中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 870-883 DOI: 10.7536/PC210435 Previous Articles   Next Articles

• Review •

Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal

Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu()   

  1. Department of Environment Engineering,College of Environmental and Resource Sciences, Zhejiang University,Hangzhou 310058,China
  • Received: Revised: Online: Published:
  • Contact: Xinhua Xu
  • Supported by:
    National Natural Science Foundation of China(21976153)
Richhtml ( 15 ) PDF ( 319 ) Cited
Export

EndNote

Ris

BibTeX

Arsenic and antimony pollution is widespread around the world. Compared with the conventional iron oxide, Fe(Ⅲ) minerals formed by microbial oxidation have a stronger adsorption capacity for aqueous As/Sb. There are wide application prospects of these minerals because of the advantages of high removal efficiency, practicability and environmental friendliness. However, the microbial reduction of the Fe(Ⅲ) minerals may lead to the release of adsorbed As/Sb. This paper reviewed the process of effect of microbial participated iron redox process on As/Sb removal. The microbial cycle of “synthesis, dissolution and transformation” of iron minerals and the mechanism of immobilization, dissolution and transformation of aqueous As/Sb associated with this cycle are concluded. The mineralogy of Fe(Ⅲ) minerals synthesized by microorganisms is illustrated. The thermal dynamics and coordination mechanism of the binding of Fe(Ⅲ) minerals with As/Sb are explained. The factors affecting As/Sb removal by microbial synthesized Fe(Ⅲ) minerals are summarized. Based on the existing problems in this field, the outlook of As/Sb removal by microbial iron redox has prospected.

