中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 447-459 DOI: 10.7536/PC201143 Previous Articles   Next Articles

• Review •

Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors

Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha(), Chuanlang Zhan()   

  1. Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
  • Received: Revised: Online: Published:
  • Contact: Ren Sha, Chuanlang Zhan
  • Supported by:
    National Natural Science Foundation of China(91433202); Department of Science and Technology of Inner Mongolia(2020GG0192); Grassland Talents, the Inner Mongolia Normal University(112/1004031962); Inner Mongolia Autonomous Region Postgraduate Research and Innovation Program(S20191238Z)
Richhtml ( 34 ) PDF ( 383 ) Cited
Export

EndNote

Ris

BibTeX

In the recent years, designing and synthesizing high-performance nonfullerene acceptor (NFA) materials have become the mainstream on research of organic solar cells (OSCs). Fused-ring based NFAs show high absorption coefficients, adjustable energy levels and bandgaps, straightforward synthesis, and excellent electrical and photovoltaic properties. The power conversion efficiencies (PCEs) have been increased from 3%~4% to 18% just in 7 years. In 2019, Zou et al. reported a smart acceptor molecule, named Y6, which supplied a very impressive PCE of 15.7% when pairing with PM6. Y6 and its analogs were featured with DA'D type fused-ring as the central electron-donating (D) units. The electron-accepting (A') unit was fused through nitrogen with two D units, which helped to downshift the Frontier molecular orbitals and enhance light absorption. Again, the steric effect between the two N-linked alkyl chains and the decorated chains on the fused thienothiophene-β-positions helped to increase the solubility and tune crystallinity. After the report of the smart Y6, intense investigations have been made on structure cutting of the molecule and tens of new structures have been reported. Among these new acceptors, structural tailoring on the DA'D moiety plays a vital role in improving device efficiency and solar cell performance. In this review, we focus on the recent advances on the structural modifications on A' and D units and side chains. We set up several sets of acceptors, by which we classify the recently reported molecules and correlate their optical, electrochemical, electrical and photovoltaic properties with the precise structural modulations so as to present a comprehensive review on the structure-property relationship.

