中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2362-2377 DOI: 10.7536/PC201107 Previous Articles   Next Articles

• Review •

Preparation and Application of Transparent Superhydrophobic Materials

Yue Li1,2, Yamei Lu2, Pengfei Wang2, Yingze Cao2(), Chun’ai Dai1()   

  1. 1 Department of Chemistry, School of Science, Beijing Jiaotong University,Beijing 100044, China
    2 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology,Beijing 100094, China
  • Received: Revised: Online: Published:
  • Contact: Yingze Cao, Chun’ai Dai
  • Supported by:
    the National Natural Science Foundation of China(21905302)
Richhtml ( 42 ) PDF ( 1042 ) Cited
Export

EndNote

Ris

BibTeX

Superhydrophobic materials have attracted widespread attention due to their unique non-wetting properties, and have been rapidly developed in recent years. Multifunctional superhydrophobic surfaces suitable for different fields have emerged. Among them, transparent superhydrophobic materials are favored by people because of their special contributions in the optical field. The transparent hydrophobic coating technology is of great significance for practical applications. The transparent coating can not only meet the high light transmittance requirement of optical device protection, but also maintain the basic appearance of the protective body, and shows broad application prospects in the fields of self-cleaning, anti-fouling, anti-icing, anti-fog, anti-corrosion, etc. Here, we systematically elaborate the latest developments in the research progress of superhydrophobic surfaces and functional transparent superhydrophobic surfaces, surface design, manufacturing, and their applications. Although many significant progress has been made, the current durability of superhydrophobic materials still have many problems, such as easy to damage by mechanical external force, instability of superhydrophobic properties on the surface under extreme environments, and aging problems, which limits the wide range of applications of transparent hydrophobic coating technology. In future research, on one hand, relevant theoretical knowledge is to be further enriched to provide more theoretical support for the application of transparent hydrophobic coating technology. On the other hand, improving the transparency and mechanical durability of the coating is still the top priority of future research.