Contents

1 Introduction

2 Immobilization of As/Sb with synthesis of Fe(Ⅲ) minerals by microorganisms

2.1 Synthesis of Fe(Ⅲ) minerals

2.2 As/Sb immobilization and valence state transformation

3 Release and secondary immobilization of As/Sb with transformation of Fe(Ⅲ) minerals by microorganisms

3.1 Reduction of Fe(Ⅲ) minerals

3.2 As/Sb release and secondary immobilization

3.3 As/Sb valence state transformation

4 Mechanism of As/Sb immobilization by microbial synthesized Fe(Ⅲ) minerals

4.1 Mineralogy of microbial synthesis of Fe(Ⅲ) minerals

4.2 Adsorption thermodynamics of As/Sb by Fe(Ⅲ) minerals

4.3 Complexation mechanism of As/Sb with Fe(Ⅲ) minerals

5 Influencing factors of As/Sb immobilization by microbial synthesized Fe(Ⅲ) minerals

5.1 Species of As/Sb and iron minerals

5.2 Coexisting anions

5.3 Organic matter

5.4 pH

6 Conclusion and outlook

Fig. 1 Formation of different biogenic Fe(Ⅲ) minerals during Fe(Ⅱ) oxidation by the nitrate-reducing Acidovorax strain BoFeN1 (The orange, blue and brown minerals are ferric (oxyhydr)oxides of different crystallinity)[24]. Copyright 2011, Mineralogical Society of America
Table 1 Microorganisms participation in Fe redox to remove arsenic and antimony
Microbes Fe concentration Iron products Target Removal performance ref
Fe(Ⅱ)-oxidizing
denitrifying bacteria BoFeN1
3.5 mM Fe(Ⅱ) Superparamagnetic goethite, ferrihydirte and Lepidocrocite 20 μM As(Ⅲ)、As(Ⅴ) 98.9% As(Ⅴ) removal efficiency
and 97.1% As(Ⅲ) removal
efficiency
29
KS - 98.9% removal efficiency As(Ⅴ)
and 99.6% As(Ⅲ) removal
efficiency
SW2 ND* 98.4% removal efficiency As(Ⅴ)
and 99.6% As(Ⅲ)
removal efficiency
As(Ⅲ)-oxidizing
denitrifying bacteria
20 mg/L Fe(Ⅱ) Hematite and amorphous Fe(Ⅲ) (hydr)oxides 0.5 mg/L
As(Ⅲ)
97.2(±3.3)% As removal efficiency 38
Fe(Ⅱ)-oxidizing
denitrifying bacteria
9.0 mM Fe(Ⅱ) Fe(Ⅲ) (hydr)oxides 100 and 500 μM As(Ⅲ) > 96% As removal efficiency 36
Fe(Ⅲ)-reducing
bacteria MR-1
6~8 mM As-bearing
Fe(Ⅲ) minerals
Secondary Fe(Ⅱ) and
Fe(Ⅱ)/Fe(Ⅲ)
minerals
As(Ⅲ) and
As(Ⅴ) in
Fe(Ⅲ) minerals
Aqueous As(Ⅲ) and As(Ⅴ)
concentrations increased and decresed
respectively
40
Fe(Ⅲ)-reducing
bacteria MR-1
5~7 mM As(Ⅴ)-
bearing Fe(Ⅲ)
(Oxyhydr)oxides
Vivianite and siderite As(Ⅴ) in
Fe(Ⅲ)
(oxyhydr)oxides
As(Ⅴ) oxided to As(Ⅲ) and
absorbed to Fe(Ⅱ)/Fe(Ⅲ) minerals
50
Bacteria from military shooting range soils 29 500 mg/kg Fe 71% Sb(Ⅲ)-goethite
and 10% Sb(Ⅴ)-
goethite
20 mg/kg Sb in soils Sb(Ⅲ) concentrations correlated with Fe(Ⅱ) concentrations 46
Fe(Ⅲ)-reducing
bacteria CN32
20 g/L Sb(Ⅴ)-
bearing ferrihydrite
FeOOH polymorphs,
feroxyhyte and goethite
456 ± 52 μmol/g Sb(Ⅴ) Aqueous Sb(Ⅴ)
concentrations
decreased
53
Fig. 2 Microbial iron cycle
Fig. 3 Microorganisms participation in the transformation of As(Ⅴ) in Fe(Ⅲ) reduction process
Fig. 4 Aqueous As adsorption mechanism by hollow polyaniline microsphere/Fe3O4 nanocomposite[81]
Fig. 5 Structure model of Fe (hydro) oxide-Sb(Ⅴ) edge sharing (above) and corner sharing (below) coordinations (O atoms are shown in red)[55]. Copyright 2020, American Chemical Society
Table 2 Coordination mechanism between arsenic/antimony and iron minerals
Table 3 Effect of coexisting anions on arsenic and antimony removal by iron mineralsa)
Table 4 Effect of pH on arsenic and antimony removal by iron minerals
[1]
Mandal B K, Suzuki K T. Talanta, 2002, 58(1): 201.

pmid: 18968746
[2]
Sundar S, Chakravarty J. Int. J. Environ. Res. Public Heal., 2010, 7(12): 4267.
[3]
Thomas D J. Environ. Geochem. Heal., 1994, 16(3/4): 107.
[4]
Ungureanu G, Santos S, Boaventura R, Botelho C. J. Environ. Manag., 2015, 151: 326.

doi: 10.1016/j.jenvman.2014.12.051
[5]
Mitsunobu S, Harada T, Takahashi Y. Environ. Sci. Technol., 2006, 40(23): 7270.

pmid: 17180977
[6]
Filella M, Belzile N, Chen Y W. Earth Sci. Rev., 2002, 59(1/4): 265.

doi: 10.1016/S0012-8252(02)00089-2
[7]
Zeng J Q, Qi P F, Shi J J, Pichler T, Wang F W, Wang Y, Sui K Y. Chem. Eng. J., 2020, 382: 122999.

doi: 10.1016/j.cej.2019.122999
[8]
Han Y S, Park J H. J. Hazard. Mater., 2020, 392: 122112.

doi: 10.1016/j.jhazmat.2020.122112
[9]
Filella M, Belzile N, Chen Y W. Earth Sci. Rev., 2002, 57(1/2): 125.

doi: 10.1016/S0012-8252(01)00070-8
[10]
Fang L L, Min X Y, Kang R F, Yu H Y, Pavlostathis S G, Luo X B. Sci. Total. Environ., 2018, 639: 110.