Contents

1 Introduction

2 Progress in structural modification of A' unit

3 Progress in structural modification of DA'D unit π-conjugate system

4 Effect of side chain

4.1 Effect of side chain R1

4.2 Effect of side chain R2

5 Conclusion and outlook

Fig.1 Depiction on structural advancing from ITIC to Y6
Fig.2 A' structure model of the DA'D unit and the advances in structural cutting on D and A 'units and the side-chains (R1 and R2)
Fig.3 Chemical structures of NFAs: for A1~A6, A1 takes BT as A' unit, different again on the side-chains of the fused A' (A2~A5) and the imide derivative of quinoxaline (A6)
Table 1 Photovoltaic properties of A-DA'D-A type small molecule acceptor materials.
Compounds Acceptor E g o p t
[eV]
HOMO/LUMO
[eV]
μh[10-4 cm2
V-1 s-1]
μe[10-4 cm2
V-1 s-1]
Donor JSC
(mA/cm2)
VOC
(V)
FF
(%)
PCE
(%)
ref
A1 Y6 1.31 -5.65/-4.10 2.77 2.54 PM6 25.20 0.82 76.10 15.70 23
A2 AQX-1 1.35 -5.59/-3.85 0.58 3.72 PM6 22.18 0.89 67.14 13.31 46
A3 AQX-2 1.35 -5.62/-3.88 1.34 2.89 PM6 25.38 0.86 76.25 16.64 46
A4
A5
A6
TPQx-4F
TPQx-6F
QIP-4F
1.41
1.43
1.54
-5.54/-3.56
-5.66/-3.62
-5.75/-3.86
4.53
6.47
0.74
2.65
4.57
4.71
PM6
PM6
P2F-EHp
15.42
22.37
18.27
0.94
0.92
0.94
54.52
72.16
70.53
7.75
14.62
12.12
47
47
48
A7 BZIC 1.45 -5.42/-3.88 1.15 1.11 HFQX-T 12.67 0.84 59.00 6.30 33
A8 Y1 1.44 -5.45/-3.95 1.56 3.04 PBDB-T 22.44 0.87 69.10 13.42 49
A9 BTPT-4F 1.45 -5.73/-4.00 - - P2F-EHP 3.20 0.78 43.78 1.09 50
A10 X94FIC 1.25 -5.58/-4.17 1.49 6.10 PBDB-T 14.67 0.73 66.10 7.08 51
A11 N3 - - 5.9 4.8 PM6 25.81 0.84 73.90 15.98 52
A12 N4 - - 3.2 1.4 PM6 25.01 0.82 69.90 14.31 52
A13 N-C11 - - 3.1 1.1 PM6 21.47 0.85 70.60 12.91 52
A14 BTP-4F-12 1.33 -5.68/-4.06 - 7.4 PM6 25.30 0.86 76.0 16.40 53
A15 DTY6 - -5.67/-4.04 - 4.73 PM6 25.25 0.858 75.4 16.3 54
A16 Y6-PhC6 - -5.74/-4.05 9.12 2.29 PM6 21.80 0.803 67.3 11.77 55
A17 Y6-PhOC6 - -5.75/-4.08 0.46 0.42 PM6 21.31 0.844 61.6 11.07 55
A18 Y6-nC8 - -5.71/-4.02 2.35 3.84 PM6 19.07 0.863 63.1 10.38 55
A19 C4 1.39 -5.60/-4.05 - - PM6 15.74 0.689 67.01 7.28 56
A20 BTPT-4Cl 1.40 -5.68/-4.12 2.12 1.58 PM6 25.4 0.867 75 16.5 57
A21 BTIC-BO-4Cl 1.34 -5.54/-4.14 3.1 1.1 PM6 25.6 0.858 77.6 17.0 58
A22 BTIC-HD-4Cl 1.34 -5.58/-4.14 5.9 4.8 PM6 24.2 0.862 74.8 15.6 58
A23 N3-4Cl 1.35 -5.63/-3.98 7.65 4.45 PM6 25.90 0.85 74.9 16.53 59
A24 BTIC-4Br 1.46 -5.57/-4.11 4.8 1.1 PM6 20.67 0.85 69.58 12.2 60
A25 BTIC-BO-4Br 1.44 -5.53/-4.09 1.4 4.5 PM6 24.06 0.86 67.84 14.03 60
A26 BTIC-2Br-m 1.49 -5.56/-4.07 1.9 1.1 PM6 25.03 0.88 73.13 16.11 60
A27 BTP-PhC6 1.36 -5.58/-3.85 6.25 7.19 PM6 25.00 0.86 77.00 16.70 61
A28 BTP-C6Ph 1.35 -5.60/-3.94 4.53 6.12 PM6 24.30 0.84 76.20 15.50 61
A29 BTPS-4F 1.38 -5.73/-3.91 1.2 2.1 PM6 24.8 0.82 76 16.2 62
A30 BTP-eC9 1.4 -5.64/-4.05 - 2.7 PM6 26.20 0.84 81.10 17.80 15
A31 BTP-eC7 1.4 -5.62/-4.03 - 1.28 PM6 24.10 0.843 73.50 14.90 15
A32 Y1-4F 1.31 -5.56/-4.11 5.25 3.01 PM6 25.2 0.83 68.50 14.80 63
A33 Y11 1.31 -5.69/-3.87 - - PM6 26.74 0.83 73.33 16.54 64
A34 Y18 1.31 -5.58/-3.91 5.74 5.27 PM6 25.33 0.84 76.50 16.52 65
Fig.4 Chemical structures of two sets of NFAs, which are selected with the structures varied focusing on the sizes of the fused D units, changing from fused-thiophene for A7 to fused-thieno[2-b]thiophene for A8 (both with BTA as the fused A' unit); from fused-thiohene for A9 to fused-benzodithiophene for A10 (both with BT as the fused A 'unit).
Figure 5 Chemical structures of NFAs with the structures varied on the pyrrole N-linked side-chains
Fig.6 Chemical structures of NFAs with their structures varied on the side chains of TT-β positions
[1]
Wadsworth A, Moser M, Marks A, Little M S, Gasparini N, Brabec C J, Baran D, McCulloch I. Chem. Soc. Rev., 2019, 48(6): 1596.