Contents

1 Introduction

2 Theoretical basis

2.1 Wettability related theories

2.2 The construction principle of transparent superhydrophobic surface

3 Preparation method of transparent superhydro-phobic surface

3.1 Chemical Vapour Deposition (CVD)

3.2 Dry etching technique

3.3 Colloidal lithography

3.4 Self-assembled film

3.5 Electrochemical method

3.6 Sol-gel method

3.7 Other methods

4 Application

4.1 Self-cleaning

4.2 Field of optics

4.3 Anti-fouling

4.4 Anti-icing and anti-fog

4.5 Anti-corrosion

5 Conclusion and outlook

Fig.1 Natural super-hydrophobic surface: (a) lotus leaf. (b) rose flower. (c) beetle back. (d) butterfly wings
Fig.2 Timeline of major advances in the area of liquid repellency
Fig.3 SEM image of a natural superhydrophobic surface with a layered structure: (a) Numerous micron-sized papillae are distributed on the surface of the lotus leaf. (b) an enlarged view of a single papilla. (c) a large number of nanorods are distributed on the back of the lotus leaf. (d) Water repulsion on the surface of the lotus leaf[12]. Copyright 2002, Wiley-VCH
Fig.4 Schematic diagram of water droplets contacting different surfaces: (a) Smooth surface. (b) Hierarchical structure surface
Fig.5 SLIPS surface: (a) Schematic diagram of SLIPS surface wetting. (b) Schematic diagram of fabricating SLIPS surface[32]. Copyright 2016, American Chemical Society
Fig.6 The model of droplets falling on the surface at a contact angle θ[35]. Copyright 1952, American Chemical Society
Fig.7 (a) Wenzel model and (b) Cassie-Baxter model of droplets on the surface[38]. Copyright 2016, American Chemical Society
Table 1 Refractive index of common transparent materials
Fig.8 SiO2 transparent super-hydrophobic coating: (a) the photo of the soot layer of the sample. (b) and (c) are the SEM image and high-resolution SEM image of the soot deposition, respectively. (d) the SEM image of the vapor-deposited silica shell. (e) and (f) are high-resolution SEM images and high-resolution TEM images of the coating after heating at 600 ℃ for 2 hours to remove the carbon core. (g) the coating has high transparency. (h) The state of water droplets and hexadecane droplets resting on the double phobic surface. (i) the schematic diagram of the droplets contacting on the surface of the non-composite coating. (j) the bouncing process of the hexadecane droplets on the double phobic surface recorded by the high-speed camera[58]. Copyright 2012, American Association for the Advancement of Science
Fig.9 Polymethyl methacrylate transparent super-hydrophobic surface: (a) Schematic diagram of preparation. (b) surface transparency can reach 95% in the visible light range. (c) the process of red dye droplets bouncing on the surface recorded by the high-speed camera[61]. Copyright 2013, Wiley-VCH
Fig.10 PDMS film: (a) the micro-topography under the laser microscope. (b), (c) the micro-topography under the scanning electron microscope. (d), (e) the PDMS film is placed at different positions above the paper. (f) PDMS film has high transparency[64]. Copyright 2016, American Chemical Society
Fig.11 Schematic diagram of preparation and surface microstructure of transparent superhydrophobic film with two-stage rough structure[66]. Copyright 2015, American Chemical Society
Fig.12 Multilayer self-assembled silica-like coating: (a) Schematic diagram of the coating preparation process; (b) the micro morphology of the coating, the illustration shows that the water contact angle of the coating is about 155°; (c) the transparency of the coating in the visible light range can reach 92%[75]. Copyright 2020, Wiley-VCH
Fig.13 ZNC coating: (a) preparation process; (b) coating has excellent superhydrophobic properties; (c) coating has good corrosion resistance[79]. Copyright 2018, American Chemical Society
Fig.14 Transparent hydrophobic coating: (a) Preparation mechanism diagram. (b) Optical mirror image of water droplets on the surface of the coating, with excellent superhydrophobic properties. (c) The coating has good transparency[84]. Copyright 2010, American Chemical Society
Table 2 Summarize of common preparation methods for superhydrophobic surfaces
Method Process Advantages Disadvantages Substrates
Chemical Vapour Deposition The use of one or several gas-phase compounds or simple substances containing film elements to form a film by chemical reactions on the surface of the substrate Save time, low cost, easy operation, good repeatability. Air pollution, difficult to control, poor bonding strength and wear resistance. glass
polymer
metal
wood
Silicon wafer
Dry etching technique Physically ablate the surface to change the rough structure of the surface. Easy to control and manipulate, good repeatability, no chemical waste liquid, high cleanliness, good stability and uniform surface. The cost is high, the equipment is complex, and the processing time is long, making it difficult to widely use. glass
metal
Silicon wafer
Colloidal lithography Copy the rough microstructure on the surface of the low surface energy template. Save time, low cost, good repeatability, wide application range, and mass production. The template size is limited and the wear resistance is poor, glass
polymer
metal
Silicon wafer
Self-assembled film Basic structural units (molecules, nanomaterials, micron or larger substances) spontaneously form ordered structures Simple and easy to implement, no special device is needed, water is usually used as solvent, deposition process and membrane structure are easy to control Poor wear resistance glass
polymer
metal
Silicon wafer
Electrochemical method In an external electric field, the redox reaction occurs in the plating layer and is formed on the electrode. Save time, low cost, mass production Single substrate, poor wear resistance Conductor (metal)
Sol-gel method Prepare stable sol system and apply to substrate Simple operation, uniform coating Long reaction period, poor abrasion
resistance, use organic solvents
glass
polymer
metal
Silicon wafer
Fig.15 Schematic diagram of the relationship between surface roughness and self-cleaning: (a) On a smooth surface, pollutant particles are redistributed with water; (b) On a rough surface, water droplets carry pollutants off the surface[88]. Copyright 2017, RSC
Fig.16 Application of transparent super-hydrophobic coating in solar panels: (a) The external quantum efficiency (EQE) diagram of the solar cell after application and the corresponding short-circuit current density (JSC). (b) The coating has good transparency[92]. Copyright 2016, Wiley-VCH
Fig.17 The process of anti-icing and ice-phobic mechanisms, including self-propelling, bouncing, wetting, nucleating, and bridging[108]. Copyright 2017, Wiley-VCH
Fig.18 Super-hydrophobic surface is used for anti-corrosion: (a) schematic diagram of anti-corrosion principle in humid environment and in NaCl solution; (b) coating has good anti-corrosion performance[79]. Copyright 2018, American Chemical Society
[1]
Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. Langmuir, 1999, 15(13): 4321.

