中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 824-836 DOI: 10.7536/PC210427 Previous Articles   Next Articles

• Review •

Bionic Locomotion of Self-oscillating gels

Liyuan Wang1, Meng Zhang1, Jing Wang1, Ling Yuan1(), Lin Ren1,2(), Qingyu Gao1()   

  1. 1 School of chemical engineering and technology, China University of mining and technology,Xuzhou 221000, China
    2 College of chemistry and materials engineering, Institute of new materials and industrial technologies, Wenzhou university,Wenzhou 325035, China
  • Received: Revised: Online: Published:
  • Contact: Ling Yuan, Lin Ren, Qingyu Gao
  • Supported by:
    National Natural Science Foundation of China(21773304); National Natural Science Foundation of China(21972165); Special Financial Aid to Chinese post-doctor research fellow(2020T130694)
Richhtml ( 14 ) PDF ( 265 ) Cited
Export

EndNote

Ris

BibTeX

As the prerequisite of life evolution, survival and reproduction, autonomous locomotion is the most basic function of organisms. In recent years, many artificial systems have been developed to simulate the motion behavior and to study the locomotion mechanism of living organisms. Among many kinds of artificial bionics systems, self-oscillating gels have attracted much attention due to its performance of internal drive to generate kinetic energy, directionality, untethered ability and environmental self-adaptation. In this review, the origin of chemo-mechanical energy conversion and the bionic locomotion modes of self-oscillating gels observed until now are introduced and summarized. On the basis of this, the opportunities, challenges and future directions of this field are prospected.

