中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1874-1886 DOI: 10.7536/PC200902 Previous Articles   Next Articles

• Review •

Porous liquids and Their Applications in Gas Capture and Separation

Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao(), Yaping Zheng()   

  1. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University,Xi'an 710129, China
  • Received: Revised: Online: Published:
  • Contact: Dongdong Yao, Yaping Zheng
  • Supported by:
    Innovation Foundation for Doctor Dissertation of NWPU(CX201963); National Natural Science Foundation of China(21905228); Aeronautical Science Foundation of China(2018ZF53065)
Richhtml ( 42 ) PDF ( 836 ) Cited
Export

EndNote

Ris

BibTeX

Porous liquids(PLs), an emerging class of liquid materials with permanent porosity and good fluidity, have shown great potential in gas capture and separation. As a result, PLs used as gas capture materials have become a new research hot spot. In the present paper, the concept of PLs is firstly introduced in a nutshell. Then, the composition characteristics and the necessary conditions for constructing PLs are analyzed. Next, the synthesis progress of these three types of PLs are reviewed in detail, and their gas capture and separation performance are analyzed, especially after 2015. Lastly, the existing challenges of porous liquids and their outlooks of synthetic methods and applications in gas capture are outlined and presented.

Contents

1 Introduction

2 The classification of porous liquids and characteristics of composition

3 The synthesis progress of porous liquids and gas capture

3.1 The Type 1 porous liquids

3.2 The Type 2 porous liquids

3.3 The Type 3 porous liquids

4 Conclusion and outlook

Fig. 1 Publication of articles associated with porous liquids
Fig. 2 Three classes of porous liquids based on the component properties(Reproduced from Ref.[30] with permission from Wiley)
Fig. 4 (a) Gas permeability obtained on (i) PEGS, (ii) HS- liquid, (iii) SS-liquid, (iv) CS-liquid, and (v) CS/Ni-liquid;(Reproduced from Ref. [30] with permission from Wiley)(b) Schematic representation of gas separation in membrane supported HS-liquid;(Reproduced from Ref. [30] with permission from Wiley)(c) CO2 adsorption-desorption isotherms of HCS-liquid, PEGS, SCS-liquid and PILs-PEGS composite collected below 10 bar at 298 K, respectively;(Reproduced from Ref. [54] with permission from Wiley)(d) The adsorption(closed symbols) and desorption(open symbols) cycles in solvent-free PS-OS@SiNR show hysteresis;(Reproduced from Ref. [69] with permission from the Royal Society of Chemistry)(e) Schematic showing the three-step procedure for the fabrication of the anisotropic porous liquid from SiNRs.(Reproduced from Ref. [69] with permission from the Royal Society of Chemistry)(f) Synthesis and schematic structures of hollow silica and porous liquid.(Reproduced from Ref. [70] with permission from the Chemical Industry Press)
Fig. 3 (a) Synthesis of dodecaalkyl iminospherand cages.(Reproduced from Ref. [51] with permission from the Royal Society of Chemistry)(b) Top: Synthetic procedure and chemical structure of anionic covalent cage(ACC). Middle: Chemical structures of 15-crown-5 and dicyclohexano-18-crown-6. Bottom: Schematic representation of synthetic procedures for the crown ether-ACC porous liquids.(Reproduced from Ref. [53] with permission from the American Chemical Society)(c) Two-step synthetic strategy for porous liquids fabrication. HS=hollow silica, OS=organosilane.(Reproduced from Ref. [30] with permission from Wiley)(d) Synthesis strategy for HCS-liquid.(Reproduced from Ref. [20] with permission from Wiley)(e) Synthesis of hollow silica porous liquids.(Reproduced from Ref. [55] with permission from Wiley)
