中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 975-987 DOI: 10.7536/PC201114 Previous Articles   Next Articles

• Review •

Preparation and Application of Micro-Structured Elastomer Dielectric Layer

Jinhua Liao1,2, Jiajun Gao1,2, Yuchao Wang1,2, Wei Sun1,2,*()   

  1. 1 Department of Materials Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
    2 Key Laboratory of Specialty Polymer Ningbo University,Ningbo 315211, China
  • Received: Revised: Online: Published:
  • Contact: Wei Sun
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    General Research Foundation of Department of Education of Zhejiang Province(Y202043655); Natural Science Foundation of Ningbo(2018A610113); Natural Science Foundation of Ningbo(2019A610187); K.C. Wong Magna Fund in Ningbo University
Richhtml ( 51 ) PDF ( 776 ) Cited
Export

EndNote

Ris

BibTeX

Micro-structured elastomer films are elastomer films endowed with pores or patterned arrays of specific structures on the top layer or in the bulk. Such films have been extensively used as dielectric layers for flexible electronics. In this review, both the fabrication techniques and the applications of the micro-structured elastomer dielectric layers are introduced. Different types of elastomers used as dielectric layers are firstly introduced. Fabrication methods of micro-structured elastomer dielectric layers with porous and non-porous arrays are summarized, including sodium chloride template method, sugar template method, bicarbonate template method, microsphere template method and silicon template method. The applications of the micro-structured elastomer dielectric layers in stress-strain sensors and nano-generators are also illustrated.

Contents

1 Introduction

2 Types of elastomer dielectric layers

3 Preparation of micro-structured elastomer dielectric layers

3.1 Porous elastomer dielectric layers

3.2 Elastomer dielectric layers with non-porous arrays

4 Application of micro-structured elastomer dielectric layers

4.1 Sensing applications of micro-structured elastomer dielectric layers

4.2 Applications of micro-structured elastomer dielectric layers in nano-generators

5 Conclusion and outlook

Fig.1 Schematic illustration of fabrication process of the porous elastomer dielectric layer by using salt cube template method[48].(Copyright 2019, Materials Research Express)
Fig.2 (a) Schematic illustration of the fabrication procedure of the porous PDMS sponge using sugar particles. (b) Conceptual model of the triboelectric sponge(TES) with an embedded generator. (c) Various types of sugar particles were used as templates for the PDMS sponge films. All of the scale bars(black) shown in the figures are 200 μm. (d) Morphologies of three types of TESs using scanning electron microscope. All of the scale bars(white) shown in the figures are 500 μm [53].(Copyright 2016, Wiley Online Library)
Fig.3 Fabrication of the micro-structured PDMS film and the capacitive pressure sensors.(a) Schematic illustration of one-step processing of the micro-structured PDMS film based on a mixture of PDMS prepolymer and its curing agent with ammonium bicarbonate(NH4HCO3) and its seamless integration into the process flow for fabricating a flexible capacitive sensor.(b) The photo image of the fabricated large area micro-structured PDMS film(the inset shows the cross-sectional photo image of the micro-structured PDMS film).(c) The cross-sectional photo images of the micro-structured PDMS film clipped by a tweezer without pressure(upper) and with pressure(bottom)[56].(Copyright 2016, American Chemical Society)
Fig.4 Schematic illustration of the STNG.(a) Structure and fabrication process of the STNG.(b) FE-SEM images of the sponge-structured film[59].(Copyright 2016, Wiley Online Library)
Fig.5 Fabrication process of the double dielectric layer composed of the porous and dense PDMS films via vapor encapsulation casting. (i) Spin-coating of uncured PDMS solution.(ii) Sealing the sample with D.I. water in the autoclave.(iii) Heating the autoclave to produce water vapor. Magnified image shows that water vapor penetrates into the uncured PDMS film.(iv) Curing of the double dielectric layer[63].(Copyright 2019, Elsevier)
Fig.6 Schematic illustration of the tactile sensor device fabrication. (a) Si masters with recessed pyramid microstructures are fabricated by conventional lithography methods. (b) PDMS precursor is cast on the Si masters. (c) Freestanding PDMS films with microstructures are cured and peeled off from Si masters. (d) SEM image of PDMS with uniform pyramid pattern arrays[66]. (Copyright 2014, Wiley Online Library)
Fig.7 (a) Schematic process for the fabrication of the paper-based capacitive pressure sensor. (b) Photograph of the fabricated pressure sensor. (c) Schematic depiction of the pressure sensor under applied pressure[72]. (Copyright 2010, Wiley Online Library)
Table 1 Advantages and disadvantages of different template methods and representative morphologies of the micro-structured elastomers
Fig.8 Detection of various mechanical stimuli. (a) Capacitance and film resistances as a function of time under repeated normal pressure of 2 kPa. (b) Capacitance and film resistances as a function of bending angle from 0 to 65°. (c) Capacitance and film resistances as a function of time at incrementally increasing and decreasing bending angle from 0 to 65°. (d) Capacitance and film resistances as a function of percent strained laterally and (e) as a function of time at repeated strain of 15%. (f) Capacitance as a function of time under sound vibration due to hitting a guitar string. (a~e) Change in capacitance, change in top electrode resistance, and change in bottom electrode resistance are represented as blue circles, black diamonds, and red triangles, respectively[13].(Copyright 2014, Wiley Online Library)
Fig.9 Electrical output characteristics of the fabricated LI-TENGs:(a) open-circuit voltage,(b) short-circuit current of the fabricated LI-TENGs with laser power levels ranging from 0 to 132 mW.(c) RL dependency of the output voltage and current of the LI-TENG(29 mW).(d) Open-circuit voltage of the bare TENG and the LI-TENG(29 mW) according to the external force[83].(Copyright 2017, Elsevier)
[1]
Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T L. ACS Nano., 2018, 12:2346.