doi: 10.1016/j.scitotenv.2018.05.103
[11]
Wang S S, Gao B, Zimmerman A R, Li Y C, Ma L N, Harris W G, Migliaccio K W. Bioresour. Technol., 2015, 175: 391.

doi: 10.1016/j.biortech.2014.10.104
[12]
Long X J, Wang X, Guo X J, He M C. J. Environ. Sci., 2020, 90: 189.

doi: 10.1016/j.jes.2019.12.008
[13]
Zhang F, Wang X, Xionghui J, Ma L J. Environ. Pollut., 2016, 216: 575.

doi: S0269-7491(16)30501-2 pmid: 27376988
[14]
Qi P F, Luo R, Pichler T, Zeng J Q, Wang Y, Fan Y H, Sui K Y. J. Hazard. Mater., 2019, 378: 120721.

doi: 10.1016/j.jhazmat.2019.05.114
[15]
Chmielewská E, Tylus W, Drábik M, Majzlan J, Kravčak J, Williams C, Čaplovičová M, Čaplovič L. Microporous Mesoporous Mater., 2017, 248: 222.

doi: 10.1016/j.micromeso.2017.04.022
[16]
Ye C J, Ariya P A, Fu F L, Yu G D, Tang B. J. Hazard. Mater., 2021, 408: 124423.

doi: 10.1016/j.jhazmat.2020.124423
[17]
Fan P, Sun Y K, Qiao J L, Lo I M C, Guan X H. J. Hazard. Mater., 2018, 343: 266.

doi: 10.1016/j.jhazmat.2017.09.041
[18]
Wang Y H, Morin G, Ona-Nguema G, Menguy N, Juillot F, Aubry E, Guyot F, Calas G, Brown G E Jr. Geochim. Cosmochim. Acta, 2008, 72(11): 2573.

doi: 10.1016/j.gca.2008.03.011
[19]
Tufano K J, Fendorf S. Environ. Sci. Technol., 2008, 42(13): 4777.

doi: 10.1021/es702625e
[20]
Marcus M A, Manceau A, Kersten M. Geochim. Cosmochim. Acta, 2004, 68(14): 3125.

doi: 10.1016/j.gca.2004.01.015
[21]
Zhang J S, Stanforth R, Pehkonen S O. J. Colloid Interface Sci., 2008, 317(1): 35.

doi: 10.1016/j.jcis.2007.09.024
[22]
Yusof M S M, Othman M H D, Wahab R A, Jumbri K, Razak F I A, Kurniawan T A, Abu Samah R, Mustafa A, Rahman M A, Jaafar J, Ismail A F. J. Hazard. Mater., 2020, 383: 121214.

doi: 10.1016/j.jhazmat.2019.121214
[23]
Kappler A, Bryce C, Mansor M, Lueder U, Byrne J M, Swanner E D. Nat. Rev. Microbiol., 2021, 19(6): 360.

doi: 10.1038/s41579-020-00502-7
[24]
Konhauser K O, Kappler A, Roden E E. Elements, 2011, 7(2): 89.

doi: 10.2113/gselements.7.2.89
[25]
Lovley D R, Phillips E J P, Lonergan D J. Appl. Environ. Microbiol., 1989, 55(3): 700.

doi: 10.1128/aem.55.3.700-706.1989
[26]
Jiao Y Q, Kappler A, Croal L R, Newman D K. Appl. Environ. Microbiol., 2005, 71(8): 4487.

doi: 10.1128/AEM.71.8.4487-4496.2005
[27]
Rentz J A, Kraiya C, Luther G W, Emerson D. Environ. Sci. Technol., 2007, 41(17): 6084.

doi: 10.1021/es062203e
[28]
Maisch M, Lueder U, Laufer K, Scholze C, Kappler A, Schmidt C. Environ. Sci. Technol., 2019, 53(14): 8197.