doi: 10.1039/c7cs00892a pmid: 29697109
[2]
Zhang G Y, Zhao J B, Chow P C Y, Jiang K, Zhang J Q, Zhu Z L, Zhang J, Huang F, Yan H. Chem. Rev., 2018, 118(7): 3447.

doi: 10.1021/acs.chemrev.7b00535
[3]
Lu L Y, Zheng T Y, Wu Q H, Schneider A M, Zhao D L, Yu L P. Chem. Rev., 2015, 115(23): 12666.

doi: 10.1021/acs.chemrev.5b00098
[4]
Xue R M, Zhang J W, Li Y W, Li Y F. Small, 2018, 14(41): 1801793.

doi: 10.1002/smll.v14.41
[5]
Huo Y, Zhang H L, Zhan X W. ACS Energy Lett., 2019, 4(6): 1241.

doi: 10.1021/acsenergylett.9b00528
[6]
Zhao W C, Li S S, Yao H F, Zhang S Q, Zhang Y, Yang B, Hou J H. J. Am. Chem. Soc., 2017, 139(21): 7148.

doi: 10.1021/jacs.7b02677
[7]
Park S H, Roy A, BeauprÉ S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nat. Photonics, 2009, 3(5): 297.

doi: 10.1038/nphoton.2009.69
[8]
Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv. Mater., 2013, 25(34): 4766.

doi: 10.1002/adma.v25.34
[9]
Dang M T, Hirsch L, Wantz G. Adv. Mater., 2011, 23(31): 3597.

doi: 10.1002/adma.201100792
[10]
Shen Z Q, Cheng J Z, Zhang X F, Huang W Y, Wen H R, Liu S Y. Progress in chemistry, 2019, 31(9): 1221.
( 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. 化学进展, 2019, 31(9): 1221.)

doi: 10.7536/PC190134
[11]
Lai Y B, Ding Y M, Wang H Y. Progress in chemistry, 2014, 26(10): 1673.
( 赖衍帮, 丁益民, 王洪宇. 化学进展, 2014, 26(10): 1673.)

doi: 10.7536/PC140519
[12]
Song C J, Wang E J, Dong B H, Wang S M. Progress in chemistry, 2015, 27(12): 1754.
( 宋成杰, 王二静, 董兵海, 王世敏. 化学进展, 2015, 27(12): 1754.)

doi: 10.7536/PC150542
[13]
Chang Y, Zhang X, Tang Y B, Gupta M, Su D, Liang J E, Yan D, Li K, Guo X F, Ma W, Yan H, Zhan C L. Nano Energy, 2019, 64: 103934.

doi: 10.1016/j.nanoen.2019.103934
[14]
Liu X, Li Y X, Ding K, Forrest S. Phys. Rev. Applied, 2019, 11(2): 024060.

doi: 10.1103/PhysRevApplied.11.024060
[15]
Cui Y, Yao H F, Zhang J Q, Xian K H, Zhang T, Hong L, Wang Y M, Xu Y, Ma K Q, An C B, He C, Wei Z X, Gao F, Hou J H. Adv. Mater., 2020, 32(19): 1908205.

doi: 10.1002/adma.v32.19
[16]
Zhang L, Lin B J, Ke Z F, Chen J Y, Li W B, Zhang M J, Ma W. Nano Energy, 2017, 41: 609.

doi: 10.1016/j.nanoen.2017.10.014
[17]
Luo Z H, Liu T, Yan H, Zou Y, Yang C L. Adv. Funct. Mater., 2020, 30(46): 2004477.

doi: 10.1002/adfm.v30.46
[18]
Li C, Fu H T, Xia T, Sun Y M. Adv. Energy Mater., 2019, 9(25): 1900999.

doi: 10.1002/aenm.v9.25
[19]
Yue Q H, Liu W Y, Zhu X Z. J. Am. Chem. Soc., 2020, 142(27): 11613.

doi: 10.1021/jacs.0c04084
[20]
Liu Z T, Wu Y, Zhang Q, Gao X. J. Mater. Chem. A, 2016, 4(45): 17604.

doi: 10.1039/C6TA06978A
[21]
Lin H, Wang Q. J. Energy Chem., 2018, 27(4): 990.

