10.1002/chem.201703161
[119]
McCaw P G, Buckley N M, Collins S G, Maguire A R. Eur. J. Org. Chem., 2016, 2016(9): 1630.

doi: 10.1002/ejoc.201501538
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Fang Decai. Theoretical Studies on the Mechanisms of [2+2] Cycloaddition Reactions [J]. Progress in Chemistry, 2012, 24(06): 879-885.
[3] Yang Shengyan, Wu Zhenyi, Wan Xinjun, Yan Juan. Synthesis of Porphyrin-Fullerene Complexes [J]. Progress in Chemistry, 2011, 23(6): 1123-1136.
[4] Wang Chun Liu Weihua Zhou Xin Li Yuemin Li Yunpeng. Organocatalytic Asymmetric [4+2] Cycloaddition Reactions [J]. Progress in Chemistry, 2009, 21(09): 1857-1868.
[5] Xu Jiaxi,Jiao Peng. Cycloaddition Reactions on Solid Phase Supports and Their Applications [J]. Progress in Chemistry, 2000, 12(02): 131-.