中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 1044-1058 DOI: 10.7536/PC200947 Previous Articles   

• Review •

Infrared Stealth and Multi-Band Compatible Stealth Materials

Lili Feng1, Yiman Liu1,2, Lin Yao2,*(), Rui Sun1,2, Junhui He2,*   

  1. 1 College of Chemistry and Environmental Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
    2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Lin Yao, Junhui He
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Program of China(2017YFA0207102); National Natural Science Foundation of China(21271177); National Natural Science Foundation of China(21571182); Fundamental Research Funds for the Central Universities(2021YJSHH23); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS
Richhtml ( 172 ) PDF ( 3489 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of detection system and the improvement of detection accuracy, the demand for stealth technology is increasingly urgent. As the traditional infrared stealth materials are facing the severe challenge of multi-channel target detection, it is of great significance to develop new compatible stealth materials which can meet the requirements of infrared stealth, radar stealth, visible light stealth and laser stealth. The infrared stealth materials mainly aim at the infrared radiation characteristics of the target to design the material and structure, so as to reduce the prominence of the thermal infrared radiation signal in the background and the hit probability of the target by the thermal infrared guided weapon. This review summarizes the working principle, preparation methods and latest research progress of infrared stealth and compatible materials. Firstly, the structural characteristics, stealth mechanism and research results of the most promising infrared stealth materials, including photonic crystals, doped semiconductors, phase change materials and nano materials, are introduced. The materials to achieve infrared stealth and the specific stealth characteristics are focused. Secondly, infrared/radar compatible, infrared/visible light compatible, infrared/laser compatible and multi band compatible materials are discussed. In addition, the latest research progress is systematically summarized. Finally, the shortcomings and difficulties of infrared stealth materials and compatible materials are summarized, and the future research direction is prospected.