doi: 10.1021/acs.est.9b01531
[29]
Hohmann C, Winkler E, Morin G, Kappler A. Environ. Sci. Technol., 2010, 44(1): 94.

doi: 10.1021/es900708s
[30]
Li J, Zhang Y, Zheng S, Liu F, Wang G. Front. Microbiol., 2019, 10: 360.

doi: 10.3389/fmicb.2019.00360
[31]
Silver S, Phung L T. Appl. Environ. Microbiol., 2005, 71(2): 599.

doi: 10.1128/AEM.71.2.599-608.2005
[32]
Inskeep W P, Macur R E, Hamamura N, Warelow T P, Ward S A, Santini J M. Environ. Microbiol., 2007, 9(4): 934.

doi: 10.1111/j.1462-2920.2006.01215.x
[33]
Meng Y L, Liu Z J, Rosen B P. J. Biol. Chem., 2004, 279(18): 18334.

doi: 10.1074/jbc.M400037200
[34]
Lehr C R, Kashyap D R, McDermott T R. Appl. Environ. Microbiol., 2007, 73(7): 2386.

doi: 10.1128/AEM.02789-06
[35]
Sun W M, Xiao E Z, Xiao T F, Krumins V, Wang Q, Häggblom M, Dong Y R, Tang S, Hu M, Li B Q, Xia B Q, Liu W. Environ. Sci. Technol., 2017, 51(16): 9165.

doi: 10.1021/acs.est.7b00294
[36]
Wang Z, Wang X, Chen X, Zhu Y. Acta Sci. Circum., 2011, 31(02): 328.
(王兆苏, 王新军, 陈学萍, 朱永官. 环境科学学报, 2011, 31(02): 328.).
[37]
Li J X, Wang Q, Oremland R S, Kulp T R, Rensing C, Wang G J. Appl. Environ. Microbiol., 2016, 82(18): 5482.

doi: 10.1128/AEM.01375-16
[38]
Sun W J, Sierra-Alvarez R, Milner L, Oremland R, Field J A. Environ. Sci. Technol., 2009, 43(17): 6585.

doi: 10.1021/es900978h
[39]
Guo W J, Fu Z Y, Wang H, Liu S S, Wu F C, Giesy J P. Sci. Total. Environ., 2018, 644: 1277.

doi: 10.1016/j.scitotenv.2018.07.034
[40]
Muehe E M, Scheer L, Daus B, Kappler A. Environ. Sci. Technol., 2013, 47(15):8297.
[41]
Lovley D R. FEMS Microbiol. Rev., 1997, 20(3/4): 305.

doi: 10.1111/j.1574-6968.1983.tb00137.x
[42]
Bretschger O, Obraztsova A, Sturm C A, Chang I S, Gorby Y A, Reed S B, Culley D E, Reardon C L, Barua S, Romine M F, Zhou J Z, Beliaev A S, Bouhenni R, Saffarini D, Mansfeld F, Kim B H, Fredrickson J K, Nealson K H. Appl. Environ. Microbiol., 2007, 73(21): 7003.

doi: 10.1128/AEM.01087-07
[43]
Kappler A. Rev. Mineral. Geochem., 2005, 59(1): 85.

doi: 10.2138/rmg.2005.59.5
[44]
Weber K A, Achenbach L A, Coates J D. Nat. Rev. Microbiol., 2006, 4(10): 752.

doi: 10.1038/nrmicro1490
[45]
Melton E D, Swanner E D, Behrens S, Schmidt C, Kappler A. Nat. Rev. Microbiol., 2014, 12(12): 797.

doi: 10.1038/nrmicro3347 pmid: 25329406
[46]
Hockmann K, Lenz M, Tandy S, Nachtegaal M, Janousch M, Schulin R. J. Hazard. Mater., 2014, 275: 215.

doi: 10.1016/j.jhazmat.2014.04.065 pmid: 24862348
[47]
Posth N R, Huelin S, Konhauser K O, Kappler A. Geochim. Cosmochim. Acta, 2010, 74(12): 3476.