doi: 10.1016/j.jechem.2017.11.028
[22]
Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv. Mater., 2015, 27(7): 1170.

doi: 10.1002/adma.201404317
[23]
Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3(4): 1140.

doi: 10.1016/j.joule.2019.01.004
[24]
Lai H J, Zhao Q Q, Chen Z Y, Chen H, Chao P J, Zhu Y L, Lang Y W, Zhen N, Mo D Z, Zhang Y Z, He F. Joule, 2020, 4(3): 688.

doi: 10.1016/j.joule.2020.02.004
[25]
Li X F, Pan M A, Lau T K, Liu W R, Li K, Yao N N, Shen F G, Huo S Y, Zhang F L, Wu Y S, Li X M, Lu X H, Yan H, Zhan C L. Chem. Mater., 2020, 32(12): 5182.

doi: 10.1021/acs.chemmater.0c01245
[26]
Li S X, Zhan L L, Jin Y Z, Zhou G Q, Lau T K, Qin R, Shi M M, Li C Z, Zhu H M, Lu X H, Zhang F L, Chen H Z. Adv. Mater., 2020, 32(24): 2001160.

doi: 10.1002/adma.v32.24
[27]
Li J, Zhang Y Q, Yuan J, Zhu C, Peng H J, Zou Y P. Dyes Pigments, 2020, 181: 108559.

doi: 10.1016/j.dyepig.2020.108559
[28]
Luo M, Zhou L Y, Yuan J, Zhu C, Cai F F, Hai J F, Zou Y P. J. Energy Chem., 2020, 42: 169.

doi: 10.1016/j.jechem.2019.07.002
[29]
Zhang Y Q, Cai F F, Yuan J, Wei Q Y, Zhou L Y, Qiu B B, Hu Y B, Li Y F, Peng H J, Zou Y P. Phys. Chem. Chem. Phys., 2020, 22(3): 1787.

doi: 10.1039/C9CP90301A
[30]
Luo M, Zhao C Y, Yuan J, Hai J F, Cai F F, Hu Y B, Peng H J, Bai Y M, Tan Z A, Zou Y P. Mater. Chem. Front., 2019, 3(11): 2483.

doi: 10.1039/C9QM00499H
[31]
Luo M, Zhu C, Yuan J, Zhou L Y, Keshtov M L, Godovsky D Y, Zou Y P. Chin. Chem. Lett., 2019, 30(12): 2343.

doi: 10.1016/j.cclet.2019.07.023
[32]
Ma X L, Luo M, Gao W, Yuan J, An Q S, Zhang M, Hu Z H, Gao J H, Wang J X, Zou Y P, Yang C L, Zhang F J. J. Mater. Chem. A, 2019, 7(13): 7843.

doi: 10.1039/C9TA01497G
[33]
Feng L L, Yuan J, Zhang Z Z, Peng H J, Zhang Z G, Xu S T, Liu Y, Li Y F, Zou Y P. ACS Appl. Mater. Interfaces, 2017, 9(37): 31985.

doi: 10.1021/acsami.7b10995
[34]
Lin Y Z, Zhao F W, He Q, Huo L J, Wu Y, Parker T C, Ma W, Sun Y M, Wang C R, Zhu D B, Heeger A J, Marder S R, Zhan X W. J. Am. Chem. Soc., 2016, 138(14): 4955.

doi: 10.1021/jacs.6b02004
[35]
Luo Z H, Sun C K, Chen S S, Zhang Z G, Wu K L, Qiu B B, Yang C, Li Y F, Yang C L. Adv. Energy Mater., 2018, 8(23): 1800856.

doi: 10.1002/aenm.v8.23
[36]
Fei Z P, Eisner F D, Jiao X C, Azzouzi M, Röhr J A, Han Y, Shahid M, Chesman A S R, Easton C D, McNeill C R, Anthopoulos T D, Nelson J, Heeney M. Adv. Mater., 2018, 30(13): 1705209.

doi: 10.1002/adma.v30.8
[37]
Liu Y H, Li M, Zhou X B, Jia Q Q, Feng S Y, Jiang P C, Xu X J, Ma W, Li H B, Bo Z S. ACS Energy Lett., 2018, 3(8): 1832.

