中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (1): 168-177 DOI: 10.7536/PC210354 Previous Articles   Next Articles

• Review •

Liquid Crystal Elastomers Based Soft Robots

Meng Wang(), Jianfeng Yang   

  1. School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Contact: Meng Wang
  • Supported by:
    National Natural Science Foundation of China(52173109); National Natural Science Foundation of China(51903048)
Richhtml ( 79 ) PDF ( 1353 ) Cited
Export

EndNote

Ris

BibTeX

As a hot robot research direction, soft robots have potential applications in many fields, such as the operation of small objects in limited space, due to the advantages including many degrees of freedom, excellent adaptability and flexible contact. As a classical smart material, liquid crystal elastomers (LCEs) are very promising to be the suitable candidate for preparing the soft robots owing to the large and reversible shape deformations in response to external stimuli (heat, light, electric or magnetic field, humidity, etc.). Due to the changes of microscopic orders or molecular structures of uniaxial-aligned mesogens, the whole LCE materials can execute very large and reversible macroscopic actuation during the LC-to-isotropic phase transition process. At present, according to different driving modes, the research of LCE-based soft robots mainly focuses on the thermal-driven soft robots, light-driven soft robots, electro-driven soft robots, magnetic-driven soft robots and humidity-driven soft robots. This article reviews the developments of LCE-based soft robots, and also introduces the main different driving modes and related LCE-based soft robot systems in detail. Besides, the article further provides a view of prospective development in the future for LCE-based soft robots.

Contents

1 Introduction

2 Thermal-driven liquid crystal elastomer based soft robot

3 Light-driven liquid crystal elastomer based soft robot

3.1 Crawling soft robots

3.2 Rolling soft robots

3.3 Swimming soft robots

4 Electro-driven liquid crystal elastomer based soft robots

4.1 Carbon conductive material/liquid crystal elastomer based soft robot

4.2 Metal conductive material/liquid crystal elastomer based soft robot

4.3 Conductive polymer material/liquid crystal elastomer based soft robot

5 Liquid crystal elastomer based soft robots driven by other stimuli

6 Conclusion and outlook

Fig. 1 Two-way shape memory behavior of LCEs under external stimuli
Fig. 2 Eight different thermal-induced shape changes of soft robots[41]
Fig. 3 The precise multi-directional motion of soft robots under different near-infrared lights[48]
Fig. 4 The serpentine locomotion of a snake-mimic soft robot under near-infrared light[50]
Fig. 5 The rolling soft robot based on kirigami[52]
Fig. 6 A swimming micro-robot driven by ultraviolet light[56]
Fig. 7 The electro-driven cylinder soft robot based on liquid crystal elastomer/carbon black composite film[67]
Fig. 8 The walking and pushing modes of the soft robot under the electric field[68]
Fig. 9 The grabbing and lifting motions of the soft robot[70]
Fig. 10 The magnetic-induced spontaneous movement of the soft robot[75]
[1]
Trivedi D, Rahn C D, Kier W M, Walker I D. Appl. Bionics Biomech., 2008,5(3): 99.

doi: 10.1155/2008/520417
[2]
Kim S, Laschi C, Trimmer B. Trends Biotechnol., 2013,31(5): 287.

doi: 10.1016/j.tibtech.2013.03.002
[3]
Majidi C. Soft Robotics, 2014,1(1): 5.

doi: 10.1089/soro.2013.0001
[4]
Laschi C, Cianchetti M. Front. Bioeng. Biotechnol., 2014,2: 3.
[5]
Palagi S, Fischer P. Nat. Rev. Mater., 2018,3(6): 113.

doi: 10.1038/s41578-018-0016-9
[6]
Li J, de Ávila B E F, Gao W, Zhang L F, Wang J. Sci. Robot., 2017,2: eaam6431.

doi: 10.1126/scirobotics.aam6431
[7]
Rus D, Tolley M T. Nature, 2015,521(7553): 467.

doi: 10.1038/nature14543
[8]
Jin B J, Song H J, Jiang R Q, Song J Z, Zhao Q, Xie T. Sci. Adv., 2018,4(1): eaao3865. DOI: 10.1126/sciadv.aao3865.

doi: 10.1126/sciadv.aao3865
[9]
Zheng N, Fang Z Z, Zou W K, Zhao Q, Xie T. Angew. Chem., 2016,128(38): 11593.

doi: 10.1002/ange.201602847
[10]
Fang Z Z, Zheng N, Zhao Q, Xie T. ACS Appl. Mater. Interfaces, 2017,9(27): 22077.

doi: 10.1021/acsami.7b05713
[11]
Zhao Q, Zou W, Luo Y, Xie T. Sci. Adv., 2016,2: e1501297.

doi: 10.1126/sciadv.1501297
[12]
van Oosten C L, Bastiaansen C W M, Broer D J. Nat. Mater., 2009,8(8): 677.

