Progress in Chemistry 2021, Vol. 33 Issue (5): 713-725 DOI: 10.7536/PC210102   Next Articles

• Original article •

Neurotoxicity Induced by Atmospheric Fine Particulate Matters and the Underlying Molecular Mechanism

Yuzhu Zhang1,2, Jing Zhan1, Qian S. Liu1,*(), Qunfang Zhou1,2,3, Guibin Jiang1   

  1. 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    3 School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
  • Received: Revised: Online: Published:
  • Contact: Qian Liu
  • Supported by:
    National Natural Science Foundation of China(91943301); National Natural Science Foundation of China(21806178); National Natural Science Foundation of China(21527901)
Richhtml ( 70 ) PDF ( 664 ) Cited




The health effect of atmospheric fine particulate matters(PMs) is now being increasingly concerned, and a growing number of epidemiological studies have reported the adverse impacts of PMs on the respiratory system, cardiovascular system, etc. However, whether PMs can enter the brain and cause neurotoxicities or not remains unknown, which has been an important research direction for the health risk evaluation of atmospheric smog in recent years. Based on the relevant epidemiological studies and experimental evidences in vitro and in vivo, this paper summarizes the potential pathways regulating the neurotoxicity of atmospheric PMs, their detrimental effects on the adult, elderly, and developmental nervous systems, as well as the underlying molecular mechanisms. Atmospheric PMs were reported to affect the nervous system through the blood-brain barrier pathway, the olfactory nerve pathway, the microbiota-gut-brain axis, etc. Herein, oxidative stress, mitochondrial damage, inflammation, DNA damage, epigenetic regulation, hematological homeostasis, and several key signaling pathways were found to be involved in the observed neurotoxicities caused by atmospheric PM exposure. This review aims to reveal the neurotoxicities of atmospheric PMs, especially their neurodevelopmental effects on special populations such as children. On this basis, this article points out the future research directions in this field, providing a theoretical basis for the evaluation of neurotoxicities and public health hazards of atmospheric PMs.