doi: 10.1021/la981727s
[2]
Yan Y Y, Gao N, Barthlott W. Adv. Colloid Interface Sci., 2011, 169(2): 80.

doi: 10.1016/j.cis.2011.08.005
[3]
Roach P, Shirtcliffe N J, Newton M I. Soft Matter, 2008, 4(2): 224.

doi: 10.1039/b712575p pmid: 32907233
[4]
Li X M, Reinhoudt D, Crego-Calama M. Chem. Soc. Rev., 2007, 36(8): 1350.

doi: 10.1039/b602486f
[5]
Gao X F, Jiang L. Physics, 2006, 35(7): 559.(高雪峰, 江雷. 物理, 2006, 35(7): 559.)
[6]
Ward W E. J. Aesthet. Art Crit., 1952, 11(2): 135.
[7]
Young T. Phil. Trans. R. Soc., 1805, 95: 65.

doi: 10.1098/rstl.1805.0005
[8]
Wenzel R N. Ind. Eng. Chem., 1936, 28(8): 988.

doi: 10.1021/ie50320a024
[9]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.

doi: 10.1039/tf9444000546
[10]
Onda T, Shibuichi S, Satoh N, Tsujii K. Langmuir, 1996, 12(9): 2125.

doi: 10.1021/la950418o
[11]
Barthlott W, Neinhuis C. Planta, 1997, 202(1): 1.

doi: 10.1007/s004250050096
[12]
Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Adv. Mater., 2002, 14(24): 1857.

doi: 10.1002/adma.200290020
[13]
Tsujii K, Yamamoto T, Onda T, Shibuichi S. Angew. Chem. Int. Ed. Engl., 1997, 36(9): 1011.

doi: 10.1002/(ISSN)1521-3773
[14]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.

doi: 10.1038/nature10447
[15]
Lafuma A, QuÉrÉ D. EPL Europhys. Lett., 2011, 96(5): 56001.

doi: 10.1209/0295-5075/96/56001
[16]
Liu T, Kim C J. Science, 2014, 346(6213): 1096.

doi: 10.1126/science.1254787
[17]
Guo Z G, Liu W M, Su B L. Appl. Phys. Lett., 2008, 92(6): 063104.

doi: 10.1063/1.2841666
[18]
Guo Y G, Zhu Y C, Zhang X, Luo B P. Progress in Chemistry, 2020, 32(2/3): 320.
( 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 化学进展, 2020, 32(2/3): 320).

doi: 10.7536/PC190629
[19]
Wei C Q, Jin B Y, Zhang Q H, Zhan X L, Chen F Q. J. Alloys Compd., 2018, 765: 721.

doi: 10.1016/j.jallcom.2018.06.041
[20]
Wang F, Ding W W, He J Y, Zhang Z L. Chem. Eng. J., 2019, 360: 243.

doi: 10.1016/j.cej.2018.11.224
[21]
Bohn H F, Federle W. PNAS, 2004, 101(39): 14138.

doi: 10.1073/pnas.0405885101
[22]
Wilson P W, Lu W Z, Xu H J, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Phys. Chem. Chem. Phys., 2013, 15(2): 581.