doi: 10.1016/j.gca.2010.02.036
[48]
Cai X L, ThomasArrigo L K, Fang X, Bouchet S, Cui Y S, Kretzschmar R. Environ. Sci. Technol., 2021, 55(2): 1319.

doi: 10.1021/acs.est.0c05329
[49]
Dippon U, Schmidt C, Behrens S, Kappler A. Geomicrobiol. J., 2015, 32(10): 878.

doi: 10.1080/01490451.2015.1017623
[50]
Muehe E M, Morin G, Scheer L, Pape P L, Esteve I, Daus B, Kappler A. Environ. Sci. Technol., 2016, 50(5): 2281.

doi: 10.1021/acs.est.5b04625
[51]
Islam F S, Pederick R L, Gault A G, Adams L K, Polya D A, Charnock J M, Lloyd J R. Appl. Environ. Microbiol., 2005, 71(12): 8642.

doi: 10.1128/AEM.71.12.8642-8648.2005
[52]
Fang J H, Xie Z M, Wang J, Liu D W, Zhong Z Q. Ecotoxicol. Environ. Saf., 2021, 208: 111478.

doi: 10.1016/j.ecoenv.2020.111478
[53]
Burton E D, Hockmann K, Karimian N, Johnston S G. Geochim. Cosmochim. Acta, 2019, 245: 278.

doi: 10.1016/j.gca.2018.11.005
[54]
Mitsunobu S, Takahashi Y, Terada Y, Sakata M. Environ. Sci. Technol., 2010, 44(10): 3712.

doi: 10.1021/es903901e pmid: 20426473
[55]
Burton E D, Hockmann K, Karimian N. ACS Earth Space Chem., 2020, 4(3): 476.

doi: 10.1021/acsearthspacechem.0c00013
[56]
Mitsunobu S, Muramatsu C, Watanabe K, Sakata M. Environ. Sci. Technol., 2013, 47(17): 9660.

doi: 10.1021/es4010398 pmid: 23909642
[57]
Lin J Y, Hu S W, Liu T X, Li F B, Peng L F, Lin Z, Dang Z, Liu C X, Shi Z Q. Environ. Sci. Technol., 2019, 53(15): 8892.

doi: 10.1021/acs.est.9b00109
[58]
Oremland R S, Stolz J F. Science, 2003, 300(5621): 939.

pmid: 12738852
[59]
Omoregie E O, Couture R M, van Cappellen P, Corkhill C L, Charnock J M, Polya D A, Vaughan D, Vanbroekhoven K, Lloyd J R. Appl. Environ. Microbiol., 2013, 79(14): 4325.

doi: 10.1128/AEM.00683-13
[60]
Qiao J T, Li X M, Li F B. J. Hazard. Mater., 2018, 344: 958.

doi: 10.1016/j.jhazmat.2017.11.025
[61]
Takahashi Y, Minamikawa R, Hattori K H, Kurishima K, Kihou N, Yuita K. Environ. Sci. Technol., 2004, 38(4): 1038.

pmid: 14998016
[62]
Zobrist J, Dowdle P R, Davis J A, Oremland R S. Environ. Sci. Technol., 2000, 34(22): 4747.

doi: 10.1021/es001068h
[63]
Abin C A, Hollibaugh J T. Environ. Sci. Technol., 2014, 48(1): 681.

doi: 10.1021/es404098z
[64]
Kulp T R, Miller L G, Braiotta F, Webb S M, Kocar B D, Blum J S, Oremland R S. Environ. Sci. Technol., 2014, 48(1): 218.

doi: 10.1021/es403312j
[65]
Lafferty B J, Loeppert R H. Environ. Sci. Technol., 2005, 39(7): 2120.

pmid: 15871246
[66]
Kolbe F, Weiss H, Morgenstern P, Wennrich R, Lorenz W, Schurk K, Stanjek H, Daus B. J. Colloid Interface Sci., 2011, 357(2): 460.

doi: 10.1016/j.jcis.2011.01.095
[67]
Sowers T D, Harrington J M, Polizzotto M L, Duckworth O W. Geochim. Cosmochim. Acta, 2017, 198: 194.