1 Introduction

2 Epidemiological studies on neurological diseases induced by PM exposure

2.1 Developmental nervous system

2.2 Adult nervous system

2.3 Elderly nervous system

3 Pathways by which PMs affect the nervous system

3.1 The blood-brain barrier pathway

3.2 The olfactory nerve pathway

3.3 Other pathways

4 Experimental findings on neurotoxic effects of PMs

4.1 In vitro experiments

4.2 In vivo experiments

5 Molecular mechanisms underlying the neurotoxicities of PMs

5.1 Oxidative stress and mitochondrial damage

5.2 Inflammation

5.3 Key signaling pathways regulating the neurotoxicities of PMs

5.4 DNA damage and epigenetic regulation

5.5 Effects on hematological homeostasis

6 Prospects and research points

Table 1 The epidemiological findings on neurological effects of atmospheric particulate matters
Population Scale Research design Exposure method Exposure estimate Main findings ref
Pregnant women
living in four
residential areas of
74 671 Multiple linear
regression, logistic
Total suspended particles(TSP), SO2 Low birth weight Wang
et al.[46]
Preterm birth records in Pennsylvania(1997~2001) Time-series analysis PM10, SO2 Increase in preterm birth risk Sagiv
et al.[48]
Birth records in Atlanta(1994-2004) 476 489 Time-series analysis, Poisson
generalized linear
PM10, PM2.5,
NO, NO2,
SO2, O3
Data collected from air quality monitors Increase in preterm birth risk Darrow
et al.[47]
Urban children 267 Distributed lag
models, intelligence assessment
PM2.5 Spatio-temporally resolved prediction
Exposure in specific prenatal windows was associated with poor intellectual functions Chiu
et al.[51]
Representative children in Japan since 2001 33 911 Multilevel logistic
regression analysis
PMs, NO2,
Stunting Yorifuji
et al.[52]
Newborns of Rome
GASPII project
719 Wechsler Intelligence Scale for Children-Ⅲ, linear
regression model
PM2.5, NO2 Land use regression
Cognitive impairment Porta
et al.[53]
Mother-child pairs in
1109 Linear regression
PM2.5, black
Space-time LUR model Partial cognitive
et al.[54]
NHS II autism spectrum disorder children(USA) 245 Linear regression
PM2.5, PM2.5-10 Spatio-temporal prediction model PM2.5 is associated with an increased risk of autism Raanan
et al.[60]
Autism children born in Carolina 979 Multiple regression
PM10 Statistical interpolation method Third-trimester exposure is associated with an increased risk of autism Kalkbrenner
et al.[58]
Children from 39 schools in Barcelona exposed to traffic-related air
pollution(7~10 y)
2715 Stratified analyses Traffic source
Linear mixed effects models Higher traffic-related air pollution made children a smaller improvement in cognitive development Sunyer
et al.[63]
Patients with acute
ischemic stroke in
Ontario, Canada
9202 Time-stratified case-crossover design, random-effects meta-analysis techniques Increased risk of
particulate-related ischemic strokes
et al.[30]
City populations with high-level exposure to air pollution Cognitive and
neurological integrity testing, genome
Accumulation of COX2 and Aβ42 in nerve cells Lilian
et al.[64]
Healthy adults 27 Serum and plasma were collected and analyzed for inflammatory cytokines Filtered air
(FA) and diesel exhaust(DE)
Cortical stress response Cliff
et al.[74]
Populations in northern Sweden 1806 Cohort analysis PM2.5-10, PM2.5 Spatiotemporal smoothing model Cognitive decline was speed up Oudin
et al.[66]
MS-related hospitalization in
Lombardy region, Italy,(2001~2009)
8287 Poisson regression analysis PM10 Daily concentrations
from 53 monitoring sites
Determining MS
occurrence and relapses
et al.[65]
Populations(> 65 y) 95 690 Cohort study, Cox proportional hazards model O3, PM2.5 Air data from Taiwan Environmental Protection Agency Long-term exposure
increased the risk of AD
et al.[73]
US women(70~81y) 19 409 Cognitive test Exposure to
PM2.5-10 and
PM2.5 in the last month or for a long term of 7~14 years
Geographic information system-based spatiotemporal smoothing models Cognitive decline of old women Weuve
et al.[13]
Table 2 Experimental findings on neurotoxic effects of PMs
Experimental model Exposure method Exposure time Main findings ref
In vivo In vitro
/ Primary mouse
hippocampal neurons
PM2.5 24 h PM2.5 elevated COX-2 expression,increased the amplitude of excitatory postsynaptic potentials by ROS-NF-κB pathway Li et al.[38]
/ Rat microglia SiO2NPs, TiO2NPs, HAPNPs, Fe3O4NPs 24 h Microglial activation and the release of proinflammatory factors Xue et al.[89]
/ Human neuroblastoma SH-SY5Y cells Diesel exhaust particle 3, 24 h Gluconeogenesis Ji et al.[90]
/ Human neuroblastoma SH-SY5Y cells PM2.5 and its extracts 72 h Oxidative stress-mediated abnormal DNA hydroxymethylation Wei et al.[91]
/ Mixed glia derived from neonatal rat cerebral cortex. traffic ultrafine
particulate matter
24 h Microglia-derived TNF-α increased Cheng
et al.[33]
/ Primary culture of mouse olfactory bulb and olfactory
epithelial cells
Urban traffic ultrafine particulate matter
(< 200 nm)
5, 20, 45 h inflammation during different time courses Cheng
et al.[79]
/ BV-2 microglia am-PM2.5, pm-PM2.5 24 h Am-PM2.5 had a higher pro-
inflammatory activity than pm-PM2.5
et al.[92]
C57BL/6J mice / PM2.5, SO2 and NO2 co-exposure 28 days Impaired spatial learning and memory, mitochondrial dysfunction Ku et al.[40]
Male SD rat / PM2.5 12 weeks Morphological abnormalities of the hippocampus, abnormal expression of neurotransmitters and receptors. Li et al.[93]
Nrf2-/- mice Astrocyte PM2.5 24 weeks NF-κB induced metabolic disorders and neuroinflammation Xu et al.[96]
C57BL/6 mice
/ PMs 6 h/day
(30 days)
Disruption of blood-brain barrier and increased inflammatory marker expression Oppenheim et al.[100]
ApoE-/- mice / Low concentrations of PM2.5 6 h/day
(30 days)
PM2.5 altered vasomotor tone, induced vascular inflammation, and potentiated atherosclerosis Sun et al.[99]
ApoE-/- mice / Mixture of gasoline and diesel engine exhaust 6 h/day
(30 days)
Increased levels of oxidative stress in microvascular Lucero et al.[101]
Van Donkelaar A, Martin R V, Brauer M, Boys B L. Environ. Health Perspect., 2015, 123(2):135.