doi: 10.1039/C2CP43586A
[23]
Long Y F, Yin X X, Mu P, Wang Q T, Hu J J, Li J. Chem. Eng. J., 2020, 401: 126137.

doi: 10.1016/j.cej.2020.126137
[24]
Li Q, Guo Z G. J. Mater. Chem. A, 2018, 6(28): 13549.

doi: 10.1039/C8TA03259A
[25]
Li J L.Degree Dissertation of Anhui University, 2011.(李佳霖. 安徽大学学位论文, 2011.).
[26]
Wang P, Chen M J, Han H L, Fan X L, Liu Q, Wang J F. J. Mater. Chem. A, 2016, 4(20): 7869.

doi: 10.1039/C6TA01082B
[27]
Huang E M, Pi P H, Zheng D F, Wen X F, Yang Z R. New Chem. Mater., 2010, 38(3): 1.
( 黄二梅, 皮丕辉, 郑大锋, 文秀芳, 杨卓如. 化工新型材料, 2010, 38(3): 1.)
[28]
Ozbay S, Yuceel C, Erbil H Y. ACS Appl. Mater. Interfaces, 2015, 7(39): 22067.

doi: 10.1021/acsami.5b07265
[29]
Coady M J, Wood M, Wallace G Q, Nielsen K E, Kietzig A M, LagugnÉ-Labarthet F, Ragogna P J. ACS Appl. Mater. Interfaces, 2018, 10(3): 2890.

doi: 10.1021/acsami.7b14433
[30]
Kreder M J, Alvarenga J, Kim P, Aizenberg J. Nat. Rev. Mater., 2016, 1(1): 1.
[31]
Lv J, Song Y L, Jiang L, Wang J J. ACS Nano, 2014, 8(4): 3152.

doi: 10.1021/nn406522n
[32]
Yeong Y H, Wang C Y, Wynne K J, Gupta M C. ACS Appl. Mater. Interfaces, 2016, 8(46): 32050.

doi: 10.1021/acsami.6b11184
[33]
Yuan Y H, Lee T R. Surf. Sci. Tech., 2013, 51: 3.
[34]
Wenzel R N. J. Phys. Chem., 1949, 53(9): 1466.
[35]
Good R J. J. Am. Chem. Soc., 1952, 74(20): 5041.

doi: 10.1021/ja01140a014
[36]
Seveno D, Blake T D, de Coninck J. Phys. Rev. Lett., 2013, 111(9): 096101.

doi: 10.1103/PhysRevLett.111.096101
[37]
Wang X S, Cui S W, Zhou L, Xu S H, Sun Z W, Zhu R Z. J. Adhesion Sci. Technol., 2014, 28(2): 161.

doi: 10.1080/01694243.2013.833401
[38]
Su B, Tian Y, Jiang L. J. Am. Chem. Soc., 2016, 138(6): 1727.

doi: 10.1021/jacs.5b12728
[39]
Guo P, Zheng Y M, Wen M X, Song C, Lin Y C, Jiang L. Adv. Mater., 2012, 24(19): 2642.

doi: 10.1002/adma.v24.19
[40]
Lai Y K, Chen Z, Lin C J. Sci. China Chem., 2011, 41(4): 609.
( 赖跃坤, 陈忠, 林昌健. 中国科学:化学, 2011, 41(4): 609.)
[41]
Wang S, Jiang L. Adv. Mater., 2007, 19(21): 3423.

doi: 10.1002/(ISSN)1521-4095
[42]
Lai Y K, Tang Y X, Gong J J, Gong D G, Chi L F, Lin C J, Chen Z. J. Mater. Chem., 2012, 22(15): 7420.

doi: 10.1039/c2jm16298a
[43]
Urandelger T, Adem Y, Fahri E O, Mehmet B. ACS Appl. Mater. Interf., 2014, 6: 9680.