doi: 10.1021/acsenergylett.8b00928
[38]
Lee J, Ko S J, Lee H, Huang J F, Zhu Z Y, Seifrid M, Vollbrecht J, Brus V V, Karki A, Wang H B, Cho K, Nguyen T Q, Bazan G C. ACS Energy Lett., 2019, 4(6): 1401.

doi: 10.1021/acsenergylett.9b00721
[39]
Geng Y F, Tang A L, Tajima K, Zeng Q D, Zhou E J. J. Mater. Chem. A, 2019, 7(1): 64.

doi: 10.1039/C8TA09383K
[40]
Wang Y, Michinobu T. J. Mater. Chem. C, 2016, 4(26): 6200.

doi: 10.1039/C6TC01860B
[41]
Lin F, Jiang K, Kaminsky W, Zhu Z L, Jen A K Y. J. Am. Chem. Soc., 2020, 142(36): 15246.

doi: 10.1021/jacs.0c07083
[42]
Chai G D, Zhang J Q, Pan M G, Wang Z, Yu J W, Liang J E, Yu H, Chen Y Z, Shang A, Liu X Y, Bai F J, Ma R J, Chang Y, Luo S W, Zeng A P, Zhou H, Chen K, Gao F, Ade H, Yan H. ACS Energy Lett., 2020, 5(11): 3415.

doi: 10.1021/acsenergylett.0c01688
[43]
Dai X X, Cheng X D, Kan Z P, Xiao Z Y, Duan T N, Hu C, Lu S R. Chin. J. Organ. Che., 2020, 40(12): 4031.
( 戴学新, 成晓东, 阚志鹏, 肖泽云, 段泰男, 胡超, 陆仕荣. 有机化学, 2020, 40(12): 4031.)

doi: 10.6023/cjoc202005023
[44]
Zhao J J, Yao C, Ali M U, Miao J S, Meng H. Mater. Chem. Front., 2020, 4(12): 3487.

doi: 10.1039/D0QM00305K
[45]
Wei Q Y, Liu W, Leclerc M, Yuan J, Chen H G, Zou Y P. Sci. China Chem., 2020, 63(10): 1352.

doi: 10.1007/s11426-020-9799-4
[46]
Zhou Z C, Liu W R, Zhou G Q, Zhang M, Qian D P, Zhang J Y, Chen S S, Xu S J, Yang C, Gao F, Zhu H M, Liu F, Zhu X Z. Adv. Mater., 2020, 32(4): 1906324.

doi: 10.1002/adma.v32.4
[47]
Zhao Y Y, Chen H G, Zhu C, Yuan J, Li Y G, Hai J F, Hu Y B, Jiang L H, Chen G H, Zou Y P. Mater. Chem. Front., 2020, 4(11): 3310.

doi: 10.1039/D0QM00034E
[48]
Zhu C G, An K, Zhong W K, Li Z Y, Qian Y, Su X Z, Ying L. Chem. Commun., 2020, 56(34): 4700.

doi: 10.1039/D0CC00896F
[49]
Yuan J, Huang T Y, Cheng P, Zou Y P, Zhang H T, Yang J L, Chang S Y, Zhang Z Z, Huang W C, Wang R, Meng D, Gao F, Yang Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[50]
Fan B B, Zhang D F, Li M J, Zhong W K, Zeng Z, Ying L, Huang F, Cao Y. Sci. China Chem., 2019, 62(6): 746.

doi: 10.1007/s11426-019-9457-5
[51]
Xiao J B, Yan T T, Lei T, Li Y B, Han Y F cao L, Song W, Tan S T, Ge Z Y. Org. Electron., 2020, 81: 105662.

doi: 10.1016/j.orgel.2020.105662
[52]
Jiang K, Wei Q Y, Lai J Y L, Peng Z X, Kim H K, Yuan J, Ye L, Ade H, Zou Y P, Yan H. Joule, 2019, 3(12): 3020.

doi: 10.1016/j.joule.2019.09.010
[53]
Hong L, Yao H F, Wu Z A, Cui Y, Zhang T, Xu Y, Yu R N, Liao Q, Gao B W, Xian K H, Woo H Y, Ge Z Y, Hou J H. Adv. Mater., 2019, 31(39): 1903441.