Fig. 5 (a) a: Preparation of porous liquid. a1: Synthesis of the crown-ether cage. a2: The comparation of sorption capacity;(adapted from Ref. [24])(b) b1: Comparison of the ‘parent' CC3-R and CC13 cage structures with the scrambled 33 :133-R mixture, b2: Schematic representation of the scrambled CC33133 cage used in the computational modeling showing the guest-accessible intrinsic cavity, b3: molecular simulation of the scrambled porous liquid showing the available free space in the cages(purple spheres); PCP solvent molecules shown as pale blue spheres; cage molecules omitted for clarity; b3: Comparison of the calculated CH4 uptake(mmol/mL) observed in PCP ;(Reproduced from Ref. [80] with permission from the Royal Society of Chemistry)(c) c1: The 14 bulky solvents screened for both cage solubility and size-exclusion from the cage cavity, c2: Comparison of the amount of Xenon evolved at different concentrations and using different release mechanisms; c3: The five highly solubilising candidate solvents, all displaced small volumes of gas from the known porous liquid.(Reproduced from Ref. [81] with permission from the Royal Society of Chemistry)(d) d1: Structures of the trans-33133 component of the scrambled cage mixture CC33 :133-R(magenta, left) and CC15-R(teal, right) with the average window diameters calculated using the pywindow package, d2: N2 adsorption(filled) and desorption(empty) isotherms for CC33 :133-R and CC15-R, d3: Uptake by volumetric gas evolution for CH4, CO2, Xe, and N2 for CC33 :133-R(magenta) and CC15-R(teal) PLs, d4: Comparison of gas uptake in the liquid and solid state for each POC;(Reproduced from Ref. [82] with permission from the Royal Society of Chemistry)(e) e1: Schematic preparation process of porous liquid. e2: Accessible void space displayed by accessible Voronoi node for CO2 in 15-crown-5 system. e3: Permeance of H2, CO2 and N2 in 15-crown-5/GO and PLs-5 wt%/GO at 60 ℃.(Reproduced from Ref. [29] with permission from Willey)
Fig. 6 (a) Schematic illustration of surface engineering, filler design, and solvent design for the construction of MOF-based porous liquids.(Reproduced from Ref. [20] with permission from the American Chemical Society)(b) b1: Depiction of the preparation strategy for the porous liquid zeolites(H-ZSM-5-liquid/[P6,6,6,14][Br]); b2: internal cavity of zeolite.(Reproduced from Ref. [40] with permission from the Royal Society of Chemistry),(c): Schematic illustration of the formation of ZIF-8 porous liquid.(Reproduced from Ref. [95] with permission from the American Chemical Society),(d) d1: Photos of tilting a vial of PL, d2: Water vapor sorption isotherms at 298 K of PLs after 3 months storage(Reproduced from Ref. [20] with permission from the American Chemical Society),(e): CO2 adsorption-desorption isotherms of H-ZSM-5 NPs, [P6,6,6,14][Br] and H-ZSM-5-liquid/[P6,6,6,14][Br] collected at 298 K, respectively.(Reproduced from Ref. [40] with permission from The Royal Society of Chemistry),(f): CO2 adsorption-desorption isotherms of ZIF-8 porous liquids at ambient temperature.(Reproduced from Ref. [95] with permission from the American Chemical Society)
Fig. 7 (a) Fabrication based on a similar compatibility principle of the MOF-based porous liquid UIO-66-liquid/[M2070][IPA] and the illustration for adsorption of gas molecules.(Reproduced from Ref. [41] with permission from the Royal Society of Chemistry)(b) Synthesis strategy for ZIF-liquid.(Reproduced from Ref. [96] with permission from the American Chemical Society)(c) CO2 adsorption-desorption isotherms of [M2070][IPA] and UIO-66-liquid/[M2070][IPA] at 298 K, respectively.(Reproduced from Ref. [41] with permission from the Royal Society of Chemistry)(d) CO2 adsorption in [Bpy][NTf2](1 mL) and ZIF-8(20 mg) in [Bpy][NTf2](1 mL) at 298 K.(Reproduced from Ref.[96] with permission from the American Chemical Society)
[1]
Bao Z, Xie D, Chang G, Wu H, Li L, Zhou W, Wang H, Zhang Z, Xing H, Yang Q. J. Am. Chem. Soc., 2018, 140: 4596.

doi: 10.1021/jacs.7b13706
[2]
Li J W, Ren Y W, Jiang H F. Progress in Chemistry, 2019, 31: 1350.
( 李嘉伟, 任颜卫, 江焕峰. 化学进展, 2019, 31: 1350.).

doi: 10.7536/PC190413
[3]
Mitra T, Jelfs K E, Schmidtmann M, Ahmed A, Chong S Y, Adams D J, Cooper A I. Nat. Chem., 2013, 5(4): 276.

doi: 10.1038/nchem.1550
[4]
Reiss P S, Little M A, Santolini V, Chong S Y, Hasell T, Jelfs K E, Briggs M E, Cooper A I. Chem. Eur. J., 2016, 22(46): 16547.

doi: 10.1002/chem.201603593
[5]
Briggs M E, Cooper A I. Chem. Mater., 2017, 29(1): 149.

doi: 10.1021/acs.chemmater.6b02903
[6]
Lee J H, Lee H J, Lim S Y, Kim B G, Choi J W. J. Am. Chem. Soc., 2015, 137(22): 7210.