doi: 10.1016/j.gca.2016.10.049
[68]
Kappler A, Schink B, Newman D K. Geobiology, 2005, 3(4): 235.

doi: 10.1111/j.1472-4669.2006.00056.x
[69]
Wu Z J, Jia N, Yuan L X, Sun L G. Chin. Sci. Bull., 2008, 53(6): 703.

doi: 10.1360/csb2008-53-6-703
(吴自军, 贾楠, 袁林喜, 孙立广. 科学通报, 2008, 53(6): 703.).
[70]
Waychunas G A, Rea B A, Fuller C C, Davis J A. Geochim. Cosmochim. Acta, 1993, 57(10): 2251.

doi: 10.1016/0016-7037(93)90567-G
[71]
Hohmann C, Morin G, Ona-Nguema G, Guigner J M, Brown G E Jr, Kappler A Jr. Geochim. Cosmochim. Acta, 2011, 75(17): 4699.

doi: 10.1016/j.gca.2011.02.044
[72]
Notini L, Latta D E, Neumann A, Pearce C I, Sassi M, N’Diaye A T, Rosso K M, Scherer M M. ACS Earth Space Chem., 2019, 3(12): 2717.

doi: 10.1021/acsearthspacechem.9b00224
[73]
Hao L L, Liu M Z, Wang N N, Li G J. RSC Adv., 2018, 8(69): 39545.

doi: 10.1039/C8RA08512A
[74]
Zeng H P, Yin C, Qiao T D, Yu Y P, Zhang J, Li D. ACS Sustainable Chem. Eng., 2018, 6(11): 14734.

doi: 10.1021/acssuschemeng.8b03270
[75]
Guo X J, Wu Z J, He M C, Meng X G, Jin X, Qiu N, Zhang J. J. Hazard. Mater., 2014, 276: 339.

doi: 10.1016/j.jhazmat.2014.05.025
[76]
Guo H M, Ren Y, Liu Q, Zhao K, Li Y. Environ. Sci. Technol., 2013, 47(2): 1009.

doi: 10.1021/es303503m
[77]
Liu C H, Chuang Y H, Chen T Y, Tian Y, Li H, Wang M K, Zhang W. Environ. Sci. Technol., 2015, 49(13): 7726.

doi: 10.1021/acs.est.5b00381
[78]
D’Arcy M, Weiss D, Bluck M, Vilar R. J. Colloid Interface Sci., 2011, 364(1): 205.

doi: 10.1016/j.jcis.2011.08.023
[79]
Manning B A, Fendorf S E, Goldberg S. Environ. Sci. Technol., 1998, 32(16): 2383.

doi: 10.1021/es9802201
[80]
Ona-Nguema G, Morin G, Juillot F, Calas G, Brown G E. Environ. Sci. Technol., 2005, 39(23): 9147.

pmid: 16382936
[81]
Dutta S, Manna K, Srivastava S K, Gupta A K, Yadav M K. Sci. Rep., 2020, 10(1): 4982.

doi: 10.1038/s41598-020-61763-z
[82]
Fendorf S, Eick M J, Grossl P, Sparks D L. Environ. Sci. Technol., 1997, 31(2): 315.

doi: 10.1021/es950653t
[83]
Venema P, Hiemstra T, Weidler P G, van Riemsdijk W H. J. Colloid Interface Sci., 1998, 198(2): 282.

doi: 10.1006/jcis.1997.5245
[84]
Zhao Z W, Meng Y, Yuan Q K, Wang Y H, Lin L M, Liu W B, Luan F B. Sci. Total. Environ., 2021, 763: 144613.

doi: 10.1016/j.scitotenv.2020.144613
[85]
Wang Y H, Morin G, Ona-Nguema G, Juillot F, Calas G, Brown G E Jr. Environ. Sci. Technol., 2011, 45(17): 7258.

doi: 10.1021/es200299f
[86]
Wang Y H, Morin G, Ona-Nguema G, Brown G E Jr. Environ. Sci. Technol., 2014, 48(24): 14282.