Contents

1 Introduction

2 Chemomechanical origin of the locomotion of self-oscillating gels

3 Bionic locomotion of self-oscillating gels

3.1 Peristaltic motion and self-walking

3.2 Photophobic and phototropic locomotion

3.3 Retrograde and direct wave locomotion

3.4 Autonomous reciprocating migration

3.5 Circular and angular locomotion

3.6 Collective locomotion

4 Conclusion and prospect

Fig. 1 BZ self-oscillating gels. (a) The chemical structure of a BZ self-oscillating gel catalyzed by ruthenium(Ⅲ/Ⅱ)[33]; (b) The swelling state (Ru(bpy)33+) and the deswelling state (Ru(bpy)32+) of self-oscillating gels[34]
Fig. 2 Spatiotemporal diagram of v variable and the trajectory of gel center, the increasing of uniform illumination involved the transition from retrograde wave motion to direct wave motion of the gel[50]
Table 1 Classification criteria for the sub regions of chemical waves
Fig. 3 Mixed push and pull effects within primary wave back and dynamic bifurcation diagram of maximum of v at the gel center. (a) Sub-areas of σx plot at I = Ic. Red and black dashed lines, respectively, denote vt = 0 and vx = 0. (b) Spatial profiles of v, ϕx, vx and vxx within wave region 2 at I = Ic along the vertical red line in (a). (c) Dynamic bifurcation diagram of maximum of v at the gel center ( v m a x - c e n t e r) vs. I. The insets are the trajectories of the u-v oscillations at different light intensities[50]
Fig. 4 The locomotion of self-oscillating BZ gel. (a) peristaltic motion of self-oscillating BZ gel[51]; (b) self-walking of self-oscillating BZ gel[52]
Fig. 5 The phototropic and photophobic movement of self oscillating gels in capillary tubes. (a) I-f relationship of homogeneous system. The red curve denotes the experimental data, and the blue area denotes the simulation data; (b) Left: phototropic movement. Right: photophobic movement.[53]
Fig. 6 Spatiotemporal plots of v and motion of gel center under non-uniform illumination. The three columns (from left to right) display retrograde wave locomotion, motionless state, and direct wave locomotion of gel respectively. (a~c) Spatiotemporal plots of v; (d~f) expanded views of (a~c); (g,h) position of gel center with time.[29]
Fig. 7 The evolution curves of the stress gradient in the gel center during one period of local oscillations vs. Iright.[29]
Fig. 8 Schematic of the self-oscillating gel in a tube and its periodic locomotion. (a) The 1D BZ gel in a capillary tube with three different illumination regions, the left and right parts of the capillary tube lie in the darker and brighter illumination regions, respectively. The central part is a transition region with a linear change of light intensity. The light intensities in the two end regions are denoted Ileft and Iright; (b) Schematic diagram showing one cycle of reciprocating locomotion of the gel[59]
Fig. 9 Autonomous reciprocating migration of the gel and the fish analogy. (a) Motion of the gel grid points at the left boundary (Rl), the right boundary (Rr), and the gel center (Rc); (b) Rc vs. time over one cycle of the migration. Insets are enlarged views of four characteristic intervals labeled one to four; (c,d) are spatiotemporal plots of gel locomotion over the RW and DW phases, respectively; (e,f) corresponding enlarged views show chemical wave propagation in (c) and (d) respectively, the lower are pictures of salmon migration in the locomotion phase of returning to or departing from their birth place[59]
Fig. 10 Circular motion (I=0) and steering motion (I=0.02) mode of gel motor[60]
Fig. 11 Gel locomotion under the control of square waves of illumination. (a) Duration of illumination required to produce steering angle Δβ as a function of I. (b) Time series of illumination with I = 0.03. For each curve (Tc1, Tc2, Tc3 and Tc4), duration of I = 0.03 (Tturn) is 1453.0, 3212.0, 4924.0 and 6635.0, respectively; and the duration of I = 0 (Trun) is 58 471.5, 26 002.0, 30 041.3 and 40 000.0, respectively. Trajectories of gel center show periodic steering of gel with angle Δβ = (c) π/2, (d) π, (e) 3π/2 and (f) 2π, with illumination times Tc1, Tc2, Tc3 and Tc4, respectively[60]
Fig. 12 Illustration of the self-oscillating polymer brush in operation.[64]
Fig. 13 Pinwheel of BZ self-oscillating gel. (a~d) Formation of gel pinwheel vs. time[67]
[1]
Bechinger C, Leonardo R D, Löwen H. Rev. Mod. Phys., 2016, 88: 045006.

doi: 10.1103/RevModPhys.88.045006
[2]
Pollard T D, Earnshaw W C, Lippincott-Schwartz J, Johnson G. Cell biology. Elsevier Health Sciences, USA, 2016.
[3]
Alexander R M. Principles of Animal Locomotion. Princeton: Princeton University Press, 2002.
[4]
Hess H, Ross J L. Chem. Soc. Rev., 2017, 46(18): 5570.

doi: 10.1039/c7cs00030h pmid: 28329028
[5]
Grinthal A, Aizenberg J. Chem. Soc. Rev., 2013, 42(17): 7072.

doi: 10.1039/c3cs60045a pmid: 23624804
[6]
Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M D, Simha R A. Rev. Mod. Phys., 2013, 85(3): 1143.

doi: 10.1103/RevModPhys.85.1143
[7]
Vicsek T, Zafeiris A. Phys. Rep., 2012, 517: 3/4: 71.
[8]
Merindol R, Walther A. Chem. Soc. Rev., 2017, 46(18): 5588.

doi: 10.1039/c6cs00738d pmid: 28134366
[9]
Illien P, Golestanian R, Sen A. Chem. Soc. Rev., 2017, 46(18): 5508.

doi: 10.1039/C7CS00087A
[10]
Zhang J, Luijten E, Grzybowski B A, Granick S. Chem. Soc. Rev., 2017, 46(18): 5551.

doi: 10.1039/c7cs00461c pmid: 28762406
[11]
Cera L, Schalley C A. Adv. Mater., 2018, 30(38): 1707029.

doi: 10.1002/adma.201707029
[12]
Lund K, Manzo A J, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R J, Stojanovic M N, Walter N G, Winfree E, Yan H. Nature, 2010, 465(7295): 206.