doi: 10.1038/nmat2487
[13]
Li X, Cai X B, Gao Y F, Serpe M J. J. Mater. Chem. B, 2017,5(15): 2804.

doi: 10.1039/C7TB00426E
[14]
Suzumori K, Iikura S, Tanaka H. IEEE Control Syst. Mag., 1992,12: 21.
[15]
Jung K, Koo J C, Nam J D, Lee Y K, Choi H R. Bioinspir. Biomim., 2007,2(2): S42.

doi: 10.1088/1748-3182/2/2/S05
[16]
Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P. Adv. Robotics, 2012,26(7): 709.

doi: 10.1163/156855312X626343
[17]
Chambers L D, Winfield J, Ieropoulos I, Rossiter J. International Society for Optics and Photonics(Eds. BarCohen Y). San Diego: SPIE, 2014,9056: 90560B.
[18]
Nelson B J, Kaliakatsos I K, Abbott J J. Annu. Rev. Biomed. Eng., 2010,12(1): 55.

doi: 10.1146/bioeng.2010.12.issue-1
[19]
Nocentini S, Parmeggiani C, Martella D, Wiersma D S. Adv. Opt. Mater., 2018,6: 1800207.

doi: 10.1002/adom.v6.14
[20]
Küpfer J, Finkelmann H. Makromol. Chem., Rapid Commun., 1991,12(12): 717.
[21]
Ware T H, McConney M E, Wie J J, Tondiglia V P, White T J. Science, 2015,347(6225): 982.

doi: 10.1126/science.1261019
[22]
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Phys. Rev. Lett., 2001,87: 015501.

doi: 10.1103/PhysRevLett.87.015501
[23]
Yu Y L, Nakano M, Ikeda T. Nature, 2003,425(6954): 145.

doi: 10.1038/425145a
[24]
Broer D J, Bastiaansen C M W, Debije M G, Schenning A P H J. Angew. Chem. Int. Ed., 2012,51(29): 7102.

doi: 10.1002/anie.201200883
[25]
Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt A M. Macromol. Symp., 2010, 291- 292(1): 186.
[26]
Harris K D, Bastiaansen C W M, Lub J, Broer D J. Nano Lett., 2005,5(9): 1857.

doi: 10.1021/nl0514590
[27]
Wei J, Yu Y L. Soft Matter, 2012,8(31): 8050.

doi: 10.1039/c2sm25474c
[28]
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lösche M, Kremer F. Nature, 2001,410(6827): 447.

doi: 10.1038/35068522
[29]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019,7(3): 622.

doi: 10.1039/C8TC05186K
[30]
Hu J, Li X, Ni Y, Ma S D, Yu H F. J. Mater. Chem. C, 2018,6(40): 10815.

doi: 10.1039/C8TC03693D
[31]
Finkelmann H, Kock H J, Rehage G. Makromol. Chem., Rapid Commun., 1981,2(4): 317.
[32]
Clarke S M, Hotta A, Tajbakhsh A R, Terentjev E M. Phys. Rev. E, 2001,64(6): 061702.

doi: 10.1103/PhysRevE.64.061702
[33]
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv. Mater., 2019,31(52): 1904224.

doi: 10.1002/adma.v31.52
[34]
Ube T, Ikeda T. Adv. Optical Mater., 2019,7(16): 1900380.

doi: 10.1002/adom.v7.16
[35]
Gu W, Qing X, Wei J, Yu Y L. Chin. Sci. Bull., 2016,61(19): 2102.

doi: 10.1360/N972016-00006
[36]
Ali I, Li X D, Chen X Q, Jiao Z W, Pervaiz M, Yang W M. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2019,103: 109852.

doi: 10.1016/j.msec.2019.109852
[37]
Pelrine R, Kornbluh R, Pei Q, Joseph J. Science, 2000,287: 836.

pmid: 10657293
[38]
Qi X D, Xiu H, Wei Y, Zhou Y, Guo Y L, Huang R, Bai H W, Fu Q. Compos. Sci. Technol., 2017,139: 8.

doi: 10.1016/j.compscitech.2016.12.007
[39]
De Gennes P G, Prost J. The Physics of Liquid Crystals, Oxford University Press, 1993.
[40]
Ambulo C P, Burroughs J J, Boothby J M, Kim H, Shankar M R, Ware T H. ACS Appl. Mater. Interfaces, 2017,9(42): 37332.

doi: 10.1021/acsami.7b11851
[41]
Yang R, Zhao Y. Angew. Chem., 2017,129(45): 14390.

doi: 10.1002/ange.201709528
[42]
Saed M O, Ambulo C P, Kim H, De R, Raval V, Searles K, Siddiqui D A, Cue J M O, Stefan M C, Shankar M R, Ware T H. Adv. Funct. Mater., 2019,29(3): 1806412.