Contents

1 Introduction

2 Infrared stealth materials

2.1 Photonic crystals

2.2 Doped semiconductor

2.3 Phase change materials

2.4 Nano materials

2.5 Other materials

3 Compatible stealth

3.1 Infrared radar compatibility

3.2 Infrared and visible light compatibility

3.3 Infrared laser compatibility

3.4 Multi-band compatibility

4 Conclusion and outlook

Fig.1 Electromagnetic wave spectrum
Fig.2 Infrared spectra of phCs:(a) 1.0 μm-PS-3D,(b) 1.20 μm-PS-3D [39];(c) Three-dimensional densely stacked photonic crystal model;(d) A single layer of photonic crystal on a glass substrate[40]
Fig.3 (a) The process of the preparation of ZAO/CNTAs/PI fabric; The IR thermal images:(b) PI fabric,(c) ZAO/PI fabric,(d) CNTAs/PI fabric,(e) ZAO/CNTAs/PI fabric[52]
Fig.4 (a) Schematic diagram of interlayer structure thin film, and O distribution of oxygen-rich layer and the oxygen-poor layer of ITO thin film;(b) SEM top-images and 3D morphology;(c) SEM section morphology;(d) Electrical properties of different samples, including resistivity, carrier concentration and mobility[55]
Fig.5 (a) Preparation of an infrared camouflage fabric;(b) Infrared thermal imaging of infrared camouflage fabric, unfinished fabric and blank control sample;(c) Mechanism of infrared camouflage fabric;(d) The emissivity of human skin, cotton fabric and infrared camouflage fabric[71]
Fig.6 (a) XRD curves of pure and W-doped VO2 films;(b) Visible and near-infrared transmission spectra of pure and W-doped VO2 films[83]
Fig.7 (a) The existent morphology models;(b) The schematic diagram and possible infrared absorption mechanism[101];(c) Infrared and thermal radiation shielding performance of PU-ATO composite fiber;(d) Hydrophobic performance of PU-ATO composite fiber;(e) Infrared image of PU-ATO composite fiber fabric wetted by water after heating for 1 minute at 40 ℃[102]
Fig.8 (a) Schematic diagram of the whole fabrication process;(b) Cross-sectional SEM image of carbon black in AAO templates on nanoporous Si;(c) Measured reflectivity of AAO templates on nanoporous Si;(d) Reflectivity of carbon black onto AAO templates on nanoporous Si[108];(e) SEM image of sputtering time of 10 min; Infrared thermal images of human arm under various conditions:(f) the arm without covering,(g) the arm covered by aramid fabric without copper sputtering,(h) the arm covered by aramid fabric with copper sputtering for 10 min[109]
Fig.9 (a) Schematic of the multifunctional structure;(b) Visual image;(c) Measured RTAs for TE and TM polarizations at different incident angles of 10° and 30°[132];(d) The effect of the content and floating rate of Al particles on infrared emissivity of the coatings[133]
Fig.10 (a) Schematic of an optical transparently radar-IR bi-stealth metasurface;(b) Perspective view of the metasurface structure;(c) Real pictures of the experimental setup for the microwave absorption;(d) Measured absorption spectra for different sheet resistances;(e) Visible photographs of different sheet resistance;(f) IR photographs[135]
Fig.11 (a) Spectral properties of the ZnS/Ag/ZnS film. The left inset shows an SEM image of the cross-section of the film, and the right inset shows the glass substrate(left) and the substrate with this film(right);(b) Visible reflectance of the sample and sandy and yellow-green camouflage coatings, as well as the coatings covered with the sample. The insets show two camouflage coatings covered with the sample, respectively[143];(c) Photographs of one-dimensional PCs with 4 different colors;(d) Cross-sectional SEM image[144]
Fig.12 (a) The color of sample with temperature heating(H) from 30 ℃ to 55 ℃ and cooling(C) back to 30 ℃;(b) Infrared emissivity of BCG/CaCl2 /PEG-g-CDA composites in 3~5 μm;(c) Reversible structural transformations of lactone and quinone structure [146]
Fig.13 (a) The spectral radiant exitance of blackbody, absorber and coating;(b) The reduction ratio of radiant energy in 3~5 μm and 8~14 μm at different temperature;(c) Absorption spectra for different loss tangent;(d) Absorption spectra for different dielectric layer thickness [154]
Fig.14 (a) Concept of multi-band MIR-compatible camouflage and thermal management;(b) Top-view SEM images;(c) Cutaway SEM image;(d) Simulated spectral emissivity at normal incidence;(e) Simulated reflection spectra in the visible regime for different Si thicknesses. Inset is the calculated colors corresponding to the thicknesses of the Si[159]
[1]
Guo R W, Jiang L Y, Zhu W N. Inter. Conf. Appl. Sci., 2016,0265.
[2]
Zhou C L, Xu S P, Pi P H, Cheng J, Wang L, Yang J X, Wen X F. Prog. Org. Coat., 2018, 121:30.
[3]
Yu Q, Luo J. Appl. Photo. tech., 2018, 33(4):16.
[4]
Lin C, Ren Q T, Zhuang H Y. Mater. Dev. Appl., 2018, 33(4):126.
[5]
Bychanok D, Li S, Sanchez-Sanchez A, Gorokhov G, Kuzhir P, Ogrin F Y, Pasc A, Ballweg T, Mandel K, Szczurek A, Fierro V, Celzard A. Appl. Phys. Lett., 2016, 108(1):013701.

doi: 10.1063/1.4938537
[6]
Bu H H, Xu G Y, Liu C Y, Guo T C, Tan S J. Infrared Phys. Technol., 2018, 94:280.

doi: 10.1016/j.infrared.2018.09.032
[7]
Fang K Y, Fang F. Mater. Lett., 2018, 230:279.

doi: 10.1016/j.matlet.2018.07.116
[8]
Liu B, Pan S B, Yu M X, Zhou G M. Ordn. Mater. Sci. Eng., 2017, 03,143.
[9]
Yuan W, Wu S B, Li S M, Lu H J. Ind. Inform., 2019, 8,82.
[10]
Zhang K, Yu B, Gui T J, Wu L F, Wang X M. MPF, 2019, 22(12):26.
[11]
Wu K H, Cheng K F, Wang J C, Chang Y C. Mater. Express, 2017, 7(6):500.

doi: 10.1166/mex.2017.1400
[12]
Wu X H, Lyu J, Hong G, Liu X C, Zhang X T. Langmuir, 2018, 34(30):9004.

doi: 10.1021/acs.langmuir.8b01410
[13]
Yu D, Wang Y, Hao T Q, Wang W, Liu B J. J. Ind. Text., 2018, 47(6):1392.

doi: 10.1177/1528083717692592
[14]
Salihoglu, Omer, Uzlu, Hasan, Burkay, Yakar. Nano Letters, 2018.
[15]
Kang W B, Zhu D M, Huang Z B, Zhou W C, Luo F. Vacuum, 2017, 145:174.

