中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 884-897 DOI: 10.7536/PC210407 Previous Articles   Next Articles

• Review •

Smartphone-Based Point-of-Care Testing

Tingyi Yan1, Guangyao Zhang1,2(), Kun Yu1, Mengjie Li1, Lijun Qu1,2(), Xueji Zhang3()   

  1. 1 Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University,Qingdao 266071, China
    2 State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University,Qingdao 266071, China
    3 School of Biomedical Engineering, Shenzhen University,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: Guangyao Zhang, Lijun Qu, Xueji Zhang
  • Supported by:
    National Natural Science Foundation of China(21890742); National Natural Science Foundation of China(21727815); Natural Science Foundation of Shandong Province(ZR2020QB092); Postdoctoral Applied Research Project of Qingdao(202142); State Key Laboratory of Bio-Fibers and Eco-Textiles(ZKT23); State Key Laboratory of Bio-Fibers and Eco-Textiles(GZRC202025)
Richhtml ( 44 ) PDF ( 696 ) Cited
Export

EndNote

Ris

BibTeX

The outbreak of the COVID-19 has increased the demand for point-of-care testing (POCT), and as the most indispensable tools for human beings at present, smartphones have great application potential in POCT. Smartphone-based POCT has the following unique advantages: (1) easy to operate and without the need for professional training; (2) shorter wait times and quicker test results; (3) low fabrication cost and convenient to use in limited-resource areas. Therefore, smartphone-based POCT is rapidly emerging as a potential alternative to traditional laboratory testing. Herein, we perform a comprehensive review of recent progress and applications of smartphone-based sensors in POCT for the past three years, which uses the tested objects (body fluids, volatile organic compounds, vital signs) by POCT as the basis for classification, and combines with the current mainstream sensing strategies, including colorimetric, fluorescent, electrochemical technology, piezoelectric, pyroelectric, ultrasonic and photoelectric sensor, etc. We evaluate the performance and development potential of these sensors, in addition, the emerging technologies used in POCT are introduced, such as nanotechnology, flexible electronic devices, microfluidic technology, biodegradable technology, self-powered technology, multi-channel detection and so on. Finally, current problems are summarized and the future development of the smartphone-based POCT is discussed.

Contents

1 Introduction

2 Body fluids detection

2.1 Blood

2.2 Sweat

2.3 Saliva

2.4 Tear

2.5 Urine

3 VOCs detection

3.1 Hydrocarbon

3.2 Formaldehyde

3.3 Acetone and ethanol

4 Vital signs detection

4.1 Pulse and blood pressure

4.2 Body temperature

4.3 Heartbeat and respiration

5 Conclusion and outlook

Fig. 1 POCT based on blood test. (A) Smartphone-based colorimetric detection system[29]. (B) Smartphone-based acoustofluidic platform[33]. (C) Bioluminescence reaction on μTADs[34]. (D) Procedure for antibody detection with μTADs[34]
Fig. 2 POCT based on sweat test. (A) Self-healing sweat sensor[43]. (B) Wearable sweat glucose sensor[44]. (C) Microfluidic check valve[44]. (D) Battery-free multi-channel sweat sensor[45]. (E, F) Smartphone-based fluorescence imaging system[46]
Fig. 3 POCT based on saliva test. (A) Smartphone-based fluorescence reader[51]. (B) CRISPR-Fluorescence Detection System[51]
Fig. 4 Microfluidic contact lenses for the colorimetric sensing of tear metabolites[54,55]
Fig. 5 Smartphone-based non-invasive glucose monitoring contact lens[56]
Fig. 6 Smartphone-based uric acid detection[61]
Fig. 7 Milli-Cantilever sensing mechanism[64]
Fig. 8 Smartphone-based formaldehyde sensor[66]
Fig. 9 POCT based on acetone and ethanol test. (A)Schematic illustration of wearable smart wristband[68]. (B, C) Wireless portable VOCs sensing system based on multiple CMUT sensors[69]
Fig. 10 POCT based on pulse and blood test. (A) Smartphone-based fingertip-contacted pressure sensor[72]. (B) Nanos hemispherical structure[72]. (C) Fabrication process of flexible degradable wearable pressure sensor[73]
Fig. 11 POCT based on body temperature test. (A) Portable infrared thermopile sensor[75]. (B) Application user interface[75]. (C) Offset correction by Thermal wristband[76]
Fig. 12 POCT based on heartbeat and respiration test. (A) Non-contact heartbeat and respiration monitoring[77]. (B) HM-SPS strip[77]. (C) Wireless wearable ultrasound sensor[78]
Table 1 Application of the smartphone-based POCT
[1]
Huang Y, Liu G D, Zhang X J. Progress in Chemistry, 2020, 32(9): 1241.