doi: 10.1002/adfm.v29.3
[43]
Habault D, Zhang H J, Zhao Y. Chem. Soc. Rev., 2013,42(17): 7244.

doi: 10.1039/c3cs35489j pmid: 23440057
[44]
Bushuyev O S, Aizawa M, Shishido A, Barrett C J. Macromol. Rapid Commun., 2018,39(1): 1700253.

doi: 10.1002/marc.v39.1
[45]
Wang M, Ma D Y, Wang C J. Prog. Chem., 2020,32: 1452.
( 王猛, 马丹阳, 王成杰. 化学进展, 2020,32(10): 1452.)

doi: 10.7536/PC200335
[46]
Alexander R M. Evol. Anthropol., 2004, 13:160.

doi: 10.1002/evan.20018
[47]
Ge F J, Yang R, Tong X, Camerel F, Zhao Y. Angew. Chem. Int. Ed., 2018,57(36): 11758.

doi: 10.1002/anie.v57.36
[48]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019,10: 1.

doi: 10.1038/s41467-018-07882-8
[49]
Zeng H, Wani O M, Wasylczyk P, Priimagi A. Macromol. Rapid Commun., 2018,39(1): 1700224.

doi: 10.1002/marc.v39.1
[50]
Wang M, Hu X B, Zuo B, Huang S, Chen X M, Yang H. Chem. Commun., 2020,56(55): 7597.

doi: 10.1039/D0CC02823A
[51]
Wie J J, Shankar M R, White T J. Nat. Commun., 2016,7(1): 1.
[52]
Cheng Y C, Lu H C, Lee X, Zeng H, Priimagi A. Adv. Mater., 2020,32(7): 1906233.

doi: 10.1002/adma.v32.7
[53]
Wang Z J, Li K, He Q G, Cai S Q. Adv. Mater., 2019,31(7): 1806849.

doi: 10.1002/adma.v31.7
[54]
Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N, Giesselmann F, Wiersma D S, Lauga E, Fischer P. Nat. Mater., 2016,15(6): 647.

doi: 10.1038/nmat4569
[55]
Fischer P, Ghosh A. Nanoscale, 2011,3(2): 557.

doi: 10.1039/c0nr00566e pmid: 21152575
[56]
Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L, Liu J. Sci. Rep., 2015,5(1): 1.
[57]
Ma S D, Li X, Huang S, Hu J, Yu H F. Angew. Chem. Int. Ed., 2019,58(9): 2655.

doi: 10.1002/anie.v58.9
[58]
Tian H M, Wang Z J, Chen Y L, Shao J Y, Gao T, Cai S Q. ACS Appl. Mater. Interfaces, 2018,10(9): 8307.

doi: 10.1021/acsami.8b00639
[59]
de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013,339(6119): 535.

doi: 10.1126/science.1222453
[60]
Chen L Z, Weng M C, Zhou Z W, Zhou Y, Zhang L L, Li J X, Huang Z G, Zhang W, Liu C H, Fan S S. ACS Nano, 2015,9(12): 12189.

doi: 10.1021/acsnano.5b05413
[61]
Yadav N, Tyagi M, Wadhwa S, Mathur A, Narang J. Methods in Enzymology. Amsterdam: Elsevier, 2020,630: 347.
[62]
Kim H, Lee J A, Ambulo C P, Lee H B, Kim S H, Naik V V, Haines C S, Aliev A E, Ovalle-Robles R, Baughman R H, Ware T H. Adv. Funct. Mater., 2019,29(48): 1905063.

doi: 10.1002/adfm.v29.48
[63]
Liu H R, Tian H M, Shao J Y, Wang Z J, Li X M, Wang C H, Chen X L. ACS Appl. Mater. Interfaces, 2020,12(50): 56338.

doi: 10.1021/acsami.0c17327
[64]
Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D. Biosens. Bioelectron., 2020,156: 112033.

doi: 10.1016/j.bios.2020.112033
[65]
Mazzaracchio V, Tomei M R, Cacciotti I, Chiodoni A, Novara C, Castellino M, Scordo G, Amine A, Moscone D, Arduini F. Electrochimica Acta, 2019,317: 673.

doi: 10.1016/j.electacta.2019.05.117
[66]
Wang C J, Sim K, Chen J, Kim H, Rao Z L, Li Y H, Chen W Q, Song J Z, Verduzco R, Yu C J. Adv. Mater., 2018,30(13): 1706695.

doi: 10.1002/adma.v30.13
[67]
Wang M, Cheng Z W, Zuo B, Chen X M, Huang S, Yang H. ACS Macro Lett., 2020,9(6): 860.

doi: 10.1021/acsmacrolett.0c00333
[68]
Xiao Y Y, Jiang Z C, Tong X, Zhao Y. Adv. Mater., 2019,31(36): 1903452.