doi: 10.1021/acsnano.7b07613 pmid: 29378401
[2]
Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K. Nanoscale., 2015, 7:2926.

doi: 10.1039/c4nr06494a pmid: 25588044
[3]
Qian X, Cai Z, Su M, Li F, Fang W, Li Y, Zhou X, Li Q, Feng X, Li W, Hu X, Wang X, Pan C, Song Y. Adv. Mater., 2018, 30:1800291.

doi: 10.1002/adma.v30.25
[4]
Nie B, Li X, Shao J, Li X, Tian H, Wang D, Zhang Q, Lu B. ACS Appl. Mater. Interfaces., 2017, 9:40681.

doi: 10.1021/acsami.7b12987
[5]
Li L, Bai Y, Li L, Wang S, Zhang T. Adv. Mater., 2017, 29:1702517.

doi: 10.1002/adma.201702517
[6]
Wang Z, Huang Y, Sun J, Huang Y, Hu H, Jiang R, Gai W, Li G, Zhi C. ACS Appl. Mater. Interfaces., 2016, 8:24837.

doi: 10.1021/acsami.6b08207
[7]
Song X, Sun T, Yang J, Yu L, Wei D, Fang L, Lu B, Du C, Wei D. ACS Appl. Mater. Interfaces., 2016, 8:16869.

doi: 10.1021/acsami.6b04526
[8]
Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z. Science., 2015, 350:313.

doi: 10.1126/science.aaa9306
[9]
C Wang, D Hwang, Z Yu, K Takei, J Park, T Chen, B Ma, A Javey. Nat. Mater., 2013, 12:899.

doi: 10.1038/nmat3711
[10]
Khan Y, Ostfeld A E, Lochner C M, Pierre A, Arias A C. Adv. Mater., 2016, 28:4373.

doi: 10.1002/adma.v28.22
[11]
Nyein H Y Y, Gao W, Shahpar Z, Emaminejad S, Challa S, Chen K, Fahad H M, Tai L C, Ota H, Davis R W, Javey A. ACS Nano., 2016, 10:7216.

doi: 10.1021/acsnano.6b04005 pmid: 27380446
[12]
Tran Quang T, Lee N E. Adv. Mater., 2016, 28:4338.

doi: 10.1002/adma.v28.22
[13]
Park S, Kim H J, Vosgueritchian M, Cheon S, Kim H, Koo J H, Kim T R, Lee S, Schwartz G, Chang H, Bao Z. Adv. Mater., 2014, 26:7324.

doi: 10.1002/adma.v26.43
[14]
Fan F R, Lin L, Zhu G, Wu W, Zhang R, Wang Z L. Nano. Lett., 2012, 12:3109.