doi: 10.1021/am502117a
[44]
Peters A M, Pirat C, Sbragaglia M, Borkent B M, Wessling M, Lohse D, Lammertink R G H. Eur. Phys. J. E, 2009, 29(4): 391.

doi: 10.1140/epje/i2009-10489-3
[45]
Ma Y, Ma Y M, Cao C Y, Zou H, Jiang L. Plastics, 2006, 35(5): 39.
( 马英, 马永梅, 曹新宇, 邹洪, 江雷. 塑料, 2006, 35(5): 39.)
[46]
Lin Y, Han J P, Cai M Y, Liu W J, Luo X, Zhang H J, Zhong M L. J. Mater. Chem. A, 2018, 6(19): 9049.

doi: 10.1039/C8TA01965G
[47]
Yu S, Guo Z G, Liu W M. Chem. Commun., 2015, 51(10): 1775.

doi: 10.1039/C4CC06868H
[48]
Chen L, Wang Y F, Nie R C, Xu C Y, Zhou H H. Guangzhou Chem. Ind., 2014, 42(17): 24.
( 陈理, 王艳芬, 聂荣春, 徐初阳, 周欢欢. 广州化工, 2014, 42(17): 24.)
[49]
Rahmawan Y, Xu L B, Yang S. J. Mater. Chem. A, 2013, 1(9): 2955.

doi: 10.1039/C2TA00288D
[50]
Bohren C, Hufman D R. Absorption and Scattering of Light by Small Particles. John Wiley, New York, 1983. Chapter 2. 7.
[51]
Perl E E, McMahon W E, Farrell R M, DenBaars S P, Speck J S, Bowers J E. Nano Lett., 2014, 14(10): 5960.

doi: 10.1021/nl502977f
[52]
Karunakaran R G, Lu C H, Zhang Z H, Yang S. Langmuir, 2011, 27(8): 4594.

doi: 10.1021/la104067c pmid: 21355577
[53]
Kerker M. The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York, 1969. Chapter 3.
[54]
Walheim S, Schaffer E, Mlynek J, Steiner U. Science, 1999, 283.
[55]
Garahan A, Pilon L, Yin J, Saxena I. J. Appl. Phys., 2007, 101(1): 014320.

doi: 10.1063/1.2402327
[56]
Yan X B, Tay B K, Yang Y, Po W Y K. J. Phys. Chem. C, 2007, 111(46): 17254.

doi: 10.1021/jp076064e
[57]
Cao L L, Hu H H, Gao D. Langmuir, 2007, 23(8): 4310.

doi: 10.1021/la063572r
[58]
Deng X, Mammen L, Butt H J, Vollmer D. Science, 2012, 335(6064): 67.

doi: 10.1126/science.1207115 pmid: 22144464
[59]
Laturkar S V, Mahanwar P A. Nanosystems: Phys. Chem. Math., 2016: 650.
[60]
Cho S C, Hong Y C, Uhm H S. J. Mater. Chem., 2007, 17(3): 232.

doi: 10.1039/B611368K
[61]
Her E K, Ko T J, Shin B, Roh H, Dai W, Seong W K, Kim H Y, Lee K R, Oh K H, Moon M W. Plasma Processes Polym., 2013, 10(5): 401.

doi: 10.1002/ppap.201370013
[62]
Ghosh P, Satou S, Nakamori H, Noda T, Daisuke I, Tanemura M. Phys. Status Solidi RRL, 2012, 6(11): 430.

doi: 10.1002/pssr.v6.11
[63]
Durret J, Szkutnik P D, Frolet N, Labau S, Gourgon C. Appl. Surf. Sci., 2018, 445: 97.

doi: 10.1016/j.apsusc.2018.03.010
[64]
Gong D W, Long J Y, Jiang D F, Fan P X, Zhang H J, Li L, Zhong M L. ACS Appl. Mater. Interfaces, 2016, 8(27): 17511.