doi: 10.1016/j.vacuum.2017.08.033
[16]
Liang J, Li W, Xu G Y, Meng X, Liu K, Tan S J. Prog. Org. Coat., 2018, 115:74.
[17]
Han J H. Doctoral Dissertation of Dalian University of Technology, 2018.
(韩建华. 大连理工大学博士论文, 2018.).
[18]
Li Y, Gao J, An B. Intern. Conf. Num. Simul. Optoelectr. Dev., 2018,41.
[19]
Jiang W J. Doctoral Dissertation of Donghua University, 2016.
(江文杰. 东华大学博士论文, 2016.).
[20]
Zhao L, Liu H, He Z H, Dong S K. Appl. Opt., 2018, 57(8):1757.

doi: 10.1364/AO.57.001757 pmid: 29521956
[21]
Dong H L, Wang J C, Zeng Y R, Chen Z S, Shi J M. Spectr. Spectr. Analys., 2019, 39(10):3007.
[22]
Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma Z Y, Xing W Y, Qiao C, Bergström L, Antonietti M, Yu S H. Angew. Chem. Int. Ed., 2018, 57(17):4538.

doi: 10.1002/anie.201711717
[23]
Apostolopoulou-Kalkavoura V, Gordeyeva K, Lavoine N, Bergström L. Cellulose, 2018, 25(2):1117.

doi: 10.1007/s10570-017-1633-y
[24]
Kumar R, Agarwal A K, Ramakrishna S A. Opt. Eng., 2018, 57(8):1.
[25]
Chen L, Lu C H, Lu Y, Fang Z G, Ni Y R, Xu Z Z. RSC Adv., 2013, 3(12):3967.

doi: 10.1039/c3ra21711f
[26]
Wang C W. Doctoral Dissertation of Northwest Normal University, 2015.
(王成伟. 西北师范大学博士论文, 2015.).
[27]
Huang Y J, Pu M B, Zhao Z Y, Li X, Ma X L, Luo X G. Opt. Commun., 2018, 407:204.

doi: 10.1016/j.optcom.2017.09.036
[28]
Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y. J. Mater. Chem. A, 2016, 4(30):11821.

doi: 10.1039/C6TA05249E
[29]
Yu W J, Jia X, Long Y B, Shen L, Liu Y, Guo W B, Ruan S P. ACS Appl. Mater. Interfaces, 2015, 7(18):9920.

doi: 10.1021/acsami.5b02039
[30]
Lee H M, Wu J C. J. Appl. Phys., 2010, 107(9):09E149.

doi: 10.1063/1.3362935
[31]
Hsu H T, Kuo F Y, Wu C J. J. Appl. Phys., 2010, 107(5):053912.

doi: 10.1063/1.3327216
[32]
Srivastava R, Pati S, Ojha S P. Prog. Electromagn. Res. B, 2008, 1:197.

doi: 10.2528/PIERB07102903
[33]
He S. Doctoral Dissertation of Nankai University, 2011.
(何嵩. 南开大学博士论文, 2011.).
[34]
Kang Y Q, Liu H M. Superlattices Microstruct., 2018, 114:355.

doi: 10.1016/j.spmi.2017.12.046
[35]
Ramanujam N R, Wilson K S J. Opt. Commun., 2016, 368:174.

doi: 10.1016/j.optcom.2016.02.018
[36]
Li K W, Li X C, Chen P A, Chen Y Z, Zhu B Q. Acta Opti. Sin., 2018, 38(9):301.
[37]
Amri R, Sahel S, Gamra D, Lejeune M, Clin M, Zellama K, Bouchriha H. Opt. Mater., 2018, 76:222.

doi: 10.1016/j.optmat.2017.12.041
[38]
Zhang J K, Shi J M, Zhao D P, Chen Y Z. Opt. Eng, 2017, 56(7):077110.

doi: 10.1117/1.OE.56.7.077110
[39]
Yan D, Qiu L L, Meng Z H, Xu M, Dong X. Acta Polym. Sin., 2018, 6:733.
[40]
Liu M, Wang Z Q, Wang Y. Optik-Int. J. Light. Electron Opt., 2019, 80,894.
[41]
Zhao X R, Liu C Y, Xu C, Xu G Y, Zhang Y T, Tan S J, Han Y. Infrared Phys. Technol., 2018, 92:454.

doi: 10.1016/j.infrared.2018.06.012
[42]
Liu J Y, Wang J J, Xu B C, Hou Y S, Gao H T. J. Aeron. Mater., 2017, 37(5):29.
[43]
Hussain S Q, Le A H T, Mallem K, Park H, Ju M, Kim Y, Cho J, Park J, Kim Y, Yi J. Appl. Surf. Sci., 2018, 447:866.