doi: 10.7536/PC200522
(黄炎, 刘国东, 张学记. 化学进展, 2020, 32(9): 1241.)

doi: 10.7536/PC200522
[2]
Seo S E, Tabei F, Park S J, Askarian B, Kim K H, Moallem G, Chong J W, Kwon O S. J. Ind. Eng. Chem., 2019, 77: 1.

doi: 10.1016/j.jiec.2019.04.037
[3]
Seshadri D R, Li R T, Voos J E, Rowbottom J R, Alfes C M, Zorman C A, Drummond C K. Npj Digit. Med., 2019, 2(1): 1.

doi: 10.1038/s41746-018-0076-7
[4]
Li Z, Paul R, Ba Tis T, Saville A C, Hansel J C, Yu T, Ristaino J B, Wei Q S. Nat. Plants, 2019, 5(8): 856.

doi: 10.1038/s41477-019-0476-y
[5]
Zhang Y P, Liu X T, Qiu S, Zhang Q Q, Tang W, Liu H T, Guo Y L, Ma Y Q, Guo X J, Liu Y Q. J. Am. Chem. Soc., 2019, 141(37): 14643.

doi: 10.1021/jacs.9b05724
[6]
Lan L Y, Le X H, Dong H Y, Xie J, Ying Y B, Ping J F. Biosens. Bioelectron., 2020, 165: 112360.

doi: 10.1016/j.bios.2020.112360
[7]
Zhao F N, He J W, Li X J, Bai Y P, Ying Y B, Ping J F. Biosens. Bioelectron., 2020, 170: 112636.

doi: 10.1016/j.bios.2020.112636
[8]
Li Z, Zhang S W, Yu T, Dai Z M, Wei Q S. Anal. Chem., 2019, 91(16): 10448.

doi: 10.1021/acs.analchem.9b00750
[9]
Li Z, Wang Z W, Khan J, LaGasse M K, Suslick K S. ACS Sens., 2020, 5(9): 2783.

doi: 10.1021/acssensors.0c00583
[10]
Mukherjee S, Shah M, Chaudhari K, Jana A, Sudhakar C, Srikrishnarka P, Islam M R, Philip L, Pradeep T. ACS Omega, 2020, 5(39): 25253.

doi: 10.1021/acsomega.0c03465 pmid: 33043203
[11]
Yen Y K, Lee K Y, Lin C Y, Zhang S T, Wang C W, Liu T Y. ACS Omega, 2020, 5(39): 25209.

doi: 10.1021/acsomega.0c03366
[12]
Ma Z, Chen P, Cheng W, Yan K, Pan L J, Shi Y, Yu G H. Nano Lett., 2018, 18(7): 4570.

doi: 10.1021/acs.nanolett.8b01825
[13]
Ross G M S, Bremer M G E G, Nielen M W F. Anal. Bioanal. Chem., 2018, 410(22): 5353.

doi: 10.1007/s00216-018-0989-7
[14]
Mishra R K, Martín A, Nakagawa T, Barfidokht A, Lu X L, Sempionatto J R, Lyu K M, Karajic A, Musameh M M, Kyratzis I L, Wang J. Biosens. Bioelectron., 2018, 101: 227.