doi: 10.1021/nl300988z
[15]
Chen C, Wu X, Liu D X, Feng W, Wang C. Mob. Inf. Syst., 2017,2017:11.
[16]
Li W, Jin X, Zheng Y, Chang X, Wang W, Lin T, Zheng F, Onyilagha O, Zhu Z. J Mater. Chem. C., 2020, 8:11468.

doi: 10.1039/D0TC00443J
[17]
Tao J, Dong M, Li L, Wang C, Li J, Liu Y, Bao R, Pan C. Microsyst. Nanoeng., 2020, 6:62.

doi: 10.1038/s41378-020-0171-1
[18]
Yu G, Hu J, Tan J, Gao Y, Lu Y, Xuan F. Nanotechnology., 2018, 29:115502.

doi: 10.1088/1361-6528/aaa855
[19]
Jia J, Huang G, Deng J, Pan K. Nanoscale., 2019, 11:4258.

doi: 10.1039/C8NR08503J
[20]
马龙全( Ma L Q). 深圳大学硕士论文( Master Dissertation of Shenzhen University), 2019.
[21]
Ruth S R A, Feig V R, Tran H, Bao Z. Adv. Funct. Mater., 2020, 30:2003491.

doi: 10.1002/adfm.v30.39
[22]
Chen J, Guo H, He X, Liu G, Xi Y, Shi H, Hu C. ACS Appl. Mater. Interfaces., 2016, 8:736.

doi: 10.1021/acsami.5b09907
[23]
Chun J, Kim J W, Jung W S, Kang C Y, Kim S W, Wang Z L, Baik J M. Energy. Environ. Sci., 2015, 8:3006.

doi: 10.1039/C5EE01705J
[24]
Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z N. Nat. Mater., 2010, 9:859.

doi: 10.1038/nmat2834 pmid: 20835231
[25]
Van Long T, Chung C K. Small., 2017, 13.1700373.

doi: 10.1002/smll.v13.29
[26]
Pang C, Koo J H, Amanda N, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H. Bao Z. Adv. Mater., 2015, 27:634.

doi: 10.1002/adma.201403807
[27]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H. ACS Nano., 2014, 8:4689.

doi: 10.1021/nn500441k
[28]
Yang G, Cong L, Yu G, Jin S, Tan J, Xuan F. Nanotechnology., 2019, 30:325502.

doi: 10.1088/1361-6528/ab1a86 pmid: 30995625
[29]
Peng S, Blanloeuil P, Wu S, Wang C H. Adv. Mater. Interfaces., 2018, 5:1800403.

doi: 10.1002/admi.v5.18
[30]
Wang X, Gu Y, Xiong Z, Cui Z, Zhang T. Adv. Mater., 2014, 26:1336.

doi: 10.1002/adma.201304248
[31]
Li T, Luo H, Qin L, Wang X, Xiong Z, Ding H, Gu Y, Liu Z, Zhang T. Small., 2016, 12:5042.

doi: 10.1002/smll.201600760
[32]
Wei Y, Chen S, Lin Y, Yang Z, Liu L. J Mater. Chem. C., 2015, 3:9594.

doi: 10.1039/C5TC01723H
[33]
赵玉( Zhao Y). 北京科技大学博士论文(Doctoral Dissertation of University of Science and Technology Beijing), 2019.
[34]
Lee J, Kwon H, Seo J, Shin S, Koo J H, Pang C, Son S, Kim J H, Jang Y H, Kim D E, Lee T. Adv. Mater., 2015, 27:2433.

doi: 10.1002/adma.201500009
[35]
Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J. Angew. Chem. Int. Ed., 2013, 52:9409.

doi: 10.1002/anie.v52.36
[36]
Reese C, Chung W J, Ling M m, Roberts M, Bao Z. Appl. Phys. Lett., 2006, 89:1302.
[37]
Hu W, Niu X, Zhao R, Pei Q. Appl. Phys. Lett., 2013, 102:083303.

doi: 10.1063/1.4794143
[38]
Wongtimnoi K, Guiffard B, Bogner Van de Moortele A, Seveyrat L, Gauthier C, Cavaille J Y. Compos. Sci. And. Technol., 2011, 71:885.

doi: 10.1016/j.compscitech.2011.02.003
[39]
Hu W, Zhang S N, Niu X, Liu C, Pei Q, J.Mater. Chem. C., 2014, 2:1658.
[40]
Ryabchun A, Kollosche M, Wegener M, Sakhno O. Adv Mater., 2016, 28:10217.