doi: 10.1021/acsami.6b03424
[65]
Kong J H, Kim T H, Kim J H, Park J K, Lee D W, Kim S H, Kim J M. Nanoscale, 2014, 6(3): 1453.

doi: 10.1039/C3NR04629J
[66]
Kim T H, Ha S H, Jang N S, Kim J, Kim J H, Park J K, Lee D W, Lee J, Kim S H, Kim J M. ACS Appl. Mater. Interfaces, 2015, 7(9): 5289.

doi: 10.1021/am5086066
[67]
Zhu Y, Hu D, Wan M X, Jiang L, Wei Y. Adv. Mater., 2007, 19(16): 2092.

doi: 10.1002/(ISSN)1521-4095
[68]
Zhu X T, Zhang Z Z, Yang J, Xu X H, Men X H, Zhou X Y. J. Colloid Interface Sci., 2012, 380(1): 182.

doi: 10.1016/j.jcis.2012.04.063
[69]
Tsai H J, Lee Y L. Langmuir, 2007, 23(25): 12687.

doi: 10.1021/la702521u
[70]
Li Y, Lee E J, Cho S O. J. Phys. Chem. C, 2007, 111(40): 14813.

doi: 10.1021/jp073672l
[71]
Samanta B, Ofir Y, Patra D, Rotello V M. Soft Matter, 2009, 5(6): 1247.

doi: 10.1039/B808494G
[72]
Zhang L B, Chen H, Sun J Q, Shen J C. Chem. Mater., 2007, 19(4): 948.
[73]
Bravo J, Zhai L, Wu Z Z, Cohen R E, Rubner M F. Langmuir, 2007, 23(13): 7293.

doi: 10.1021/la070159q
[74]
Xu L B, Karunakaran R G, Guo J, Yang S. ACS Appl. Mater. Interfaces, 2012, 4(2): 1118.

doi: 10.1021/am201750h
[75]
Cheng L C, Simonaitis J W, Gadelrab K R, Tahir M, Ding Y, Alexander-Katz A, Ross C A. Small, 2020, 16(1): 1905509.

doi: 10.1002/smll.v16.1
[76]
Larmour I, Bell S, Saunders G. Angew. Chem. Int. Ed., 2007, 46(10): 1710.

doi: 10.1002/(ISSN)1521-3773
[77]
Wang S T, Song Y L, Jiang L. Nanotechnology, 2007, 18(1): 015103.

doi: 10.1088/0957-4484/18/1/015103
[78]
Li Y, Jia W Z, Song Y Y, Xia X H. Chem. Mater., 2007, 19(23): 5758.

doi: 10.1021/cm071738j
[79]
Xiang T F, Han Y, Guo Z Q, Wang R, Zheng S L, Li S, Li C, Dai X M. ACS Sustainable Chem. Eng., 2018, 6(4): 5598.

doi: 10.1021/acssuschemeng.8b00639
[80]
Huang Z B, Zhu Y, Zhang J H, Yin G F. J. Phys. Chem. C, 2007, 111(18): 6821.

doi: 10.1021/jp0678554
[81]
García N, Benito E, Guzmán J, Tiemblo P. J. Am. Chem. Soc., 2007, 129(16): 5052.

pmid: 17397151
[82]
Zhu X T, Zhang Z Z, Ren G N, Men X H, Ge B, Zhou X Y. J. Colloid Interface Sci., 2014, 421: 141.

doi: 10.1016/j.jcis.2014.01.026
[83]
Wu X H, Chen Z. J. Mater. Chem. A, 2018, 6(33): 16043.

doi: 10.1039/C8TA05692G
[84]
Xu Q F, Wang J N, Sanderson K D. ACS Nano, 2010, 4(4): 2201.

doi: 10.1021/nn901581j
[85]
Wang D, Zhang Z B, Li Y M, Xu C H. ACS Appl. Mater. Interfaces, 2014, 6(13): 10014.