doi: 10.1002/adma.v31.36
[69]
He Q G, Wang Z J, Wang Y, Minori A, Tolley M T, Cai S Q. Sci. Adv., 2019,5(10): eaax5746.

doi: 10.1126/sciadv.aax5746
[70]
Ma B, Xu C T, Cui L S, Zhao C, Liu H. ACS Appl. Mater. Interfaces, 2021,13(4): 5574.

doi: 10.1021/acsami.0c20418
[71]
Holze R, Wu Y P. Electrochimica Acta, 2014,122: 93.

doi: 10.1016/j.electacta.2013.08.100
[72]
Naoi K, Naoi W, Aoyagi S, Miyamoto J I, Kamino T. Acc. Chem. Res., 2013,46(5): 1075.

doi: 10.1021/ar200308h
[73]
Greco F, Domenici V, Desii A, Sinibaldi E, Zupančič B, Zalar B, Mazzolai B, Mattoli V,. Soft Matter, 2013,9(47): 11405.

doi: 10.1039/c3sm51153g
[74]
Feng C R, Rajapaksha C P H, Cedillo J M, Piedrahita C, Cao J W, Kaphle V, Lüssem B, Kyu T, Jákli A. Macromol. Rapid Commun., 2019,40(19): 1900299.

doi: 10.1002/marc.v40.19
[75]
Zhang J C, Guo Y B, Hu W Q, Soon R H, Davidson Z S, Sitti M. Adv. Mater., 2021,33(8): 2006191.

doi: 10.1002/adma.v33.8
[76]
Verpaalen R C P, Souren A E J, Debije M G, Engels T A P, Bastiaansen C W M, Schenning A P H J. Soft Matter, 2020,16(11): 2753.

doi: 10.1039/d0sm00030b pmid: 32083272
[77]
Wani O M, Verpaalen R, Zeng H, Priimagi A, Schenning A P H J. Adv. Mater., 2019,31(2): 1805985.

doi: 10.1002/adma.v31.2
[1] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[2] Meng Wang, Danyang Ma, Chengjie Wang. Near-Infrared Light Responsive Liquid Crystal Elastomers [J]. Progress in Chemistry, 2020, 32(10): 1452-1461.
[3] Qian Zhao, Shenghua Li, Yu Liu*. Construction and Functions of Supramolecular Cyclodextrin Gels [J]. Progress in Chemistry, 2018, 30(5): 673-683.
[4] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[5] Du Haiyan, Lei Xia, Xu Yuyu, Liang Zhenhai, Wang Yonghong. Multi-Stimuli Induced Shape Memory Effect of Polymers Based on Poly(vinyl alcohol) [J]. Progress in Chemistry, 2016, 28(11): 1648-1657.
[6] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[7] Li Xingjian, Wang Yaru, Zheng Zhaohui, Ding Xiaobin, Peng Yuxing. Structural Design and Property Study of Shape Memory Polymer Network [J]. Progress in Chemistry, 2013, 25(10): 1726-1738.
[8] Xiong Xingquan*, Jiang Yunbing. Reversible Diels-Alder Reaction [J]. Progress in Chemistry, 2013, 25(06): 999-1011.
[9] Wu Yuanpeng, Lin Yuanhua, Zhou Ying, Zuo Fang, Zheng Zhaohui, Ding Xiaobin. Light-Induced Shape Memory Polymer Materials [J]. Progress in Chemistry, 2012, (10): 2004-2010.
[10] Xie Rui, Yang Mei, Cheng Changjing, Jiang Jing, Chu Liangyin. Molecular-Recognition and Thermo-Responsive Composite Smart Polymeric Materials [J]. Progress in Chemistry, 2012, 24(0203): 195-202.
[11] Wang Haiping, Rong Minzhi, Zhang Mingqiu. Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules [J]. Progress in Chemistry, 2010, 22(12): 2397-2407.
[12] Luo Chunhua1,2 Dong Qiujing1 Zheng Zhaohui2 Ding Xiaobin2** Peng Yuying2**. Gold Nanoparticles Coated with Stimuli Responsive Polymer [J]. Progress in Chemistry, 2009, 21(12): 2674-2681.
[13] Cao Liangcheng|Wang Yuechuan*

. Preparation and Mechanism of Electrochromic Viologens [J]. Progress in Chemistry, 2008, 20(09): 1353-1360.
[14] Zhang Haixuan1,2 Meng Xun1,2 Li Ping1**. Light and Thermal-stimuli Responsive Materials [J]. Progress in Chemistry, 2008, 20(05): 657-672.
[15] Xiong Lijun|Hu Xiaobo|Liu Xinxing|Tong Zhen**. Polymer-Laponite Nanocomposite Hydrogels with Super-Elongation [J]. Progress in Chemistry, 2008, 20(04): 464-468.