doi: 10.1002/adma.201602881
[41]
Kim Y, Jang S, Oh J H. Microelectron. Eng., 2019, 215:18908.
[42]
Thouti E, Nagaraju A, Chandran A, Prakash P V B S S, Shivanarayanamurthy P, Lal B, Kumar P, Kothari P, Panwar D. Sensor Actuat. A: Phys., 2020, 314:112251.

doi: 10.1016/j.sna.2020.112251
[43]
Yoon J I, Choi K S, Chang S P. Microelectron. Eng., 2017, 179:60.

doi: 10.1016/j.mee.2017.04.028
[44]
Wang J, Suzuki R, Shao M, Gillot F, Shiratori S. ACS Appl. Mater. Interfaces., 2019, 11:11928.

doi: 10.1021/acsami.9b00941
[45]
杜青( Du Q). 太原理工大学硕士论文( Master Dissertation of Taiyuan University of Technology), 2018.
[46]
Li W, Jin X, Zheng Y, Chang X D, Wang W Y, Lin T, Fan Zheng, Obiora T, Zhu Z T.. J. Mater. Chem. C, 2020, 8:11468.

doi: 10.1039/D0TC00443J
[47]
Wen Z, Yang J, Ding H, Zhang W, Wu D, Xu J, Shi Z, Xu T, Tian Y T, Li X. J Mater. Sci. Mater. Electron., 2018, 29:20978.

doi: 10.1007/s10854-018-0242-3
[48]
Ding H, Wen Z, Qin E, Yang Y, Zhang W, Yan B, Wu D, Shi Z, Tian Y T, Li X. Mater. Res. Express., 2019, 6:106546.

doi: 10.1088/2053-1591/ab3885
[49]
Kim S, Amjadi M, Lee T I, Jeong Y, Kwon D, Kim M S, Kim K, Kim T S, Oh Y S, Park I. ACS Appl. Mater. Interfaces., 2019, 11:23639.

doi: 10.1021/acsami.9b07636
[50]
Han M, Lee J, Kim J K, An H K, Kang S W, Jung D. Sensor. Actuat. A. Phys., 2020, 305:11941.
[51]
Zhao T, Li T, Chen L, Yuan L, Li X. Zhang J. ACS Appl. Mater. Interfaces., 2019, 11:29466.

doi: 10.1021/acsami.9b09265
[52]
Kwon D, Lee T I, Shim J, Ryu S, Kim M S, Kim S, Kim T S, Park I. ACS Appl. Mater. Interfaces., 2016, 8:16922.

doi: 10.1021/acsami.6b04225
[53]
Kim D, Park S J, Jeon S B, Seol M L, Choi Y K. Adv. Electr. Mater., 2016, 2:1500331.
[54]
Xia X, Chen J, Guo H, Liu G, Wei D, Xi Y, Wang X, Hu C. Nano. Res., 2016, 10:320.

doi: 10.1007/s12274-016-1294-4
[55]
Liu S Y, Lu J G, Shieh H P D. IEEE. Sens. J., 2018, 18:1870.

doi: 10.1109/JSEN.2017.2789242
[56]
Chen S J, Zhuo B G, Guo X J. ACS Appl. Mater. Interfaces, 2016, 8:20364.

doi: 10.1021/acsami.6b05177
[57]
Kou H, Zhang L, Tan Q L, Liu G, Dong H, Zhang W, Xiong J. Sci. Rep., 2019, 9:3916.

doi: 10.1038/s41598-019-40828-8
[58]
陈瞳( Chen T), 王瑞荣( Wang R R), 李晓红( Li X H). 传感技术学报( Journal of Sensing Technology), 2019, 32(04):528.
[59]
Lee K Y, Chun J, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W. Adv Mater., 2014, 26:5037.

doi: 10.1002/adma.201401184
[60]
He X, Mu X, Wen Q, Wen Z, Yang J, Hu C G, Shi H. Nano. Res., 2016, 9:3714.

doi: 10.1007/s12274-016-1242-3
[61]
李玲( Li L), 岳凤英( Yue F Y), 乔霖( Qiao L), 申恒瑞( Shen H R), 索艳春( Suo Y C) 仪表技术与传感器( Instrumentation technology and sensors), 2019, 000(04):15.
[62]
Lee B Y, Kim J, Kim H, Kim C, Lee S D. Sensor. Actuat. A. Phys., 2016, 240:103.