doi: 10.1021/es5033629
[87]
Catalano J G, Park C, Fenter P, Zhang Z. Geochim. Cosmochim. Acta, 2008, 72(8): 1986.

doi: 10.1016/j.gca.2008.02.013
[88]
Scheinost A C, Rossberg A, Vantelon D, Xifra I, Kretzschmar R, Leuz A K, Funke H, Johnson C A. Geochim. Cosmochim. Acta, 2006, 70(13): 3299.

doi: 10.1016/j.gca.2006.03.020
[89]
Qin H B, Uesugi S, Yang S T, Tanaka M, Kashiwabara T, Itai T, Usui A, Takahashi Y. Geochim. Cosmochim. Acta, 2019, 257: 110.

doi: 10.1016/j.gca.2019.04.018
[90]
Leuz A K, Mönch H, Johnson C A. Environ. Sci. Technol., 2006, 40(23): 7277.

doi: 10.1021/es061284b
[91]
Park S, Lee J H, Shin T J, Hur H G, Kim M G. Environ. Sci. Technol., 2018, 52(17): 9983.

doi: 10.1021/acs.est.8b02101
[92]
van Genuchten C M, Peña J. Chem. Geol., 2016, 429: 1.

doi: 10.1016/j.chemgeo.2016.03.001
[93]
Larsen O, Postma D. Geochim. Cosmochim. Acta, 2001, 65(9): 1367.

doi: 10.1016/S0016-7037(00)00623-2
[94]
Pedersen H D, Postma D, Jakobsen R. Geochim. Cosmochim. Acta, 2006, 70(16): 4116.

doi: 10.1016/j.gca.2006.06.1370
[95]
Park J H, Han Y S, Ahn J S. Water Res., 2016, 106: 295.

doi: S0043-1354(16)30742-4 pmid: 27728822
[96]
Yang K L, Zhou J S, Lou Z M, Zhou X R, Liu Y L, Li Y Z, Ali Baig S, Xu X H. Chem. Eng. J., 2018, 354: 577.

doi: 10.1016/j.cej.2018.08.069
[97]
Rhine E D, Phelps C D, Young L Y. Environ. Microbiol., 2006, 8(5): 899.

doi: 10.1111/j.1462-2920.2005.00977.x
[98]
Zhang X F, Liu T X, Li F B, Li X M, Du Y H, Yu H Y, Wang X Q, Liu C P, Feng M, Liao B. J. Environ. Sci., 2021, 100: 90.

doi: 10.1016/j.jes.2020.07.009
[99]
O’Loughlin E J, Gorski C A, Scherer M M, Boyanov M I, Kemner K M. Environ. Sci. Technol., 2010, 44(12): 4570.

doi: 10.1021/es100294w
[100]
Deng Y X, Weng L P, Li Y T, Chen Y L, Ma J. Environ. Pollut., 2020, 264: 114783.

doi: 10.1016/j.envpol.2020.114783
[101]
Borch T, Masue Y, Kukkadapu R K, Fendorf S. Environ. Sci. Technol., 2007, 41(1): 166.

doi: 10.1021/es060695p
[102]
O’Loughlin E J, Boyanov M I, Flynn T M, Gorski C A, Hofmann S M, McCormick M L, Scherer M M, Kemner K M. Environ. Sci. Technol., 2013, 47(16): 9157.

doi: 10.1021/es400627j
[103]
Dixit S, Hering J G. Environ. Sci. Technol., 2003, 37(18): 4182.

doi: 10.1021/es030309t
[104]
Stachowicz M, Hiemstra T, van Riemsdijk W H. J. Colloid Interface Sci., 2008, 320(2): 400.

doi: 10.1016/j.jcis.2008.01.007
[105]
Nakamaru Y, Tagami K, Uchida S. Environ. Pollut., 2006, 141(2): 321.

pmid: 16246477
[106]
Xi J H, He M C, Wang K P, Zhang G Z. J. Geochem. Explor., 2013, 132: 201.