doi: 10.1021/jacs.5b03579
[7]
Haldoupis E, Nair S, Sholl D S. J. Am. Chem. Soc., 2012, 134(9): 4313.

doi: 10.1021/ja2108239 pmid: 22329402
[8]
Wen J, Li Y H, Wang Li, Chen X N, Cao Q, He N P. Progress in Chemistry, 2020, 32: 417.
( 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 化学进展, 2020, 32: 417.).

doi: 10.7536/PC190713
[9]
Maes M, Alaerts L, Vermoortele F, Ameloot R, Couck S, Finsy V, Denayer J F M, de Vos D E. J. Am. Chem. Soc., 2010, 132(7): 2284.

doi: 10.1021/ja9088378
[10]
Ning H, Yang Z, Wang D, Meng Z, Li Y, Ju X, Wang C. Micropor. Mesopor. Mat., 2021, 311: 110700.

doi: 10.1016/j.micromeso.2020.110700
[11]
Liu H, Liu B, Lin L C, Chen G J, Wu Y Q, Wang J, Gao X T, Lv Y, Pan Y, Zhang X X, Zhang X R, Yang L Y, Sun C Y, Smit B, Wang W C. Nat. Commun., 2014, 5(1): 1.
[12]
Pascanu V, González Miera G, Inge A K, Martín-Matute B. J. Am. Chem. Soc., 2019, 141(18): 7223.

doi: 10.1021/jacs.9b00733 pmid: 30974060
[13]
Cao C C, Chen C X, Wei Z W, Qiu Q F, Zhu N X, Xiong Y Y, Jiang J J, Wang D W, Su C Y. J. Am. Chem. Soc., 2019, 141(6): 2589.

doi: 10.1021/jacs.8b12372 pmid: 30645112
[14]
Chen C, Huang Y, Zhu Y D, Zhang Z, Guang Z X, Meng Z Y, Liu P B. ACS Sustainable Chem. Eng., 2020, 8(3): 1497.

doi: 10.1021/acssuschemeng.9b05948
[15]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem. Soc. Rev., 2016, 45(12): 3479.

doi: 10.1039/C6CS00135A
[16]
Rabone J, Yue Y F, Chong S Y, Stylianou K C, Bacsa J, Bradshaw D, Darling G R, Berry N G, Khimyak Y Z, Ganin A Y, Wiper P, Claridge J B, Rosseinsky M J. Science, 2010, 329(5995): 1053.

doi: 10.1126/science.1190672 pmid: 20798314
[17]
To J W F, He J J, Mei J G, Haghpanah R, Chen Z, Kurosawa T, Chen S C, Bae W G, Pan L J, Tok J B H, Wilcox J, Bao Z N. J. Am. Chem. Soc., 2016, 138(3): 1001.

doi: 10.1021/jacs.5b11955
[18]
Kar S, Sen R, Goeppert A, Prakash G K S. J. Am. Chem. Soc., 2018, 140(5): 1580.

doi: 10.1021/jacs.7b12183
[19]
Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124(6): 926.

doi: 10.1021/ja017593d
[20]
He S F, Chen L H, Cui J, Yuan B, Wang H L, Wang F, Yu Y, Lee Y, Li T. J. Am. Chem. Soc., 2019, 141(50): 19708.

doi: 10.1021/jacs.9b08458
[21]
Yousefi R, Struble T J, Payne J L, Vishe M, Schley N D, Johnston J N. J. Am. Chem. Soc., 2019, 141(1): 618.

doi: 10.1021/jacs.8b11793
[22]
Wang D C, Xin Y Y, Li X Q, Wang F, Wang Y D, Zhang W R, Zheng Y P, Yao D D, Yang Z Y, Lei X F. Chem. Eng. J., 2021, 416: 127625.

doi: 10.1016/j.cej.2020.127625
[23]
O'Reilly N, Giri N, James S. Chem. Eur. J., 2007, 13(11): 3020.

doi: 10.1002/(ISSN)1521-3765
[24]
Giri N, del PÓpolo N, Melaugh G, Greenaway R L, Rätzke K, Koschine T, Pison L, Gomes M F C, Cooper A I, James S L. Nature, 2015, 527(7577): 216.

doi: 10.1038/nature16072
[25]
Gaillac R, Pullumbi P, Beyer K A, Chapman K W, Keen D A, Bennett T D, Coudert F X. Nat. Mater., 2017, 16(11): 1149.