doi: 10.1016/j.bios.2017.10.044
[15]
Christodouleas D C, Kaur B, Chorti P. ACS Cent. Sci., 2018, 4(12): 1600.

doi: 10.1021/acscentsci.8b00625
[16]
Kanchi S, Sabela M I, Mdluli P S, Inamuddin, Bisetty K. Biosens. Bioelectron., 2018, 102: 136.

doi: 10.1016/j.bios.2017.11.021
[17]
Xu D, Huang X, Guo J, Ma X. Biosens. Bioelectron, 2018, 110: 78.

doi: 10.1016/j.bios.2018.03.018
[18]
Kim J, Campbell A S, Ávila B E F, Wang J. Nat. Biotechnol., 2019, 37(4): 389.

doi: 10.1038/s41587-019-0045-y
[19]
He F L, Li K J, Lyu X F, Li X Q, Deng Y L. Space Med. Med. Eng., 2020, 33(1): 74.
(何芳兰, 李堃杰, 吕雪飞, 李晓琼, 邓玉林. 航天医学与医学工程, 2020, 33(1): 74.).
[21]
Lee J, Song J, Choi J H, Kim S, Kim U, Nguyen V T, Lee J S, Joo C. Sci. Rep., 2020, 10(1): 1.

doi: 10.1038/s41598-019-56847-4
[22]
Priye A, Ball C S, Meagher R J. Anal. Chem., 2018, 90(21): 12385.

doi: 10.1021/acs.analchem.8b03521
[23]
Wang X, Li F, Cai Z Q, Liu K F, Li J, Zhang B Y, He J B. Anal. Bioanal. Chem., 2018, 410(10): 2647.

doi: 10.1007/s00216-018-0939-4 pmid: 29455281
[24]
Wang H Q, Yang L, Chu S Y, Liu B H, Zhang Q K, Zou L M, Yu S M, Jiang C L. Anal. Chem., 2019, 91(14): 9292.

doi: 10.1021/acs.analchem.9b02297
[25]
Aydindogan E, Ceylan A E, Timur S. Talanta, 2020, 208: 120446.

doi: 10.1016/j.talanta.2019.120446
[26]
Li B H, Wang J H, Tu H H, Yang Z J, Dongfang Z, Feng H H, Yang J. Anal. Bioanal. Chem., 2021, 413(2): 533.

doi: 10.1007/s00216-020-03024-6
[27]
Aydindogan E, Guler Celik E, Timur S. Anal. Chem., 2018, 90(21): 12325.

doi: 10.1021/acs.analchem.8b03120 pmid: 30222319
[28]
Sun Y F, Zhou Z P, Shu T, Qian L S, Su L, Zhang X J. Progress in Chemistry, 2021, 33: 179.
(孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 化学进展, 2021, 33: 179.).

doi: 10.7536/PC200637
[29]
Liu F, Chen R, Song W L, Li L W, Lei C Y, Nie Z. Anal. Chem., 2021, 93(7): 3517.

doi: 10.1021/acs.analchem.0c04894
[30]
Kong J E, Wei Q S, Tseng D, Zhang J Z, Pan E, Lewinski M, Garner O B, Ozcan A, di Carlo D. ACS Nano, 2017, 11(3): 2934.

doi: 10.1021/acsnano.6b08274
[31]
Dutta D, Sailapu S K, Chattopadhyay A, Ghosh S S. ACS Appl. Mater. Interfaces, 2018, 10(4): 3210.

doi: 10.1021/acsami.7b13782
[32]
Hou L, Qin Y X, Li J Y, Qin S Y, Huang Y L, Lin T R, Guo L Q, Ye F G, Zhao S L. Biosens. Bioelectron., 2019, 143: 111605.

doi: 10.1016/j.bios.2019.111605
[33]
Zhang L Y, Tian Z H, Bachman H, Zhang P R, Huang T J. ACS Nano, 2020, 14(3): 3159.

doi: 10.1021/acsnano.9b08349
[34]
Tomimuro K, Tenda K, Ni Y, Hiruta Y, Merkx M, Citterio D. ACS Sens., 2020, 5(6): 1786.