doi: 10.1016/j.apsusc.2018.03.143
[44]
Yang J F, Xu C L, Qu S B, Ma H, Wang J F, Pang Y Q. J. Adv. Dielect., 2018, 8(1):1850007.

doi: 10.1142/S2010135X18500078
[45]
Wu C C. RSC Adv., 2018, 8(22):11862.

doi: 10.1039/C7RA13550E
[46]
Kim K H, Lee T H, Kim T G. ACS Appl. Mater. Interfaces, 2017, 9(28):24357.

doi: 10.1021/acsami.7b06362
[47]
Aijo John K, Philip R R, Sajan P, Manju T. Vacuum, 2016, 132:91.

doi: 10.1016/j.vacuum.2016.07.035
[48]
Claudia H, Siegfried M, Gayatri R, Vladimir S, Karen W, Barbara L. Materials, 2017, 10(3):245.

doi: 10.3390/ma10030245
[49]
Huang Z H. Doctoral Dissertation of Shandong University, 2019.
(黄朝晖. 山东大学博士论文, 2019.).
[50]
Li H H, Huang Y X, Li Z M, Wang Y, Cao Q X. J. Vac. Sci. Technol. 2014, 9,997.
[51]
Krstulović N, Salamon K, Budimlija O, Kova? J, Dasović J, Umek P, Capan I. Appl. Surf. Sci., 2018, 440:916.

doi: 10.1016/j.apsusc.2018.01.295
[52]
Xu R, Wang W, Yu D. Compos. Struct., 2019, 212:58.
[53]
Chen Y D, Zhu G S, Xu H R, Dong L, Jiang X P, Shi Z F. Funct. Mater., 2018, 49(9):09127.
[54]
Dong L, Zhu G S, Xu H R, Jiang X P, Zhang X Y, Zhao Y Y, Yan D L, Yuan L, Yu A B. Materials, 2019, 12(6):958.

doi: 10.3390/ma12060958
[55]
Dong L, Chen Y D, Zhu G S, Xu H R, Song J J, Zhang X Y, Zhao Y Y, Yan D L, Y L, Yu A B. Mater. Lett., 2020, 260:126735.

doi: 10.1016/j.matlet.2019.126735
[56]
Seitz S, Ajiro H. Sol. Energy Mater. Sol. Cells, 2019, 190:57.

doi: 10.1016/j.solmat.2018.10.012
[57]
Sheng N, Zhu C Y, Sakai H, Akiyama T, Nomura T. Sol. Energy Mater. Sol. Cells, 2019, 191:141.

doi: 10.1016/j.solmat.2018.11.013
[58]
Yan X X, Qian X Y, Chang Y J. Coatings, 2019, 9(8):475.

doi: 10.3390/coatings9080475
[59]
Fu J W, Zhu J H, Wang Z W, Wang Y H, Wang S M, Yan R Q, Xu Q. J. Colloid Interface Sci., 2019, 542:123.

doi: 10.1016/j.jcis.2019.01.131
[60]
Liu X X, Wang S W, Xia H, Zhang X T, Ji R N, Li T X, Lu A W. Chin. Opt. Lett., 2016, 14(8):081203.

doi: 10.3788/COL
[61]
Liu X X, Ji R N, Zhang Y, Li H F, Wang S W. Opt. Quantum Electron., 2016, 48(10):453.

doi: 10.1007/s11082-016-0720-x
[62]
Borah R, Kumar A, Das M K, Ramteke A. RSC Adv., 2015, 5(60):48971.

doi: 10.1039/C5RA01809A
[63]
Chen X, Gao H Y, Yang M, Xing L W, Dong W J, Li A, Zheng H Y, Wang G. Energy Storage Mater., 2019, 18:349.
[64]
Cuadrado A, Rojo A I, Wells G, Hayes J D, Cousin S P, Rumsey W L, Attucks O C, Franklin S, Levonen A L, Kensler T W, Dinkova-Kostova A T. Nat. Rev. Drug Discov., 2019, 18(4):295.

doi: 10.1038/s41573-018-0008-x pmid: 30610225
[65]
Cui J, Li X Q, Pei Z Q, Pei Y S. Chem. Eng. J., 2019, 358:379.

doi: 10.1016/j.cej.2018.10.062
[66]
Ma G X, Sun J H, Zhang Y, Jing Y, Jia Y Z. Chem. Phys. Lett., 2019, 714:166.