doi: 10.1289/ehp.1408646
Xu X H, Ha S U, Basnet R. Front Public Health, 2016, 4:157.
江桂斌(Jiang G B ), 王春霞(Wang C X ), 张爱茜(Zhang A Q). 大气细颗粒物的毒理与健康效应(Toxicology and Health Effects of Atmospheric Fine Particles). 北京:科学出版社 (Beijing: Science Press), 2020.1.
World Health Organization. Public Health Environ., 2014.
Tao Y, Liu Y, Mi S, Guo Y. Acta Sci. Circum. 2014, 34(3):592.
Huang X, Han X, Li S, Yang H, Huang C, Huang T. Res. Environ. Sci., 2017, 30(7):1001.
Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen L C, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H. Part. Fibre Toxicol., 2006, 3(1):1.

doi: 10.1186/1743-8977-3-1
Tian Y Z, Chen G, Wang H T, Huang-Fu Y Q, Shi G L, Han B, Feng Y C. Chemosphere, 2016, 147:256.

doi: 10.1016/j.chemosphere.2015.12.132
Tonne C, Elbaz A, Beevers S, Singh-Manoux A. Epidemiology, 2014, 25(5):674.

doi: 10.1097/EDE.0000000000000144
Ranft U, Schikowski T, Sugiri D, Krutmann J, Krämer U. Environ. Res., 2009, 109(8):1004.

doi: 10.1016/j.envres.2009.08.003
Gatto N M, Henderson V W, Hodis H N, St John J A, Lurmann F, Chen J C, Mack W J. NeuroToxicology, 2014, 40:1.

doi: 10.1016/j.neuro.2013.09.004
Chen J C, Schwartz J. NeuroToxicology, 2009, 30(2):231.

doi: 10.1016/j.neuro.2008.12.011
Weuve J, Puett R C, Schwartz J, Yanosky J D, Laden F, Grodstein F. Arch Intern Med, 2012, 172(3):219.

doi: 10.1001/archinternmed.2011.683
Ailshire J A, Crimmins E M. Am. J. Epidemiol., 2014, 180(4):359.

doi: 10.1093/aje/kwu155
Ku T T, Chen M J, Li B, Yun Y, Li G K, Sang N. Toxicol. Res., 2017, 6(1):7.

doi: 10.1039/C6TX00314A
Pardo M, Qiu X H, Zimmermann R, Rudich Y. Chem. Res. Toxicol. 2020, 33(5):1110.

doi: 10.1021/acs.chemrestox.0c00007
Calderón-Garcidueñas L, Calderón-Garcidueñas A, Torres-Jardón R, Avila-Ramírez J, Kulesza R J, Angiulli A D. Prim. Heal. Care Res. Dev., 2015, 16(4):329.
Bernstein J A, Alexis N, Barnes C, Bernstein I L, Nel A, Peden D, Diaz-Sanchez D, Tarlo S M, Williams P B, Bernstein J A. J. Allergy Clin. Immunol., 2004, 114(5):1116.

doi: 10.1016/j.jaci.2004.08.030
Dockery D W, Pope C A, Xu X P, Spengler J D, Ware J H, Fay M E, Ferris B G, Speizer F E. N Engl J. Med., 1993, 329(24):1753.

doi: 10.1056/NEJM199312093292401
Dockery D W. Environ. Health Perspect., 2001, 109:483.
Dockery D W, Pope C A. Annu. Rev. Public Heal., 1994, 15(1):107.
Møller P, Jacobsen N R, Folkmann J K, Danielsen P H, Mikkelsen L, Hemmingsen J G, Vesterdal L K, Forchhammer L, Wallin H, Loft S. Free. Radic. Res., 2010, 44(1):1.

doi: 10.3109/10715760903300691
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Inhal. Toxicol., 2004, 16(6/7):437.

doi: 10.1080/08958370490439597
Wu Y C, Lin Y C, Yu H L, Chen J H, Chen T F, Sun Y, Wen L L, Yip P K, Chu Y M, Chen Y C. Alzheimer’s Dement.: Diagn. Assess. Dis. Monit., 2015, 1(2):220.
Mutlu E A, Comba I Y, Cho T, Engen P A, Yazıcı C, Soberanes S, Hamanaka R B, Niğdelioğlu R, Meliton A Y, Ghio A J, Budinger G R S, Mutlu G M. Environ. Pollut., 2018, 240:817.