doi: 10.1021/acssensors.0c00564
[35]
Emaminejad S, Gao W, Wu E, Davies Z A, Yin Yin Nyein H, Challa S, Ryan S P, Fahad H M, Chen K, Shahpar Z, Talebi S, Milla C, Javey A, Davis R W. PNAS, 2017, 114(18): 4625.

doi: 10.1073/pnas.1701740114 pmid: 28416667
[36]
Bariya M, Nyein H Y Y, Javey A. Nat. Electron., 2018, 1(3): 160.

doi: 10.1038/s41928-018-0043-y
[37]
Dang W T, Manjakkal L, Navaraj W T, Lorenzelli L, Vinciguerra V, Dahiya R. Biosens. Bioelectron., 2018, 107: 192.

doi: 10.1016/j.bios.2018.02.025
[38]
Nyein H Y Y, Tai L C, Ngo Q P, Chao M H, Zhang G B, Gao W, Bariya M, Bullock J, Kim H, Fahad H M, Javey A. ACS Sens., 2018, 3(5): 944.

doi: 10.1021/acssensors.7b00961
[39]
Terse-Thakoor T, Punjiya M, Matharu Z, Lyu B Y, Ahmad M, Giles G E, Owyeung R, Alaimo F, Shojaei Baghini M, BrunyÉ T T, Sonkusale S. Npj Flex. Electron., 2020, 4(1): 1.

doi: 10.1038/s41528-020-0064-2
[40]
Zhu X F, Ju Y H, Chen J, Liu D Y, Liu H. ACS Sens., 2018, 3(6): 1135.

doi: 10.1021/acssensors.8b00168
[41]
Zhang J R, Rupakula M, Bellando F, Garcia Cordero E, Longo J, Wildhaber F, Herment G, GuÉrin H, Ionescu A M. ACS Sens., 2019, 4(8): 2039.

doi: 10.1021/acssensors.9b00597
[42]
Wang T T, Wang R Y, Zhang Z F, Qing L S. J. Instrum. Anal., 2020, 39(12): 1561.
(王甜甜, 王润月, 张志锋, 青琳森. 分析测试学报, 2020, 39(12): 1561.).
[43]
Yoon J H, Kim S M, Eom Y, Koo J M, Cho H W, Lee T J, Lee K G, Park H J, Kim Y K, Yoo H J, Hwang S Y, Park J, Choi B G. ACS Appl. Mater. Interfaces, 2019, 11(49): 46165.

doi: 10.1021/acsami.9b16829
[44]
Xiao J Y, Liu Y, Su L, Zhao D, Zhao L, Zhang X J. Anal. Chem., 2019, 91(23): 14803.

doi: 10.1021/acs.analchem.9b03110
[45]
Bandodkar A J, Gutruf P, Choi J, Lee K, Sekine Y, Reeder J T, Jeang W J, Aranyosi A J, Lee S P, Model J B, Ghaffari R, Su C J, Leshock J P, Ray T, Verrillo A, Thomas K, Krishnamurthi V, Han S, Kim J, Krishnan S, Hang T, Rogers J A. Sci. Adv., 2019, 5(1): eaav3294.

doi: 10.1126/sciadv.aav3294
[46]
Sekine Y, Kim S B, Zhang Y, Bandodkar A J, Xu S, Choi J, Irie M, Ray T R, Kohli P, Kozai N, Sugita T, Wu Y X, Lee K, Lee K T, Ghaffari R, Rogers J A. Lab a Chip, 2018, 18(15): 2178.

doi: 10.1039/C8LC00530C
[47]
Lee Y, Howe C, Mishra S, Lee D S, Mahmood M, Piper M, Kim Y, Tieu K, Byun H S, Coffey J P, Shayan M, Chun Y, Costanzo R M, Yeo W H. PNAS, 2018, 115(21): 5377.

doi: 10.1073/pnas.1719573115
[48]
Soni A, Surana R K, Jha S K. Sens. Actuat. B: Chem., 2018, 269: 346.