doi: 10.1038/nature09012
[13]
Marden J H, Allen L R. Proc. Natl. Acad. Sci., 2002, 99: 4161.

doi: 10.1073/pnas.022052899
[14]
Hoare B. Animal Migration:Remarkable Journeys in the Wild. Berkeley: University of California Press, 2009.
[15]
Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M. Science, 2012, 337(6096): 828.

doi: 10.1126/science.1222149
[16]
Michael W, Ryan L T, Daniel J F, Bobak M, Whitesides G M, Jennifer A L, Robert J W. Nature, 2016, 536: 451.

doi: 10.1038/nature19100
[17]
Hirono A, Toyota T, Asakura K, Banno T. Langmuir, 2018, 34(26): 7821.

doi: 10.1021/acs.langmuir.8b01352 pmid: 29878786
[18]
Tameyuki M, Hiranaka H, Toyota T, Asakura K, Banno T. Langmuir, 2019, 35(52): 17075.

doi: 10.1021/acs.langmuir.9b02707 pmid: 31797676
[19]
Vale R D, Milligan R A. Science, 2000, 288(5463): 88.

doi: 10.1126/science.288.5463.88 pmid: 10753125
[20]
Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118(21): 5134.

doi: 10.1021/ja9602511
[21]
Čejková J, Taisuke B, Martin M H, Štěpánek F. Artif. Life., 2017, 23: 528.

doi: 10.1162/ARTL_a_00243 pmid: 28985113
[22]
Yashin V V, Balazs A C. Science, 2006, 314(5800): 798.

doi: 10.1126/science.1132412
[23]
Gelebart A H, Jan M D, Varga M. Nature, 2017, 546: 632.

doi: 10.1038/nature22987
[24]
Palagi S, Mark A G, Reigh S Y. Nat. Mater., 2016, 15: 647.

doi: 10.1038/nmat4569
[25]
Hu W, Guo Z L, Mastrangeli M. Nature, 2018, 554: 81.

doi: 10.1038/nature25443
[26]
Yashin V V, Balazs A C. J. Chem. Phys., 2007, 126(12): 124707.

doi: 10.1063/1.2672951
[27]
Kim Y S, Tamate R, Akimoto A M, Yoshida R. Mater. Horiz., 2017, 4(1): 38.

doi: 10.1039/C6MH00435K
[28]
Yashin V V, Kuksenok O, Dayal P, Balazs A C. Rep. Prog. Phys., 2012, 75(6): 066601.

doi: 10.1088/0034-4885/75/6/066601
[29]
Ren L, She W B, Gao Q Y, Pan C W, Ji C, Epstein I R. Angew. Chem. Int. Ed., 2016, 55(46): 14301.

doi: 10.1002/anie.201608367
[30]
Ren L, Fan B W, Gao Q Y, Zhao Y M, Luo H N, Xia Y H, Lu X J, Epstein I R. Chaos: Interdiscip. J. Nonlinear Sci., 2015, 25(6): 064607.

doi: 10.1063/1.4921693
[31]
Dayal P, Kuksenok O, Balazs A C. PNAS, 2013, 110(2): 431.

doi: 10.1073/pnas.1213432110
[32]
Kuksenok O, Dayal P, Bhattacharya A, Yashin V V, Deb D, Chen I C, van Vliet K J, Balazs A C. Chem. Soc. Rev., 2013, 42(17): 7257.

doi: 10.1039/c3cs35497k pmid: 23370524
[33]
Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Adv. Mater., 1997, 9(2): 175.

doi: 10.1002/adma.19970090219
[34]
Suzuki D, Sakai T, Yoshida R. Angew. Chem., 2008, 120(5): 931.

doi: 10.1002/ange.200703953
[35]
Kramb R C, Buskohl P R, Dalton M J, Vaia R A. Chem. Mater., 2015, 27(16): 5782.