doi: 10.1016/j.envpol.2018.04.130
Lombardi V C, de Meirleir K L, Subramanian K, Nourani S M, Dagda R K, Delaney S L, Palotás A. J. Nutr. Biochem., 2018, 61:1.

doi: 10.1016/j.jnutbio.2018.04.004
Shou Y K, Huang Y L, Zhu X Z, Liu C Q, Hu Y, Wang H H. Ecotoxicol. Environ. Saf., 2019, 174:344.

doi: 10.1016/j.ecoenv.2019.02.086
Malek A M, Barchowsky A, Bowser R, Heiman-Patterson T, Lacomis D, Rana S, Youk A, Talbott E O. Environ. Pollut., 2015, 197:181.

doi: 10.1016/j.envpol.2014.12.010
Calderón-Garcidueñas L, Avila-Ramírez J, Calderón-Garcidueñas A, González-Heredia T, Acuña-Ayala H, Chao C K, Thompson C, Ruiz-Ramos R, Cortés-González V, Martínez-Martínez L, García-Pérez M A, Reis J, Mukherjee P S, Torres-Jardón R, Lachmann I. J. Alzheimer’s Dis., 2016, 54(2):597.
O’donnell M J, Fang J, Mittleman M A, Kapral M K, Wellenius G A, Epidemiology, 2011, 22(3):422.

doi: 10.1097/EDE.0b013e3182126580
Lim Y H, Kim H, Kim J H, Bae S, Park H Y, Hong Y C. Environ. Heal. Perspect., 2012, 120(7):1023.

doi: 10.1289/ehp.1104100
Lampron A, ElAli A, Rivest S. Neuron, 2013, 78(2):214.

doi: 10.1016/j.neuron.2013.04.005
Cheng H, Davis D A, Hasheminassab S, Sioutas C, Morgan T E, Finch C E. J. Neuroinflammation, 2016, 13(1):1.

doi: 10.1186/s12974-015-0467-5
Hogan M K, Kovalycsik T, Sun Q H, Rajagopalan S, Nelson R J. Behav. Brain Res., 2015, 294:81.

doi: 10.1016/j.bbr.2015.07.033
Verma V, Fang T, Xu L, Peltier R E, Russell A G, Ng N L, Weber R J. Environ. Sci. Technol., 2015, 49(7):4646.

doi: 10.1021/es505577w
Berson A, Nativio R, Berger S L, Bonini N M. Trends Neurosci., 2018, 41(9):587.

doi: 10.1016/j.tins.2018.05.005
Gondalia R, Baldassari A, Holliday K M, Justice A E, Méndez-Giráldez R, Stewart J D, Liao D P, Yanosky J D, Brennan K J M, Engel S M, Jordahl K M, Kennedy E, Ward-Caviness C K, Wolf K, Waldenberger M, Cyrys J, Peters A, Bhatti P, Whitsel E A. Environ. Int., 2019, 132:104723.

doi: S0160-4120(18)32932-5 pmid: 31208937
Li B, Guo L, Ku T T, Chen M J, Li G K, Sang N. Chemosphere, 2018, 190:124.

doi: 10.1016/j.chemosphere.2017.09.098
Acaz-Fonseca E, Ortiz-Rodriguez A, Azcoitia I, Garcia-Segura L M, Arevalo M A. Cell Death Discov., 2019, 5(1):1.
Ku T T, Ji X T, Zhang Y Y, Li G K, Sang N. Chemosphere, 2016, 163:27.

doi: 10.1016/j.chemosphere.2016.08.009
Calderón-Garcidueñas L, Engle R, Mora-Tiscareño A, Styner M, Gómez-Garza G, Zhu H T, Jewells V, Torres-Jardón R, Romero L, Monroy-Acosta M E, Bryant C, González-González L O, Medina-Cortina H, D’Angiulli A. Brain Cogn., 2011, 77(3):345.

doi: 10.1016/j.bandc.2011.09.006 pmid: 22032805
Brown R C, Lockwood A H, Sonawane B R. Environ. Heal. Perspect., 2005, 113(9):1250.

doi: 10.1289/ehp.7567
Guxens M, Sunyer J. Swiss Med Wkly, 2012, 141:w13322.
Fox M A, Tran N L, Groopman J D, Burke T A. Regul. Toxicol. Pharmacol., 2004, 40(3):305.