doi: 10.1016/j.sna.2016.01.037
[63]
Xu H B, Kim J H, Kim S, Hwang H J, Maurya D, Choi D, Kang C Y, Song H C. Nano. Energy., 2019, 62:144.

doi: 10.1016/j.nanoen.2019.04.097
[64]
Bijender, Kumar A. ACS Omega., 2020, 5:16944.

doi: 10.1021/acsomega.0c02278 pmid: 32685864
[65]
Lee J H, Yoon H J, Kim T Y, Gupta M K, Lee J H, Seung W, Ryu H, Kim S W. Adv. Funct. Mater., 2015, 25:3203.

doi: 10.1002/adfm.v25.21
[66]
Zhu B, Niu Z, Wang H, Leow W R, Wang H, Li Y, Zheng L, Wei J, Huo F, Chen X D. Small., 2014, 10:3625.

doi: 10.1002/smll.v10.18
[67]
Choi W, Lee J, Kyoung Yoo Y, Kang S, Kim J, Hoon Lee J. Appl. Phys. Lett., 2014, 104:123701.

doi: 10.1063/1.4869816
[68]
Lee J J, Gandla S, Lim B, Kang S, Kim S Y, Lee S J, Kim S K. NPG. Asia. Mater., 2020, 12:65.

doi: 10.1038/s41427-020-00238-z
[69]
Gang L, Chen D, Cheng L, Liu W, Liu H. Adv. Sci., 2020, 7:2000154.

doi: 10.1002/advs.v7.18
[70]
Yang J C, Kim J O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B, Park S. ACS Appl. Mater. Interfaces., 2019, 11:19472.

doi: 10.1021/acsami.9b03261
[71]
Wang X L, Xia Z, Zhao C, Huangb P, Zhao S f, Gao M, Nie J k. Sensors and Actuators A Physical., 2020, 312:112147.

doi: 10.1016/j.sna.2020.112147
[72]
Lee K, Lee J, Kim G, Kim Y, Kang S, Cho S, Kim S, Kim J K, Lee W, Kim D E, Kang S, Kim D, Lee T, Shim W Y. Small., 2017, 13:1700368.

doi: 10.1002/smll.v13.43
[73]
Zhuo B, Chen S, Zhao M, Guo X J. IEEE. J. Electron. Device. Soc., 2017, 5:219.

doi: 10.1109/JEDS.2017.2683558
[74]
Vandeparre H, Watson D, Lacour S P. Appl. Phys. Lett., 2013, 103:204103.

doi: 10.1063/1.4832416
[75]
Li Q, Li J, Tran D, Luo C, Gao Y, Yu C, Xuan F. J. Mater Chem. C., 2017, 5:11092.

doi: 10.1039/C7TC03434B
[76]
Chhetry A, Sharma S, Yoon H, Ko S, Park J Y. Adv Funct Mater., 2020, 30,1910020.

doi: 10.1002/adfm.v30.31
[77]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z N. Adv. Funct. Mater., 2014, 24(34):5427.

doi: 10.1002/adfm.201400712
[78]
Deng W J, Wang L F, Dong L, Huang Q A. IEEE. Sens. J., 2018, 18:4886.

doi: 10.1109/JSEN.2018.2831229
[79]
Shi R, Lou Z, Chen S, Shen G Z. Sci. China. Mater., 2018, 61:1587.

doi: 10.1007/s40843-018-9267-3
[80]
Teng F R, Ren Q, Lai T C, Liu C, Li A D. J. Phys. D: Appl Phys., 2020, 53:505402.

doi: 10.1088/1361-6463/abb1e5
[81]
Biutty M N, Koo J M, Zakia M, Handayani P L, Choi U H, Yoo S I. RSC Adv., 2020, 10:21309.

doi: 10.1039/D0RA03522J
[82]
Chen J, Guo H Y, He X. ACS Appl. Mater. Interfaces, 2015, 8:736.

doi: 10.1021/acsami.5b09907
[83]
Kim D, Tcho I W, Jin I K, Park S J, Jeon S B, Kim W G, Cho H S, Lee H S, Jeoung S C, Choi Y K. Nano Energy. 2017, 35:379.

doi: 10.1016/j.nanoen.2017.04.013
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[4] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[5] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[6] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[10] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[11] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[12] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[13] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[14] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[15] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.