doi: 10.1016/j.snb.2018.04.108
[49]
Shin Low S, Pan Y X, Ji D Z, Li Y R, Lu Y L, He Y, Chen Q M, Liu Q J. Sens. Actuat. B: Chem., 2020, 308: 127718.

doi: 10.1016/j.snb.2020.127718
[50]
Chen J, Zhu X F, Ju Y H, Ma B, Zhao C, Liu H. Sens. Actuat. B: Chem., 2019, 285: 56.

doi: 10.1016/j.snb.2019.01.017
[51]
Ning B, Yu T, Zhang S W, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B, Lyon C J, Yin X M, Roy C J, Saba N S, Rappaport J, Wei Q S, Hu T Y. Sci. Adv., 2021, 7(2): abe3703.
[52]
Yang C, Huang X S, Li X L, Yang C D, Zhang T, Wu Q N liu D, Lin H T, Chen W R, Hu N, Xie X. Adv. Sci., 2021, 8(6): 2002971.

doi: 10.1002/advs.202002971
[53]
Yang X, Yao H Y, Zhao G N, Ameer G A, Sun W, Yang J, Mi S L. J. Mater. Sci., 2020, 55(22): 9551.

doi: 10.1007/s10853-020-04688-2
[54]
Moreddu R, Wolffsohn J S, Vigolo D, Yetisen A K. Sens. Actuat. B: Chem., 2020, 317: 128183.

doi: 10.1016/j.snb.2020.128183
[55]
Moreddu R, Elsherif M, Adams H, Moschou D, Cordeiro M F. Lab. Chip, 2020, 20: 3970.

doi: 10.1039/D0LC00438C
[56]
Lin Y R, Hung C C, Chiu H Y, Chang B H, Li B R, Cheng S J, Yang J W, Lin S F, Chen G Y. Sensors, 2018, 18(10): 3208.

doi: 10.3390/s18103208
[57]
Ji D Z, Liu Z X, Liu L, Low S S, Lu Y L, Yu X J, Zhu L, Li C D, Liu Q J. Biosens. Bioelectron., 2018, 119: 55.

doi: 10.1016/j.bios.2018.07.074
[58]
Yang R B, Cheng W B, Chen X F, Qian Q, Zhang Q, Pan Y J, Duan P, Miao P. ACS Omega, 2018, 3(9): 12141.

doi: 10.1021/acsomega.8b01270
[59]
Michael I, Kim D, Gulenko O, Kumar S, Kumar S, Clara J, Ki D Y, Park J, Jeong H Y, Kim T S, Kwon S, Cho Y K. Nat. Biomed. Eng., 2020, 4(6): 591.

doi: 10.1038/s41551-020-0557-2 pmid: 32424198
[60]
He X C, Pei Q B, Xu T L, Zhang X J. Sens. Actuat. B: Chem., 2020, 304: 127415.

doi: 10.1016/j.snb.2019.127415
[61]
Lu F, Yang Y L, Liu Y C, Wang F B, Ji X H, He Z K. Anal., 2021, 146(3): 949.

doi: 10.1039/D0AN02029J
[62]
Alves I P, Reis N M. Biosens. Bioelectron., 2019, 145: 111624.

doi: 10.1016/j.bios.2019.111624
[63]
Jalal A H, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. ACS Sens., 2018, 3(7): 1246.

doi: 10.1021/acssensors.8b00400
[64]
Qin X C, Wu T, Zhu Y, Shan X N, Liu C B, Tao N J. Anal. Chem., 2020, 92(12): 8480.

doi: 10.1021/acs.analchem.0c01240
[65]
Kou D H, Zhang Y C, Zhang S F, Wu S L, Ma W. Chem. Eng. J., 2019, 375: 121987.

doi: 10.1016/j.cej.2019.121987
[66]
Guo X L, Chen Y, Jiang H L, Qiu X B, Yu D L. Sensors, 2018, 18(9): 3141.