doi: 10.1016/j.cplett.2018.11.003
[67]
Lin Y X, Zhu C Q, Alva G, Fang G Y. Appl. Energy, 2018, 231:494.

doi: 10.1016/j.apenergy.2018.09.154
[68]
Xue J J, Zhu C L, Li J H, Li H X, Xia Y N. Adv. Funct. Mater., 2018, 28(15):1705563.

doi: 10.1002/adfm.v28.15
[69]
Chen D Z, Qin S Y, Tsui G C P, Tang C Y, Ouyang X, Liu J H, Tang J N, Zuo J D. Compos. Part B: Eng., 2019, 157:239.

doi: 10.1016/j.compositesb.2018.08.066
[70]
Zhang J, Liu B Y, Liu B, Wang Y. J. Qingdao Univ. Nat. Sci. Ed., 2018, 31,19.
[71]
Xu R, Xia X M, Wang W, Yu D. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 591:124519.

doi: 10.1016/j.colsurfa.2020.124519
[72]
Abdellaoui I, Merad G, Maaza M, Abdelkader H S. J. Alloy. Compd., 2016, 658:569.

doi: 10.1016/j.jallcom.2015.10.248
[73]
Sun R, Yao L, He J H, Liang J. Prog. Chem., 2019, 31(12):1712.
(孙蕊, 姚琳, 贺军辉, 梁杰. 化学进展, 2019, 31(12):1712.)

doi: 10.7536/PC190527
[74]
Yao L, Qu Z, Pang Z L, Li J, Tang S Y, He J H, Feng L L. Small, 2018, 14(34):1801661.

doi: 10.1002/smll.v14.34
[75]
Qu Z, Yao L, Li J, He J H, Mi J, Ma S H, Tang S Y, Feng L L. ACS Appl. Mater. Interfaces, 2019, 11(17):15960.

doi: 10.1021/acsami.8b22113
[76]
Lv W, Huang D Z, Chen Y M, Qiu Q, Luo Z K. Ceram. Int., 2014, 40(8):12661.

doi: 10.1016/j.ceramint.2014.04.113
[77]
Zhou J D, Gao Y F, Liu X L, Chen Z, Dai L, Cao C X, Luo H J, Kanahira M, Sun C, Yan L M. Phys. Chem. Chem. Phys., 2013, 15(20):7505.

doi: 10.1039/c3cp50638j
[78]
Dai L, Chen S, Liu J J, Gao Y F, Zhou J D, Chen Z, Cao C X, Luo H J, Kanehira M. Phys. Chem. Chem. Phys., 2013, 15(28):11723.

doi: 10.1039/c3cp51359a
[79]
Chen L L, Cui Y Y, Shi S Q, Liu B, Luo H J, Gao Y F. RSC Adv., 2016, 6(90):86872.

doi: 10.1039/C6RA19121E
[80]
Yang M M, Yang Y J, Hong B, Wang L X, Hu K, Dong Y Q. Sci. Rep., 2016, 6,23119.

doi: 10.1038/srep23119
[81]
Fan L L, Chen S, Luo Z L, Liu Q H, Wu Y F, Song L, Ji D X, Wang P, Chu W S, Gao C, Zou C W, Wu Z Y. Nano Lett., 2014, 14(7):4036.

doi: 10.1021/nl501480f pmid: 24956434
[82]
Dai L, Cao C X, Gao Y F, Luo H J. Sol. Energy Mater. Sol. Cells, 2011, 95(2):712.

doi: 10.1016/j.solmat.2010.10.008
[83]
Chen X, Wu M F, Liu X X, Wang D, Liu F, Chen Y W, Yi F, Huang W X, Wang S W. Nanomaterials, 2019, 9(6):834.

doi: 10.3390/nano9060834
[84]
Ji H N, Liu D Q, Cheng H F, Zhang C Y, Yang L X, Ren D W. RSC Adv., 2017, 7(9):5189.

doi: 10.1039/C6RA26731A
[85]
Ji H N, Liu D Q, Zhang C Y, Yang L X, Cheng H F, Zheng W W. Sci. Adv. Mater., 2017, 9(6):861.

doi: 10.1166/sam.2017.3063
[86]
Qu Z, Yao L, Ma S H, Li J, He J H, Mi J, Tang S Y, Feng L L. Sol. Energy Mater. Sol. Cells, 2019, 200:109920.