doi: 10.1021/acs.chemmater.5b02412
[36]
Aizenberg M, Okeyoshi K, Aizenberg J. Adv. Funct. Mater., 2018, 28(27): 1704205.

doi: 10.1002/adfm.201704205
[37]
Arimura T, Mukai M. Chem. Commun., 2014, 50(44): 5861.

doi: 10.1039/C4CC01613K
[38]
Ren J, Gu J F, Tao L, Zhang G C, Yang W. Macromol. Res., 2016, 24(6): 502.

doi: 10.1007/s13233-016-4076-7
[39]
Hara Y, Mayama H, Yamaguchi Y, Fujimoto K. Chem. Lett., 2014, 43(5): 673.

doi: 10.1246/cl.131175
[40]
Ramaswamy S. Annu. Rev. Condens. Matter Phys., 2010, 1(1): 323.

doi: 10.1146/annurev-conmatphys-070909-104101
[41]
Ijspeert A J. Science, 2014, 346(6206): 196.

doi: 10.1126/science.1254486 pmid: 25301621
[42]
Anderson J L. Annu. Rev. Fluid Mech., 1989, 21(1): 61.

doi: 10.1146/annurev.fl.21.010189.000425
[43]
Vanni P, Magali L G, Monika T, Cedric A, Ondrej M, Lionel H, Silke H, Rastko S, Thomas B, Giovanni C, Martial B. Phys. Rev. Lett., 2019, 122: 168101.

doi: 10.1103/PhysRevLett.122.168101
[44]
Gao T, Li Z R. Phys. Rev. Lett., 2017, 119(10): 108002.

doi: 10.1103/PhysRevLett.119.108002
[45]
Fischer P. Nat. Phys., 2018, 14(11): 1072.

doi: 10.1038/s41567-018-0247-0
[46]
Yashin V V, Balazs A C. Macromolecules, 2006, 39(6): 2024.

doi: 10.1021/ma052622g
[47]
Kuksenok O, Yashin V V, Balazs A C. Phys. Rev. E, 2008, 78(4): 041406.

doi: 10.1103/PhysRevE.78.041406
[48]
Lu X J, Ren L, Gao Q Y, Yang Y Y, Zhao Y M, Huang J, Lv X L, Epstein I R. J. Phys. Chem. Lett., 2013, 4(22): 3891.

doi: 10.1021/jz402117m
[49]
Amemiya T, Ohmori T, Nakaiwa M, Yamaguchi T. J. Phys. Chem. A, 1998, 102(24): 4537.

doi: 10.1021/jp980189p
[50]
Ren L, Yuan L, Gao Q Y, Teng R, Wang J, Epstein I R. Sci. Adv., 2020, 6(18): eaaz9125.

doi: 10.1126/sciadv.aaz9125
[51]
Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 47(35): 6690.

doi: 10.1002/anie.200801347
[52]
Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19(21): 3480.

doi: 10.1002/adma.200700625
[53]
Lu X J, Ren L, Gao Q Y, Zhao Y M, Wang S R, Yang J P, Epstein I R. Chem. Commun., 2013, 49(70): 7690.

doi: 10.1039/c3cc44480e
[54]
Mikhailov A S, Engel A. Phys. Lett. A, 1986, 117(5): 257.

doi: 10.1016/0375-9601(86)90088-5
[55]
Blasius B, Tönjes R. Phys. Rev. Lett., 2005, 95(8): 084101.

doi: 10.1103/PhysRevLett.95.084101
[56]
Kheowan O U, Mihaliuk E, Blasius B, Sendiña-Nadal I, Showalter K. Phys. Rev. Lett., 2007, 98(7): 074101.

doi: 10.1103/PhysRevLett.98.074101
[57]
Dayal P, Kuksenok O, Balazs A C. Langmuir, 2009, 25(8): 4298.