doi: 10.1038/nmat4998 pmid: 29035353
[26]
Lindquist B A, Jadrich R B, Truskett T M. Soft Matter, 2016, 12(10): 2663.

doi: 10.1039/c5sm03068d pmid: 26883309
[27]
Zhang S G, Dokko K, Watanabe M. Chem. Sci., 2015, 6(7): 3684.

doi: 10.1039/C5SC01374G
[28]
Cooper A I. ACS Cent. Sci., 2017, 3(6): 544.

doi: 10.1021/acscentsci.7b00146
[29]
Deng Z, Ying W, Gong K, Zeng Y J, Yan Y G, Peng X S. Small, 2020, 16(11): 1907016.

doi: 10.1002/smll.v16.11
[30]
Zhang J S, Chai S H, Qiao Z A, Mahurin S M, Chen J H, Fang Y X, Wan S, Nelson K, Zhang P F, Dai S. Angew. Chem. Int. Ed., 2015, 54(3): 932.

doi: 10.1002/anie.201409420
[31]
Hemming E B, Masters A F, Maschmeyer T. Chem. Commun., 2019, 55(75): 11179.

doi: 10.1039/C9CC03546J
[32]
Bavykina A, Cadiau A, Gascon J. Coord. Chem. Rev., 2019, 386: 85.

doi: 10.1016/j.ccr.2019.01.015
[33]
Tuffnell J M, Ashling C W, Hou J W, Li S C, Longley L, Ríos GÓmez M L, Bennett T D. Chem. Commun., 2019, 55(60): 8705.

doi: 10.1039/C9CC01468C
[34]
Longley L, Collins S M, Zhou C, Smales G J, Norman S E, Brownbill N J, Ashling C W, Chater P A, Tovey R, Schönlieb C B, Headen T F, Terrill N J, Yue Y Z, Smith A J, Blanc F, Keen D A, Midgley P A, Bennett T D. Nat. Commun., 2018, 9(1): 1.
[35]
van de Manakker F, Vermonden T, van Nostrum C F, Hennink W E. Biomacromolecules, 2009, 10(12): 3157.

doi: 10.1021/bm901065f pmid: 19921854
[36]
Kim K, Selvapalam N, Ko Y H, Park K M, Kim D, Kim J. Chem. Soc. Rev., 2007, 36(2): 267.

doi: 10.1039/B603088M
[37]
Zhao J Z, Kim H J, Oh J, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed., 2001, 40(22): 4233.

doi: 10.1002/1521-3773(20011119)40:22【-逻*辑*与-】#x00026;lt;【-逻*辑*与-】#x00026;gt;1.0.CO;2-D
[38]
Warmuth R, Yoon J. Acc. Chem. Res., 2001, 34(2): 95.

doi: 10.1021/ar980082k
[39]
Barbour L J. Chem. Commun., 2006(11): 1163.
[40]
Li P P, Chen H, Schott J A, Li B, Zheng Y P, Mahurin S M, Jiang D E, Cui G K, Hu X X, Wang Y Y, Li L W, Dai S. Nanoscale, 2019, 11(4): 1515.

doi: 10.1039/C8NR07337F
[41]
Zhao X M, Yuan Y H, Li P P, Song Z, Ma C X, Pan D, Wu S D, Ding T, Guo Z H, Wang N. Chem. Commun., 2019, 55(87): 13179.

doi: 10.1039/C9CC07243H
[42]
Das S, Heasman P, Ben T, Qiu S L. Chem. Rev., 2017, 117(3): 1515.

doi: 10.1021/acs.chemrev.6b00439
[43]
Singh G, Lee J, Karakoti A, Bahadur R, Yi J B, Zhao D Y, AlBahily K, Vinu A. Chem. Soc. Rev., 2020, 49(13): 4360.

doi: 10.1039/D0CS00075B
[44]
Li Y. ChemistrySelect, 2020, 5: 13664.

doi: 10.1002/slct.v5.43
[45]
Yang Q W, Xing H B, Bao Z B, Su B G, Zhang Z G, Yang Y W, Dai S, Ren Q L. J. Phys. Chem. B, 2014, 118(13): 3682.

doi: 10.1021/jp500790r
[46]
Ke Y Q, Jin W B, Yang Q W, Suo X, Yang Y W, Ren Q L, Xing H B. ACS Sustainable Chem. Eng., 2018, 6(7): 8983.

doi: 10.1021/acssuschemeng.8b01353
[47]
Dong K, Liu X M, Dong H F, Zhang X P, Zhang S J. Chem. Rev., 2017, 117(10): 6636.