doi: 10.1016/j.solmat.2019.109920
[87]
Zhu H R. Doctoral Dissertation of Dalian University of Technology, 2017.
(褚海荣. 大连理工大学博士论文, 2017.).
[88]
Zhao L, Li X X, Guo Y X, Ma D Y. J. Mater. Eng., 2019, 47(3):42.
[89]
You L L. Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics, 2017.
(尤玲丽. 南京航空航天大学博士论文, 2017.).
[90]
Lu L. Doctoral Dissertation of Jiangsu University of science and technology. 2017.
(卢琳. 江苏科技大学博士论文, 2017.).
[91]
Farrokhi H, Khani O, Nemati F, Jazirehpour M. Synth. Met., 2016, 215:142.

doi: 10.1016/j.synthmet.2016.02.016
[92]
Bu X H, Zhang Z W, Hang Z S, Huang Y, Zhou Y M. J. Appl. Polym. Sci., 2017, 134(19):1.
[93]
Chou J C, Liu C Y, Yang C J, Liao Y H, Su M W, Chen C C. J. Display Technol., 2015, 11(5):443.

doi: 10.1109/JDT.2015.2407911
[94]
Chen A J. Doctoral Dissertation of Anhui University of Technology, 2019.
(陈爱娟. 安徽理工大学博士论文, 2019.).
[95]
Zhang J, Liu W, Zhang T, Wang D H, Ma T B. Sci. Rep., 2018, 55(2):91.
[96]
Zhang L, Du W Y, Nautiyal A, Liu Z, Zhang X Y. Sci. China Mater., 2018, 61(3):303.

doi: 10.1007/s40843-017-9206-4
[97]
Wang G X, Morrin A, Li M R, Liu N Z, Luo X L. J. Mater. Chem. B, 2018, 6(25):4173.

doi: 10.1039/C8TB00817E
[98]
Simotwo S K, DelRe C, Kalra V. ACS Appl. Mater. Interfaces, 2016, 8(33):21261.

doi: 10.1021/acsami.6b03463
[99]
Yang J, Yang T, Hou S F. J. Iran. Chem. Soc., 2016, 13(9):1611.

doi: 10.1007/s13738-016-0877-z
[100]
Baker C O, Huang X W, Nelson W, Kaner R B. Chem. Soc. Rev., 2017, 46(5):1510.

doi: 10.1039/C6CS00555A
[101]
Wu W T, Zhou Y M, Xu R, Hu S C, Wu Y J, He Q, He M, Bu X H, Nan Q L, Yang X M. J. Mater. Sci., 2019, 54(22):14243.

doi: 10.1007/s10853-019-03880-3
[102]
Jeong S M, Ahn J, Choi Y K, Lim T, Seo K, Hong T, Choi G H, Kim H, Lee B W, Park S Y, Ju S. NPG Asia Mater., 2020, 12:32.

doi: 10.1038/s41427-020-0213-z
[103]
Hosseini S H, Zamani P. J. Magn. Magn. Mater., 2016, 397:205.

doi: 10.1016/j.jmmm.2015.08.105
[104]
Liu X W, Lin W, Su R H, Li Y P, Wu Q Q. Mater. Guide, 2017, 31(A02):134.
[105]
Chen K, Ji J, Zhang Y F, Jia C C, Yang S W. J. Eng. Sci., 2016, 38(9):1296.
[106]
Fang S J, Wang W, Yu X L, Xu H, Zhong Y, Sui X F, Zhang L P, Mao Z P. Mater. Lett., 2015, 143:120.

doi: 10.1016/j.matlet.2014.11.102
[107]
Zhang W G, Xu G Y, Shi X, Ma H, Li L. Photonics Nanostructures-Fundam. Appl., 2015, 14:46.
[108]
Li H, Wu L, Zhang H, Dai W, Hao J M, Wu H, Ren F, Liu C. ACS Appl. Mater. Interfaces, 2020, 12(3):4081.

doi: 10.1021/acsami.9b19107
[109]
Jia L L, Fu B H, Lu M L, Liang H E, Wang L. Mater. Res. Express, 2020, 7(5):056401.

doi: 10.1088/2053-1591/ab8b1c
[110]
Sun J P, Qu Y H. Sci. Technol., 2017, 5:156.
[111]
Wei S P. Doctoral Dissertation of Beijing University of Chemical Technology, 2017.
(魏少平. 北京化工大学博士论文, 2017.).
[112]
Wang J, Li C, Liu L, Zheng S L, Xiang T F, Yang L. Acta. Sin., 2017, 02,323-331.
[113]
Mascolo G, Mascolo M C. ChemInform, 2015, 46(34): no.
[114]
Yang L. Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics, 2018.
(杨玲. 南京航空航天大学博士论文, 2018.).
[115]
Yang L, Li C, Zhang M X, Dong C D, Xiang T F, Chan W M. Infrared Phys. Technol., 2018, 40:95.
[116]
Phan L, Kautz R, Leung E M, Naughton K L, van Dyke Y, Gorodetsky A A. Chem. Mater., 2016, 28(19):6804.