doi: 10.1016/j.yrtph.2004.07.008
Landrigan P J, Sonawane B, Butler R N, Trasande L, Callan R, Droller D. Environ. Heal. Perspect., 2005, 113(9):1230.

doi: 10.1289/ehp.7571
Wang X, Ding H, Ryan L, Xu X. Environ. Heal. Perspect., 1997, 105(5):514.

doi: 10.1289/ehp.97105514
Darrow L A, Klein M, Flanders W D, Waller L A, Correa A, Marcus M, Mulholland J A, Russell A G, Tolbert P E. Epidemiology, 2009, 20(5):689.

doi: 10.1097/EDE.0b013e3181a7128f
Sagiv S K, Mendola P, Loomis D, Herring A H, Neas L M, Savitz D A, Poole C. Environ. Heal. Perspect., 2005, 113(5):602.

doi: 10.1289/ehp.7646
Choi H, Rauh V, Garfinkel R, Tu Y, Perera F P. Environ. Heal. Perspect., 2008, 116(5):658.

doi: 10.1289/ehp.10958
Marshall E G, Harris G, Wartenberg D. Birth Defects Res. Part A: Clin. Mol. Teratol., 2010, 88(4):205.

doi: 10.1002/bdra.v88:4
Chiu Y H M, Hsu H H L, Coull B A, Bellinger D C, Kloog I, Schwartz J, Wright R O, Wright R J. Environ. Int., 2016, 87:56.

doi: 10.1016/j.envint.2015.11.010
Yorifuji T, Kashima S, Diez M H, Kado Y, Sanada S, Doi H. Epidemiology, 2016, 27(1):57.

doi: 10.1097/EDE.0000000000000361 pmid: 26247490
Porta D, Narduzzi S, Badaloni C, Bucci S, Cesaroni G, Colelli V, Davoli M, Sunyer J, Zirro E, Schwartz J, Forastiere F. Epidemiology, 2015:1.
Harris M H, Gold D R, Rifas-Shiman S L, Melly S J, Zanobetti A, Coull B A, Schwartz J D, Gryparis A, Kloog I, Koutrakis P, Bellinger D C, White R F, Sagiv S K, Oken E. Environ. Heal. Perspect., 2015, 123(10):1072.

doi: 10.1289/ehp.1408803
Liu J H, Lewis G. J Environ Health, 2014, 76(6):130.
Zanchi A C T, Fagundes L S, Barbosa F, Bernardi R, Rhoden C R, Saldiva P H N, do Valle A C,. Inhal. Toxicol., 2010, 22(11):910.

doi: 10.3109/08958378.2010.494313 pmid: 20569119
Genc S, Zadeoglulari Z, Fuss S H, Genc K. J. Toxicol., 2012, 2012:1.
Kalkbrenner A E, Windham G C, Serre M L, Akita Y, Wang X X, Hoffman K, Thayer B P, Daniels J L. Epidemiology, 2015, 26(1):30.

doi: 10.1097/EDE.0000000000000173 pmid: 25286049
Talbott E O, Arena V C, Rager J R, Clougherty J E, Michanowicz D R, Sharma R K, Stacy S L. Environ. Res., 2015, 140:414.

doi: 10.1016/j.envres.2015.04.021
Raz R, Roberts A L, Lyall K, Hart J E, Just A C, Laden F, Weisskopf M G. Environ. Health Perspect., 2015, 123(3):264.

doi: 10.1289/ehp.1408133
Polanczyk G, de Lima M S, Horta B L, Biederman J, Rohde L A. Am. J. Psychiatry, 2007, 164(6):942.

doi: 10.1176/ajp.2007.164.6.942
Donzelli G, Llopis-Gonzalez A, Llopis-Morales A, Cioni L, Morales-Suárez-varela M. Int. J. Environ. Res. Public Heal., 2019, 17(1):67.
Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, López-Vicente M, Suades-González E, Foraster M, Garcia-Esteban R, Basagaña X, Viana M, Cirach M, Moreno T, Alastuey A, Sebastian-Galles N, Nieuwenhuijsen M, Querol X. PLoS Med., 2015, 12(3):e1001792.