doi: 10.1002/adma.v31.39
[54]
Dong S, Jia T, Zhang K, Jing J H, Huang F. Joule, 2020, 4(9): 2004.

doi: 10.1016/j.joule.2020.07.028
[55]
Yi L Z, Dai S Y, Sun R, Wang W, Wu Y, Jiao X C, Zhang C, Min J. Org. Electron., 2020, 87: 105963.

doi: 10.1016/j.orgel.2020.105963
[56]
Han Y F, Song W, Zhang J S, Xie L, Xiao J B, Li Y B, Cao L, Song S L, Zhou E J, Ge Z Y. J. Mater. Chem. A, 2020, 8(42): 22155.

doi: 10.1039/D0TA05787H
[57]
Cui Y, Yao H F, Zhang J Q, Zhang T, Wang Y M, Hong L, Xian K H, Xu B W, Zhang S Q, Peng J, Wei Z X, Gao F, Hou J H. Nat. Commun., 2019, 10(1): 2515.

doi: 10.1038/s41467-019-10351-5
[58]
Cui Y, Yao H F, Hong L, Zhang T, Tang Y B, Lin B J, Xian K H, Gao B W, An C B, Bi P Q, Ma W, Hou J H. Natl. Sci. Rev., 2020, 7(7): 1239.

doi: 10.1093/nsr/nwz200
[59]
Yu H, Ma R J, Xiao Y Q, Zhang J Q, Liu T, Luo Z H, Chen Y Z, Bai F J, Lu X H, Yan H, Lin H R. Mater. Chem. Front., 2020, 4(8): 2428.

doi: 10.1039/D0QM00151A
[60]
Wang H, Liu T, Zhou J D, Mo D Z, Han L, Lai H J, Chen H, Zheng N, Zhu Y L, Xie Z Q, He F. Adv. Sci., 2020, 7(9): 1903784.

doi: 10.1002/advs.v7.9
[61]
Chai G D, Chang Y, Peng Z X, Jia Y Y, Zou X H, Yu D, Yu H, Chen Y Z, Chow P C Y, Wong K S, Zhang J Q, Ade H, Yang L W, Zhan C L. Nano Energy, 2020, 76: 105087.

doi: 10.1016/j.nanoen.2020.105087
[62]
Cheung A M H, Yu H, Luo S W, Wang Z, Qi Z Y, Zhou W T, Arunagiri L, Chang Y, Yao H T, Ade H, Yan H. J. Mater. Chem. A, 2020, 8(44): 23239.

doi: 10.1039/D0TA08830G
[63]
Wang R, Yuan J, Wang R, Han G C, Huang T Y, Huang W C, Xue J J, Wang H C, Zhang C F, Zhu C H, Cheng P, Meng D, Yi Y P, Wei K H, Zou Y P, Yang Y. Adv. Mater., 2019, 31(43): 1904215.

doi: 10.1002/adma.v31.43
[64]
Liu S, Yuan J, Deng W Y, Luo M, Xie Y, Liang Q B, Zou Y P, He Z C, Wu H B, Cao Y. Nat. Photonics, 2020, 14(5): 300.

doi: 10.1038/s41566-019-0573-5
[65]
Zhu C, Yuan J, Cai F F, Meng L, Zhang H T, Chen H G, Li J, Qiu B B, Peng H J, Chen S S, Hu Y B, Yang C, Gao F, Zou Y P, Li Y F. Energy Environ. Sci., 2020, 13(8): 2459.

doi: 10.1039/D0EE00862A
[1] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[2] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[3] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[4] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[5] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[6] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[7] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[8] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[9] Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(11): 1316-1330.
[10] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[11] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[12] Xiong Xingquan, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng. Highly Efficient Synthesis of Amides [J]. Progress in Chemistry, 2016, 28(4): 497-506.
[13] Xie Xiang, Lv Wenzhen, Chen Runfeng, Huang Wei. Micro/Nano Structure Regulation of Donor/Acceptor Interface for High-Performance Organic Solar Cells [J]. Progress in Chemistry, 2016, 28(11): 1591-1600.
[14] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[15] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.