doi: 10.1021/acs.chemmater.6b01532
[117]
Xu C Y, Stiubianu G T, Gorodetsky A A. Science, 2018, 359(6383):1495.

doi: 10.1126/science.aar5191
[118]
Tao P, Shang W, Song C Y, Shen Q C, Zhang F Y, Luo Z, Yi N, Zhang D, Deng T. Adv. Mater., 2015, 27(3):428.

doi: 10.1002/adma.v27.3
[119]
Cui Y, Gong H X, Wang Y J, Li D W, Bai H. Adv. Mater., 2018, 30(14):1706807.

doi: 10.1002/adma.v30.14
[120]
Wang L X. Doctoral Dissertation of Nanjing University of Technology, 2017.
(汪丽旭. 南京理工大学博士论文, 2017.)
[121]
Meng Z H, Li R F, Qiu L L, Wang S S, Qiao Y. Acta Armam., 2019, 40(1):201.
[122]
Ye S T, Liu Z H, ChenG S Y, Ban G D. Laser infrared, 2015, 45(11):1285.
[123]
Ai X C. Doctoral Dissertation of University of Electronic Science and technology, 2015.
艾现成. 电子科技大学博士论文, 2015.)
[124]
Wang X K, Zhao F, Wang J J. Materi. Guide, 2019, 33(34):83.
[125]
Zhang Y K, Zeng F, Dai Q H, Wu Z B. Tact. Miss. Technol., 2019, 193(1):62.
[126]
Zhang X Y, Chung C J, Subbaraman H, Pan Z Y, Chen C T, Chen R T. SPIE Conf. Series, 2016,975614.
[127]
Gerhard M, Beigang R, Rahm M. SPIE Commer. Sci. Sens. Imag., 2016,98540.
[128]
Li J Z, Tian H, Liu H T, Cheng H F, Hou Z X. Funct. Mat., 2017, 48(5):5137.
[129]
Zhang Z Y, Xu M Z, Ruan X F, Yan J F, Yun J N, Zhao W, Wang Y N. Ceram. Int., 2017, 43(3):3443.

doi: 10.1016/j.ceramint.2016.11.034
[130]
Wang X K. Infrared, 2019, 40(7):1.
(汪心坤. 红外, 2019, 40(7): 1.)
[131]
Fantucci S, Serra V. Energy Build., 2019, 182:300.

doi: 10.1016/j.enbuild.2018.10.003
[132]
Zhong S M, Wu L J, Liu T J, Huang J F, Jiang W, Ma Y G. Opt. Express, 2018, 26(13):16466.

doi: 10.1364/OE.26.016466
[133]
Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y. J. Alloy. Compd., 2018, 764:314.

doi: 10.1016/j.jallcom.2018.06.093
[134]
Xu C L, Wang B K, Pang Y Q, Wang J F, Yan M B, Wang W J, Wang A X, Jiang J M, Qu S B. IEEE Access, 2019, 7:147586.

doi: 10.1109/Access.6287639
[135]
Xu C L, Wang B K, Yan M B, Pang Y Q, Meng Y Y, Wang W J, Wang J F, Fan Q, Qu S B. Infrared Phys. Technol., 2020, 105:103108.

doi: 10.1016/j.infrared.2019.103108
[136]
Chen M H, Cheng H F, Xia C L, Peng R F, Zhang C Y, Liu D Q. New Chem. Mater. 2018, 046(4):36.
[137]
Li Y. Doctoral Dissertation of University of Defense Science and technology, 2016.
(李阳. 国防科学技术大学博士论文, 2016.).
[138]
Wang K Z, Wang C X, Yin Y J, Chen K L. J. Alloy. Compd., 2017, 690:741.

doi: 10.1016/j.jallcom.2016.08.171
[139]
Sun X D, Lu X L, Lu A J, Ma T L, Zhu C. J. PLA Univ. Sci. Technol.: Nat. Sci. Ed. , 2016, 17(2):198.
[140]
Kavei G, Nikbin S, Hadifakoor A. Int. J. Energy Technol. Policy, 2016, 12(2):197.