doi: 10.1371/journal.pmed.1001792
Calderón-Garcidueñas L, Reed W, Maronpot R R, Henriquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A, Dragustinovis I, Franco-Lira M, Aragón-Flores M, Solt A C, Altenburg M, Torres-Jardón R, Swenberg J A. Toxicol. Pathol., 2004, 32(6):650.

pmid: 15513908
Angelici L, Piola M, Cavalleri T, Randi G, Cortini F, Bergamaschi R, Baccarelli A A, Bertazzi P A, Pesatori A C, Bollati V. Environ. Res., 2016, 145:68.

doi: 10.1016/j.envres.2015.11.017
Oudin A, Forsberg B, Adolfsson A N, Lind N, Modig L, Nordin M, Nordin S, Adolfsson R, Nilsson L G. Environ. Heal. Perspect., 2016, 124(3):306.

doi: 10.1289/ehp.1408322
Anderson H R, Atkinson R W, Bremner S A, Marston L. Eur. Respir. J., 2003, 21:39.
Goldberg M S, Burnett R T, Bailar J C, Tamblyn R, Ernst P, Flegel K, Brook J, Bonvalot Y, Singh R, Valois M F, Vincent R. Environ. Heal. Perspect., 2001, 109:487.
Calderón-Garcidueñas L, Kavanaugh M, Block M, D’Angiulli A, Delgado-Chávez R, Torres-Jardón R, González-Maciel A, Reynoso-Robles R, Osnaya N, Villarreal-Calderon R, Guo R X, Hua Z W, Zhu H T, Perry G, Diaz P. J. Alzheimer’s Dis., 2012, 28(1):93.
Levesque S, Surace M J, McDonald J, Block M L. J. Neuroinflammation, 2011, 8(1):1.

doi: 10.1186/1742-2094-8-1
Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E, Gómez-Garza G, Barragán-Mejía G, Broadway J, Chapman S, Valencia-Salazar G, Jewells V, Maronpot R R, Henríquez-Roldán C, Pérez-Guillé B, Torres-Jardón R, Herrit L, Brooks D, Osnaya-Brizuela N, Monroy M E, González-Maciel A, Engle R W. Brain Cogn., 2008, 68(2):117.

doi: 10.1016/j.bandc.2008.04.008 pmid: 18550243
Inserra S G, Phifer B L, Anger W K, Lewin M, Hilsdon R, White M C. Environ. Res., 2004, 95(1):53.

pmid: 15068930
Jung C R, Lin Y T, Hwang B F. J. Alzheimers Dis., 2015, 44(2):573.

doi: 10.3233/JAD-140855
Cliff R, Curran J, Hirota J A, Brauer M, Feldman H, Carlsten C. Inhal. Toxicol., 2016, 28(3):145.

doi: 10.3109/08958378.2016.1145770
Chen R, Hu B, Liu Y, Xu J X, Yang G S, Xu D D, Chen C Y. Biochim. et Biophys. Acta BBA-Gen. Subj., 2016, 1860(12):2844.
Miller D S, Bauer B, Hartz A M. Pharmacol. Rev., 2008, 60(2):196.

doi: 10.1124/pr.107.07109
Block M L, Elder A, Auten R L, Bilbo S D, Chen H L, Chen J C, Cory-Slechta D A, Costa D, Diaz-Sanchez D, Dorman D C, Gold D R, Gray K, Jeng H A, Kaufman J D, Kleinman M T, Kirshner A, Lawler C, Miller D S, Wright R J. Neuro Toxicology, 2012, 33(5):972.
Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Environ. Heal. Perspect., 2006, 114(8):1172.

doi: 10.1289/ehp.9030
Cheng H, Saffari A, Sioutas C, Forman H J, Morgan T E, Finch C E. Environ. Health Perspect., 2016, 124(10):1537.

doi: 10.1289/EHP134
Beattie E C, Stellwagen D, Morishita W, Bresnahan J C, Ha B K, Von Zastrow M, Beattie M S, Malenka R C. Science, 2002, 295(5563):2282.

doi: 10.1126/science.1067859
Sender R, Fuchs S, Milo R. PLoS Biol, 2016, 14(8):e1002533.

doi: 10.1371/journal.pbio.1002533
Sanmarco L M, Wheeler M A, Gutiérrez-Vázquez C, Polonio C M, Linnerbauer M, Pinho-Ribeiro F A, Li Z R, Giovannoni F, Batterman K V, Scalisi G, Zandee S E J, Heck E S, Alsuwailm M, Rosene D L, Becher B, Chiu I M, Prat A, Quintana F J. Nature, 2021, 590(7846):473.