doi: 10.1021/am405884x
[86]
Ebert D, Bhushan B. Langmuir, 2012, 28(31): 11391.

doi: 10.1021/la301479c
[87]
Yoon H, Kim H, Latthe S S, Kim M W, Al-Deyab S, Yoon S S. J. Mater. Chem. A, 2015, 3(21): 11403.

doi: 10.1039/C5TA02226F
[88]
Yong J L, Chen F, Yang Q, Huo J L, Hou X. Chem. Soc. Rev., 2017, 46(14): 4168.

doi: 10.1039/C6CS00751A
[89]
Li F, Du M, Zheng Z, Song Y H, Zheng Q. Adv. Mater. Interfaces, 2015, 2(13): 1500201.

doi: 10.1002/admi.v2.13
[90]
Jang G G, Smith D B, List F A, Lee D F, Ievlev A V, Collins L, Park J, Polizos G. Nanoscale, 2018, 10(30): 14600.

doi: 10.1039/C8NR03024C
[91]
Zhi J H, Zhang L Z. Appl. Surf. Sci., 2018, 454: 239.

doi: 10.1016/j.apsusc.2018.05.139
[92]
Vüllers F, Gomard G, Preinfalk J B, Klampaftis E, Worgull M, Richards B, Hölscher H, Kavalenka M N. Small, 2016, 12(44): 6144.

doi: 10.1002/smll.201601443 pmid: 27717174
[93]
Chavan S, Park D, Singla N, Sokalski P, Boyina K, Miljkovic N. Langmuir, 2018, 34(22): 6636.

doi: 10.1021/acs.langmuir.8b00916
[94]
Li N, Wu L, Yu C L, Dai H Y, Wang T, Dong Z C, Jiang L. Adv. Mater., 2018, 30(8): 1703838.

doi: 10.1002/adma.v30.8
[95]
Shen Y Z, Tao J, Wang G Y, Zhu C L, Chen H F, Jin M M, Xie Y H. J. Phys. Chem. C, 2018, 122(13): 7312.

doi: 10.1021/acs.jpcc.8b01538
[96]
Shen Y Z, Liu S Y, Zhu C L, Tao J, Wang G Y. Chem. Eng., 2017, 313: 47.

doi: 10.1016/j.cej.2016.12.063
[97]
Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4(12): 7699.

doi: 10.1021/nn102557p pmid: 21062048
[98]
Farokhirad S, Lee T. Int. J. Multiph. Flow, 2017, 95: 220.

doi: 10.1016/j.ijmultiphaseflow.2017.05.008
[99]
Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D. Langmuir, 2011, 27(6): 3059.

doi: 10.1021/la104762g
[100]
Emelyanenko A M, Boinovich L B, Bezdomnikov A A, Chulkova E V, Emelyanenko K A. ACS Appl. Mater. Interfaces, 2017, 9(28): 24210.

doi: 10.1021/acsami.7b05549
[101]
Jin M M, Shen Y Z, Luo X Y, Tao J, Xie Y H, Chen H F, Wu Y. Appl. Surf. Sci., 2018, 455: 883.

doi: 10.1016/j.apsusc.2018.06.043
[102]
Xi N Y, Liu Y, Zhang X N, Liu N, Fu H, Hang Z Q, Yang G Y, Chen H, Gao W. Appl. Surf. Sci., 2018, 444: 757.

doi: 10.1016/j.apsusc.2018.03.075
[103]
Wang N, Tang L L, Tong W, Xiong D S. Mater. Des., 2018, 156: 320.

doi: 10.1016/j.matdes.2018.06.053
[104]
Wu X H, Zhao X, Ho J W C, Chen Z. Chem. Eng. J., 2019, 355: 901.

doi: 10.1016/j.cej.2018.07.204
[105]
Song J L, Li Y X, Xu W, Liu H, Lu Y. J. Colloid Interface Sci., 2019, 541: 86.