doi: 10.3390/s18093141
[67]
Li B C, Dong Q, Downen R S, Tran N, Jackson J H, Pillai D, Zaghloul M, Li Z Y. Sens. Actuat. B: Chem., 2019, 287: 584.

doi: 10.1016/j.snb.2019.02.077
[68]
Shrestha S, Harold C, Boubin M, Lawrence L. Smart Biomedical and Physiological Sensor Technology XVI. April 14-18, 2019. Baltimore, USA. SPIE, 2019: 11020.
[69]
Yoon I, Eom G, Lee S, Kim B K, Kim S K, Lee H J. Sensors, 2019, 19(6): 1401.

doi: 10.3390/s19061401
[70]
Zhu B W, Ling Y Z, Yap L W, Yang M J, Lin F G, Gong S, Wang Y, An T C, Zhao Y M, Cheng W L. ACS Appl. Mater. Interfaces, 2019, 11(32): 29014.

doi: 10.1021/acsami.9b06260
[71]
Yokota T, Nakamura T, Kato H, Mochizuki M, Tada M, Uchida M, Lee S, Koizumi M, Yukita W, Takimoto A, Someya T. Nat. Electron., 2020, 3(2): 113.

doi: 10.1038/s41928-019-0354-7
[72]
Meng K Y, Wu Y F, He Q, Zhou Z H, Wang X, Zhang G Q, Fan W J, Liu J, Yang J. ACS Appl. Mater. Interfaces, 2019, 11(50): 46399.

doi: 10.1021/acsami.9b12747
[73]
Guo Y, Zhong M J, Fang Z W, Wan P B, Yu G H. Nano Lett., 2019, 19(2): 1143.

doi: 10.1021/acs.nanolett.8b04514
[74]
Chandrasekhar A, Kim C S, Naji M, Natarajan K, Hahn J O, Mukkamala R. Sci. Transl. Med., 2018, 10(431): eaap8674.

doi: 10.1126/scitranslmed.aap8674
[75]
Chaglla E J, Celik N, Balachandran W. Sensors, 2018, 18(10): 3315.

doi: 10.3390/s18103315
[76]
Yoshikawa H, Uchiyama A, Higashino T. Sensors, 2019, 19(18): 3826.

doi: 10.3390/s19183826
[77]
Chen S W, Wu N, Ma L, Lin S Z, Yuan F, Xu Z S, Li W B, Wang B, Zhou J. ACS Appl. Mater. Interfaces, 2018, 10(4): 3660.

doi: 10.1021/acsami.7b17723
[78]
Chen A, Halton A J, Rhoades R D, Booth J C, Shi X H, Bu X L, Wu N, Chae J. ACS Sens., 2019, 4(4): 944.

doi: 10.1021/acssensors.9b00043
[79]
Xu G, Cheng C, Yuan W, Liu Z Y, Zhu L H, Li X T, Lu Y L, Chen Z T, Liu J L, Cui Z, Liu J J, Men H, Liu Q J. Sens. Actuat. B: Chem., 2019, 297: 126743.

doi: 10.1016/j.snb.2019.126743
[80]
Maier D, Laubender E, Basavanna A, Schumann S, Güder F, Urban G A, Dincer C. ACS Sens., 2019, 4(11): 2945.

doi: 10.1021/acssensors.9b01403
[81]
Wu C S, Wang A C, Ding W B, Guo H Y, Wang Z L. Adv. Energy Mater., 2019, 9(1): 1802906.

doi: 10.1002/aenm.201802906
[82]
Liu W L, Wang Z, Wang G, Liu G L, Chen J, Pu X J, Xi Y, Wang X, Guo H Y, Hu C G, Wang Z L. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[83]
Dong K, Peng X, Wang Z L. Adv. Mater., 2020, 32: e1902549.
[84]
Ghosh S K, Roy K, Mishra H K, Sahoo M R, Mahanty B, Vishwakarma P N, Mandal D. ACS Sustainable Chem. Eng., 2020, 8(2): 864.