doi: 10.1038/s41586-020-03116-4
Ning Y Y, Imrich A, Goldsmith C A, Qin C Z, Kobzik L. J. Toxic. Environ. Health A., 2000, 59(3):165.

doi: 10.1080/009841000156952
Biesmans S, Meert T F, Bouwknecht J A, Acton P D, Davoodi N, de Haes P, Kuijlaars J, Langlois X, Matthews L J R, Ver Donck L, Hellings N, Nuydens R. Mediat. Inflamm., 2013, 2013:1.
Mutlu E A, Engen P A, Soberanes S, Urich D, Forsyth C B, Nigdelioglu R, Chiarella S E, Radigan K A, Gonzalez A, Jakate S, Keshavarzian A, Budinger G S, Mutlu G M. Part. Fibre Toxicol., 2011, 8(1):1.

doi: 10.1186/1743-8977-8-1
Nemmar A, Holme J A, Rosas I, Schwarze P E, Alfaro-Moreno E. Biomed Res. Int., 2013, 2013:1.
Silva R F M, Falcão A S, Fernandes A, Gordo A C, Brito M A, Brites D. Toxicol. Lett., 2006, 163(1):1.

pmid: 16257146
Lu M, Yan X F, Si Y, Chen X Z. Inflammation, 2019, 42(5):1693.

doi: 10.1007/s10753-019-01029-7
Xue Y, Wu J, Sun J. Toxicol. Lett., 2012, 214(2):91.

doi: 10.1016/j.toxlet.2012.08.009
Ji Y, Stone C, Guan L F, Peng C Y, Han W. Neurol. Res., 2019, 41(8):742.

doi: 10.1080/01616412.2019.1609170
Wei H Y, Feng Y, Liang F, Cheng W, Wu X M, Zhou R, Wang Y. Toxicology, 2017, 380:94.

doi: 10.1016/j.tox.2017.01.017
Lovett C, Cacciottolo M, Shirmohammadi F, Haghani A, Morgan T E, Sioutas C, Finch C E. F1000 Research, 2018, 7:596.
Li Q Z, Zheng J L, Xu S, Zhang J S, Cao Y H, Qin Z L, Liu X Q, Jiang C Y. Toxicol Res., 2018, 7(6):1144.

doi: 10.1039/C8TX00093J
Tian X Y, Yun S F, Guo L Q, Dong M, Xu L X, Zhao Z G. Chin. J. Comp. Med., 2009, 19(2):50.
( 田小芸, 恽时锋, 郭联庆, 董敏, 许龙祥, 赵志刚. 中国比较医学杂志, 2009, 19(2):50.).
Li J, Stein T D, Johnson J A. Physiol. Genom., 2004, 18(3):261.

doi: 10.1152/physiolgenomics.00209.2003
Xu M X, Zhu Y F, Chang H F, Liang Y. Free. Radic. Biol. Med., 2016, 99:259.

doi: 10.1016/j.freeradbiomed.2016.08.021
Mahley R W, Nathan B P, Pitas R E. New York Acad. Sciences, 1996.139.
Yang X L, Zhang W G. Chin. J. Geront., 2006, 26(7):999.
Sun Q H, Wang A X, Jin X M, Natanzon A, Duquaine D, Brook R D, Aguinaldo J G, Fayad Z A, Fuster V, Lippmann M, Chen L C, Rajagopalan S. JAMA, 2005, 294(23):3003.

doi: 10.1001/jama.294.23.3003
Calderón-Garcidueñas L, Solt A C, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, Villarreal-Calderón R, Osnaya N, Stone I, García R, Brooks D M, González-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Reed W. Toxicol. Pathol., 2008, 36(2):289.

doi: 10.1177/0192623307313011 pmid: 18349428
Lucero J, Suwannasual U, Herbert L M, McDonald J D, Lund A K. Inhal. Toxicol., 2017, 29(6):266.

doi: 10.1080/08958378.2017.1357774 pmid: 28816559
Lodovici M, Bigagli E. J. Toxicol., 2011, 2011:1.
Sarma S N, Blais J M, Chan H M. J. Toxicol. Environ. Heal. Part A, 2017, 80(5):285.
Wang Y, Zhang M, Li Z P, Yue J W, Xu M, Zhang Y H, Yung K K L, Li R J. Chemosphere, 2019, 218:577.