doi: 10.1021/la900051b
[58]
Aidley D J. Animal Migration. Cambridge: Cambridge Univ ersity Press, 1981.
[59]
Ren L, Wang M, Pan C W, Gao Q Y, Liu Y, Epstein I R. PNAS, 2017, 114(33): 8704.

doi: 10.1073/pnas.1704094114
[60]
Ren L, Wang L Y, Gao Q Y, Teng R, Xu Z Y, Wang J, Pan C W, Epstein I R. Angew. Chem. Int. Ed., 2020, 59(18): 7106.

doi: 10.1002/anie.202000110
[61]
Kane E A, Gershow M, Afonso B. Proc. Natl. Acad. Sci., 2013, 110: 3868.
[62]
Lee S M, Kwon T H. Micromech. J. M. 2007, 17: 687.
[63]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.

doi: 10.1038/nature10447
[64]
Masuda T, Hidaka M, Murase Y, Akimoto A M, Nagase K, Okano T, Yoshida R. Angew. Chem., 2013, 125(29): 7616.

doi: 10.1002/ange.201301988
[65]
Dayal P, Kuksenok O, Bhattacharya A, Balazs A C. J. Mater. Chem., 2012, 22(1): 241.
[66]
Yashin V V, Suzuki S, Yoshida R, Balazs A C. J. Mater. Chem., 2012, 22(27): 13625.

doi: 10.1039/c2jm32065g
[67]
Deb D, Kuksenok O, Dayal P, Balazs A C. Mater. Horiz., 2014, 1(1): 125.

doi: 10.1039/C3MH00083D
[68]
Ghosh A, Fischer P. Nano Lett., 2009, 9(6): 2243.

doi: 10.1021/nl900186w
[69]
Tottori S, Zhang L, Qiu F M, Krawczyk K K, Franco-ObregÓn A, Nelson B J. Adv. Mater., 2012, 24(6): 811.

doi: 10.1002/adma.201103818
[70]
Li J X, Sattayasamitsathit S, Dong R F, Gao W, Tam R, Feng X M, Ai S, Wang J. Nanoscale, 2014, 6(16): 9415.

doi: 10.1039/C3NR04760A
[71]
Lancia F, Yamamoto T, Ryabchun A, Yamaguchi T, Sano M, Katsonis N. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[72]
Lee J G, Brooks A M, Shelton W A, Bishop K J M, Bharti B. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[73]
Shao Q, Zhang S D, Hu Z, Zhou Y F. Angew. Chem. Int. Ed., 2020, 59(39): 17125.

doi: 10.1002/anie.202007840
[74]
Tamate R, Ueki T, Yoshida R. Angew. Chem. Int. Ed., 2016, 55(17): 5179.

doi: 10.1002/anie.201511871 pmid: 26960167
[75]
Shiraki Y, Yoshida R. Angew. Chem. Int. Ed., 2012, 51(25): 6112.

doi: 10.1002/anie.201202028 pmid: 22573517
[76]
Poros-Tarcali E, Perez-Mercader J. Soft Matter, 2021, 17(15): 4011.

doi: 10.1039/d1sm00150g pmid: 33666638
[77]
He X M, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Nature, 2012, 487(7406): 214.

doi: 10.1038/nature11223
[78]
Zhao Y S, Xuan C, Qian X S, Alsaid Y, Hua M T, Jin L H, He X M. Sci. Robot., 2019, 4(33): eaax7112.

doi: 10.1126/scirobotics.aax7112
[79]
Hua M T, Kim C, Du Y J, Wu D, Bai R B, He X M. Matter, 2021, 4(3): 1029.

doi: 10.1016/j.matt.2021.01.002
[1] Lu Xingjie, Zhao Yuemin, Ren Lin, Yang Yingying, Gao Qingyu. Spatiotemporal Dynamics of Photosensitive BZ Reaction [J]. Progress in Chemistry, 2012, 24(05): 709-721.
Viewed
Full text


Abstract

Bionic Locomotion of Self-oscillating gels