doi: 10.1021/acssuschemeng.9b05058
[85]
Maity K, Garain S, Henkel K, Schmeißer D, Mandal D. ACS Appl. Polym. Mater., 2020, 2(2): 862.

doi: 10.1021/acsapm.9b00846
[86]
Kang J R, Yang X, Zhang D J, Hu J, Yang H. J. Instrum. Anal., 2019, 38(3): 364.
(康静茹, 杨欣, 张德军, 胡军, 杨海. 分析测试学报, 2019, 38(3): 364.).
[87]
Yan Z C, Pan T S, Wang D K, Li J C, Jin L, Huang L, Jiang J H, Qi Z H, Zhang H L, Gao M, Yang W Q, Lin Y. ACS Appl. Mater. Interfaces, 2019, 11(13): 12261.

doi: 10.1021/acsami.8b22613
[88]
Sempionatto J R, Lin M, Yin L, De La Paz E, Pei K, Sonsa-Ard T, De Loyola Silva A N, Khorshed A A, Zhang F, Tostado N, Xu S, Wang J. Nat. Biomed. Eng., 2021.
[89]
Solmaz M E, Mutlu A Y, Alankus G, Kılıç V, Bayram A, Horzum N. Sens. Actuat. B: Chem., 2018, 255: 1967.

doi: 10.1016/j.snb.2017.08.220
[90]
Draz M S, Vasan A, Muthupandian A, Kanakasabapathy M K, Thirumalaraju P, Sreeram A, Krishnakumar S, Yogesh V, Lin W, Yu X G, Chung R T, Shafiee H. Sci. Adv., 2020, 6(51): abd5354.
[91]
Nakasi R, Mwebaze E, Zawedde A. Algorithms, 2021, 14(1): 17.

doi: 10.3390/a14010017
[92]
Choi J, Chang S J, Bang J H, Park J S, Lee H R. Proceedings of the Ninth International Symposium on Information and Communication Technology - SoICT 2018. December 6/7, 2018. Danang City, Viet Nam. New York: ACM Press, 2018: 405.
[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[3] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[4] Zhao Qian, Ge Yunli, Ji Na, Song Chunfeng, Ma Degang, Liu Qingling. Removal of Volatile Organic Compounds by Catalytic Oxidation Technology [J]. Progress in Chemistry, 2016, 28(12): 1847-1859.
[5] Zhang Xiaodong, Yang Yang, Li Hongxin, Zou Xuejun, Wang Yuxin. Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs [J]. Progress in Chemistry, 2016, 28(10): 1550-1559.
[6] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[7] Zhang Chen Zhao Meiping. Methods for Detection of Volatile Organic Compounds in Human Exhaled Breath [J]. Progress in Chemistry, 2010, 22(01): 140-147.
[8] Sun Jian Li Xiaohui Liu Shouxin. The Combined Adsorption-Photocatalysis for the Removal of Indoor Volatile Organic Compounds [J]. Progress in Chemistry, 2009, 21(10): 2067-2076.
[9]

Li Junning1,2 Wang Lina2 Qi Tao2** Liu Changhou1 Zhang Yi2

. Mesoporous Gas Adsorbents [J]. Progress in Chemistry, 2008, 20(06): 851-858.
[10] Jin Shunping,Li Jianquan,Han Haiyan,Wang Hongmei,Chu Yannan**,Zhou Shikang. Proton Transfer Reaction Mass Spectrometry for Online Detection of Trace Volatile Organic Compounds [J]. Progress in Chemistry, 2007, 19(06): 996-1006.
[11] Wang Zhenya**,Hao Liqing,Zhang Weijun. Chemical Processes on the Formation of Secondary Organic A erosols [J]. Progress in Chemistry, 2005, 17(04): 732-739.
[12] Ming Weihua,Fu Shoukuan. Perspectives on Environmentally Friendly Coatings [J]. Progress in Chemistry, 1998, 10(02): 194-.
Viewed
Full text


Abstract

Smartphone-Based Point-of-Care Testing