doi: 10.1016/j.chemosphere.2018.11.149
Knaapen A M, Schins R P F, Polat D, Becker A, Borm P J A. Mol. Cell. Biochem., 2002, 234(1):143.
Islam M T. Neurol. Res., 2017, 39(1):73.

doi: 10.1080/01616412.2016.1251711
Zhang Q, Li Q Z, Ma J C, Zhao Y P. Environ. Pollut., 2018, 242:994.

doi: 10.1016/j.envpol.2018.07.031
Saijo K, Winner B, Carson C T, Collier J G, Boyer L, Rosenfeld M G, Gage F H, Glass C K. Cell, 2009, 137(1):47.

doi: 10.1016/j.cell.2009.01.038
Glass C K, Saijo K, Winner B, Marchetto M C, Gage F H. Cell, 2010, 140(6):918.

doi: 10.1016/j.cell.2010.02.016
Crumrine R C, Thomas A L, Morgan P F. J. Cereb. Blood Flow Metab., 1994, 14(6):887.

doi: 10.1038/jcbfm.1994.119
Campbell A, Araujo J A, Li H H, Sioutas C, Kleinman M. J. Nanosci. Nanotechnol., 2009, 9(8):5099.

doi: 10.1166/jnn.2009.GR07
Chen X Y, Liu S, Zhang W, Wu C Y, Liu H C, Zhang F, Lu Z B, Ding W J. Biochem. Biophys. Res. Commun., 2018, 505(4):1154.

doi: 10.1016/j.bbrc.2018.10.057
Gualtieri M, Øvrevik J, Mollerup S, Asare N, Longhin E, Dahlman H J, Camatini M, Holme J A. Mutat. Res. Mol. Mech. Mutagen., 2011, 713(1/2):18.
Gualtieri M, Øvrevik J, Holme J A, Perrone M G, Bolzacchini E, Schwarze P E, Camatini M. Toxicol. Vitro, 2010, 24(1):29.

doi: 10.1016/j.tiv.2009.09.013
Oh S M, Kim H R, Park Y J, Lee S Y, Chung K H. Mutat. Res. Toxicol. Environ. Mutagen., 2011, 723(2):142.

doi: 10.1016/j.mrgentox.2011.04.003
Wang T, Pan Q, Lin L, Szulwach K E, Song C X, He C, Wu H, Warren S T, Jin P, Duan R H, Li X K. Hum. Mol. Genet., 2012, 21(26):5500.

doi: 10.1093/hmg/dds394
Liang J, Yang F, Zhao L, Bi C W, Cai B Z. Oncotarget, 2016, 7(30):48813.

doi: 10.18632/oncotarget.9281 pmid: 27183914
Wei H Y, Liang F, Meng G, Nie Z Q, Zhou R, Cheng W, Wu X M, Feng Y, Wang Y. Sci. Rep., 2016, 6(1):1.

doi: 10.1038/s41598-016-0001-8
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11(1):1.

doi: 10.1038/s41467-019-13993-7
Jin X T, Ma Q C, Sun Z D, Yang X Z, Zhou Q F, Qu G B, Liu Q, Liao C Y, Li Z Y, Jiang G B. Environ. Sci. Technol., 2019, 53(5):2840.

doi: 10.1021/acs.est.8b05817
Gofrit S G, Shavit-Stein E. Neural Regen Res, 2019, 14(12):2043.

doi: 10.4103/1673-5374.262568 pmid: 31397331
Kaplan L, Chow B W, Gu C H. Nat. Rev. Neurosci., 2020, 21(8):416.

doi: 10.1038/s41583-020-0322-2
Maher B A, Ahmed I A M, Karloukovski V, MacLaren D A, Foulds P G, Allsop D, Mann D M A, Torres-Jardón R, Calderon-Garciduenas L. PNAS, 2016, 113(39):10797.

doi: 10.1073/pnas.1605941113
[1] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[2] Bingjie Zhang, Qian S. Liu, Qunfang Zhou, Jianqing Zhang, Guibin Jiang. Neurotoxicological Effects of Nanosilver [J]. Progress in Chemistry, 2018, 30(9): 1392-1402.
[3] Wang Yunhai,Luo Yunjing**,Zhong Rugang . Protein Damage Induced by Peroxynitrite [J]. Progress in Chemistry, 2007, 19(06): 893-901.