doi: 10.1016/j.jcis.2019.01.014
[106]
Zheng S L, Bellido-Aguilar D A, Wu X H, Zhan X J, Huang Y J, Zeng X T, Zhang Q C, Chen Z. ACS Sustainable Chem. Eng., 2019, 7(1): 641.

doi: 10.1021/acssuschemeng.8b04203
[107]
Shen Y Z, Wu Y, Tao J, Zhu C L, Chen H F, Wu Z W, Xie Y H. ACS Appl. Mater. Interfaces, 2019, 11(3): 3590.

doi: 10.1021/acsami.8b19225
[108]
Zhang S N, Huang J Y, Cheng Y, Yang H, Chen Z, Lai Y K. Small, 2017, 13(48): 1701867.

doi: 10.1002/smll.v13.48
[109]
Vazirinasab E, Jafari R, Momen G. Surf. Coat. Technol., 2018, 341: 40.

doi: 10.1016/j.surfcoat.2017.11.053
[110]
Ding C D, Tai Y, Wang D, Tan L H, Fu J J. Chem. Eng. J., 2019, 357: 518.

doi: 10.1016/j.cej.2018.09.133
[111]
Wang Z W, Li Q, She Z X, Chen F N, Li L Q, Zhang X X, Zhang P. Appl. Surf. Sci., 2013, 271: 182.

doi: 10.1016/j.apsusc.2013.01.158
[112]
Xue C H, Zhang Z D, Zhang J, Jia S T. J. Mater. Chem. A, 2014, 2(36): 15001.

doi: 10.1039/C4TA02396J
[113]
Peng C Y, Chen Z Y, Tiwari M K. Nat. Mater., 2018, 17(4): 355.

doi: 10.1038/s41563-018-0044-2
[114]
Wang D H, Sun Q Q, Hokkanen M J, Zhang C L, Lin F Y, Liu Q, Zhu S P, Zhou T F, Chang Q, He B, Zhou Q, Chen L Q, Wang Z K, Ras R H A, Deng X. Nature, 2020, 582(7810): 55.

doi: 10.1038/s41586-020-2331-8
[115]
Long Y F, Yin X X, Mu P, Wang Q T, Hu J J, Li J. Chem. Eng. J., 2020, 401: 126137.

doi: 10.1016/j.cej.2020.126137
[1] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[2] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[3] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[4] Sun Sai, Zhuang Xiaodong, Wang Luxin, Wang Cheng, Zhang Bin, Chen Yu. Graphene-Based Functional Materials for Information Storage: Materials, Devices and Performance [J]. Progress in Chemistry, 2016, 28(1): 18-39.
[5] Zhao Qiaoling, Ma Zhi*. Application of Atomic Force Microscope to Polyolefin Research [J]. Progress in Chemistry, 2012, (10): 2011-2018.
[6] Tang Jingjing, Di Feng, Xu Xiao, Xiao Yinghong, Che Jianfei. Transparent Conductive Graphene Films [J]. Progress in Chemistry, 2012, 24(04): 501-511.
[7]

Wang Jinmei1|Li Da1|Deng Zanhong1|Zhu Xuebin2|Dong Weiwei1|Fang Xiaodong1**

. Preparation of the Delafossite Structure p Type Transparent Conducting Oxide Thin Films by Sol-Gel Process [J]. Progress in Chemistry, 2009, 21(01): 128-133.
[8] Jiang Xiong|Qiao Shengru**|Zhang Chengyu|Hu Haibao|Liu Xiaoju. Hydrophobic Surface and Application to Drag Reduction [J]. Progress in Chemistry, 2008, 20(04): 450-456.
[9] Guo Xinglin,Xie Qiongdan,Zhao Ning,Liang Songmiao,Wang Dujin,Xu Jian**. Developments of Bionic Polymers [J]. Progress in Chemistry, 2004, 16(06): 1023-.