doi: 10.1016/j.gexplo.2013.07.004
[107]
Hiemstra T. Geochim. Cosmochim. Acta, 2018, 238: 453.

doi: 10.1016/j.gca.2018.07.017
[108]
Christl I, Brechbühl Y, Graf M, Kretzschmar R. Environ. Sci. Technol., 2012, 46(24): 13235.

doi: 10.1021/es303297m pmid: 23163533
[109]
Stachowicz M, Hiemstra T, van Riemsdijk W H. Environ. Sci. Technol., 2007, 41(16): 5620.

pmid: 17874764
[110]
Brechbühl Y, Christl I, Elzinga E J, Kretzschmar R. J. Colloid Interface Sci., 2012, 377(1): 313.

doi: 10.1016/j.jcis.2012.03.025
[111]
Radu T, Subacz J L, Phillippi J M, Barnett M O. Environ. Sci. Technol., 2005, 39(20): 7875.

doi: 10.1021/es050481s
[112]
Wei Y F, Wei S D, Liu C B, Chen T, Tang Y H, Ma J H, Yin K, Luo S L. Water Res., 2019, 167: 115107.

doi: 10.1016/j.watres.2019.115107
[113]
Yang K L, Li C, Wang X M, Liu Y L, Li Y Z, Zhou C C, Wang Z N, Zhou J S, Cao Z, Xu X H. J. Clean. Prod., 2020, 266: 122007.

doi: 10.1016/j.jclepro.2020.122007
[114]
Fang Z Y, Li Z X, Zhang X L, Pan S Y, Wu M F, Pan B C. Water Res., 2021, 189: 116673.

doi: 10.1016/j.watres.2020.116673
[115]
Torn M S, Trumbore S E, Chadwick O A, Vitousek P M, Hendricks D M. Nature, 1997, 389(6647): 170.

doi: 10.1038/38260
[116]
Han X H, Tomaszewski E J, Sorwat J, Pan Y X, Kappler A, Byrne J M. Environ. Sci. Technol., 2020, 54(7): 4121.

doi: 10.1021/acs.est.9b07095
[117]
Mohapatra M, Sahoo S K, Anand S, Das R P. J. Colloid Interface Sci., 2006, 298(1): 6.

doi: 10.1016/j.jcis.2005.11.052
[118]
Wainipee W, Weiss D J, Sephton M A, Coles B J, Unsworth C, Court R. Water Res., 2010, 44(19): 5673.

doi: 10.1016/j.watres.2010.05.056
[119]
Husson O. Plant Soil, 2013, 362(1/2): 389.

doi: 10.1007/s11104-012-1429-7
[1] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[2] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[3] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[4] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[5] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[6] Hong Su, Yejun Han. Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis [J]. Progress in Chemistry, 2019, 31(2/3): 433-441.
[7] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[8] Yanlong Wang, Daohui Lin*. The Interaction Between Nano Zero-Valent Iron and Soil Components and Its Environmental Implication [J]. Progress in Chemistry, 2017, 29(9): 1072-1081.
[9] Shi Ting, Chen Ming, Chen Xiongping, Wang Jitao, Wan Ajun, Zhao Yi-Lei. Molecular Mechanism of Protein S-Nitrosylation and Its Correlation with Human Diseases [J]. Progress in Chemistry, 2015, 27(5): 594-600.
[10] Xu Guohe, Li Jie, Deng Jinni, Yin Lv, Zheng Zhaohui, Ding Xiaobin. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli [J]. Progress in Chemistry, 2015, 27(12): 1732-1742.
[11] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[12] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[13] Wang Baiyun, Wang Xiaoyue, Wang Zhiwen, Chen Tao, Zhao Xueming. Redox Cofactor Metabolic Engineering with Escherichia coli [J]. Progress in Chemistry, 2014, 26(09): 1609-1618.
[14] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[15] Wang Gang, Chen Jinwei, Wang Xueqin, Tian Jing, Liu Xiaojiang, Wang Ruilin. Electrolyte for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(07): 1102-1112.