doi: 10.1504/IJETP.2016.075676
[141]
Tachikawa S, Ohnishi A, Shimakawa Y, Ochi A, Okamoto A, Nakamura Y. J. Thermophys. Heat Transf., 2003, 17(2):264.

doi: 10.2514/2.6760
[142]
Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y, Gong R Z. Opt. Lett., 2018, 43(21):5323.

doi: 10.1364/OL.43.005323
[143]
Dang S C, Wang Z J, Ye H. Mater. Res. Express, 2019, 6(10):106422.

doi: 10.1088/2053-1591/ab3a5f
[144]
Qi D, Wang X, Cheng Y Z, Gong R Z, Li B W. Opt. Mater., 2016, 62:52.

doi: 10.1016/j.optmat.2016.09.024
[145]
Bu H H, Xu C, Xu G Y, Liu C Y, Tan S J, Guo T C, Xiang S S. Opt. Mater., 2018, 84:109.

doi: 10.1016/j.optmat.2018.06.061
[146]
Liu R H, Shi J M, Zhao D P, Zhang J K, Liu Z W. Laser Optoelectron. Prog., 2019, 56(3):031601.

doi: 10.3788/LOP
[147]
Wang H, Zhao D P, Zhang J K, Wang C M, Chen Z S, Liu R H. Acta Lumin., 2019, 40(9):1080.
[148]
Zhang J K, Shi J M, Miao L, Wang Q C, Zhao D P, Zeng J. Chin. J. Lumin., 2016, 37(9):1130.
[149]
Miao L, Li Z G, Xu Y L. Appl. Photoelectr. Technol., 2015, 30(5):42.
[150]
Wang H, Zhao D P, Liu R H, Zhang J K, Chen Z S, Shi J M. Laser Optoelectron. Prog., 2019, 56(18):181602.

doi: 10.3788/LOP
[151]
Kim J, Han K, Hahn J W. Sci. Rep., 2017, 7:6740.

doi: 10.1038/s41598-017-06749-0
[152]
Miao L, Shi J M, Wang J C, Zhao D P, Chen Z S, Wang Q C. Opt. Eng, 2016, 55(5):057101.

doi: 10.1117/1.OE.55.5.057101
[153]
Qin Y S, Zhang M J, Guan Y, Huang X G. Ceram. Int., 2019, 45(11):14312.

doi: 10.1016/j.ceramint.2019.04.144
[154]
Chen X L, Tian C H, Che Z X, Chen T P. Optik, 2018, 172:840.

doi: 10.1016/j.ijleo.2018.07.091
[155]
Liu Y. Doctoral Dissertation of Dalian University of Technology, 2019.
(刘毅. 大连理工大学博士论文, 2019.).
[156]
Cao X L. Doctoral Dissertation of Anhui University of Technology, 2015.
(曹小丽. 安徽理工大学博士论文, 2015.).
[157]
Zhang J K, Shi J M, Zhao D P, Wang Q C, Wang C M. Infrared Phys. Technol., 2017, 85:62.

doi: 10.1016/j.infrared.2017.05.018
[158]
Cai Y, Yang H J, Jiang P, Chen X. Optik-Int. J. Light. Electron Opt., 2016. 11.153.
[159]
Pan M Y, Huang Y, Li Q, Luo H, Zhu H Z, Kaur S, Qiu M. Nano Energy, 2020, 69:104449.

doi: 10.1016/j.nanoen.2020.104449
[1] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[2] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[3] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[4] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[5] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[6] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.
[7] Wei-Pin Huang, Ke-Feng Ren, Jian Ji. New Strategies for Regulating Polymer’s Surface Microstructure [J]. Progress in Chemistry, 2020, 32(10): 1494-1503.
[8] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[9] Rui Sun, Lin Yao, Junhui He, Jie Liang. Thermochromic Smart Coatings [J]. Progress in Chemistry, 2019, 31(12): 1712-1728.
[10] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[11] Wuwei Yan, Yongning Liu, Shaokun Chong, Yaping Zhou, Jianguo Liu, Zhigang Zou. Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(2/3): 198-209.
[12] Yuanchao Du, Zheng Hua, Feng Liang, Yongmei Li, Yongnian Dai, Yaochun Yao. Synthesis of Lithium Iron Phosphate Cathode Material by Liquid State Method [J]. Progress in Chemistry, 2017, 29(1): 137-148.
[13] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[14] Gu Lin, Ding Jiheng, Yu Haibin. Research in Graphene-Based Anticorrosion Coatings [J]. Progress in Chemistry, 2016, 28(5): 737-743.
[15] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.