doi: 10.1021/acs.chemrev.6b00776 pmid: 28488441
[48]
Li P P, Shi T, Yao D D, Wang Y D, Liu C, Zheng Y P. Carbon, 2016, 110: 87.

doi: 10.1016/j.carbon.2016.09.004
[49]
Bai H P, Zheng Y P, Wang T, Peng N K. J. Mater. Chem. A, 2016, 4(37): 14392.

doi: 10.1039/C6TA07025F
[50]
Wang D C, Song S, Zhang W R, He Z J, Wang Y D, Zheng Y P, Yao D D, Pan Y T, Yang Z Y, Meng Z Y, Li Y Y. Sep. Purif. Technol., 2020, 241: 116708.

doi: 10.1016/j.seppur.2020.116708
[51]
Giri N, Davidson C E, Melaugh G, del PÓpolo M G, Jones J T A, Hasell T, Cooper A I, Horton P N, Hursthouse M B, James S L. Chem. Sci., 2012, 3(6): 2153.

doi: 10.1039/c2sc01007k
[52]
Melaugh G, Giri N, Davidson C E, James S L, del PÓpolo M G. Phys. Chem. Chem. Phys., 2014, 16(20): 9422.

doi: 10.1039/c4cp00582a pmid: 24722729
[53]
Jie K C, Onishi N, Schott J A, Popovs I, Jiang D E, Mahurin S, Dai S. Angew. Chem. Int. Ed., 2020, 59(6): 2268.

doi: 10.1002/anie.v59.6
[54]
Li P P, Schott J A, Zhang J S, Mahurin S M, Sheng Y J, Qiao Z A, Hu X X, Cui G K, Yao D D, Brown S, Zheng Y P, Dai S. Angew. Chem., 2017, 129(47): 15154.

doi: 10.1002/ange.v129.47
[55]
Shi T, Zheng Y P, Wang T, Li P P, Wang Y D, Yao D D. ChemPhysChem, 2018, 19(1): 130.

doi: 10.1002/cphc.v19.1
[56]
Bourlinos A B, Ray Chowdhury S, Herrera R, Jiang D D, Zhang Q, Archer L A, Giannelis E P. Adv. Funct. Mater., 2005, 15(8): 1285.

doi: 10.1002/(ISSN)1616-3028
[57]
Bourlinos A B, Herrera R, Chalkias N, Jiang D D, Zhang Q, Archer L A, Giannelis E P. Adv. Mater., 2005, 17(2): 234.

doi: 10.1002/(ISSN)1521-4095
[58]
Zhang Z Z, Zhang J X, Li S Y, Liu J P, Dong M Y, Li Y C, Lu N, Lei S Y, Tang J J, Fan J C, Guo Z H. Compos. B: Eng., 2019, 176: 107338.

doi: 10.1016/j.compositesb.2019.107338
[59]
Lin K Y A, Petit C, Park A H A. Energy Fuels, 2013, 27(8): 4167.

doi: 10.1021/ef400374q
[60]
Lin K Y A, Park A H A. Environ. Sci. Technol., 2011, 45(15): 6633.

doi: 10.1021/es200146g
[61]
Petit C, Lin K Y A, Park A H A. Langmuir, 2013, 29(39): 12234.

doi: 10.1021/la4007923
[62]
Zhang J X, Li P P, Zhang Z Z, Wang X J, Tang J J, Liu H, Shao Q, Ding T, Umar A, Guo Z H. J. Colloid Interface Sci., 2019, 542: 159.

doi: 10.1016/j.jcis.2019.01.135
[63]
Zhang J X, Zheng Y P, Lan L, Mo S, Yu P Y, Shi W, Wang R M. ACS Nano, 2009, 3(8): 2185.

doi: 10.1021/nn900557y
[64]
Wang D C, Zheng Y P, Yao D D, Yang Z Y, Xin Y Y, Wang F, Wang Y D, Ning H L, Wu H, Wang H N. New J. Chem., 2019, 43(30): 11949.

doi: 10.1039/C9NJ02789K
[65]
Yang Z, Wang D, Meng Z, Li Y. Sep. Purif. Technol., 2019, 218: 130.

doi: 10.1016/j.seppur.2019.02.048
[66]
Wang D C, Yao D D, Wang Y D, Wang F, Xin Y Y, Song S, Zhang Z L, Su F F, Zheng Y P. Sep. Purif. Technol., 2019, 221: 421.

doi: 10.1016/j.seppur.2019.04.005
[67]
Li Y L, Duan Z B, Huo T, Zhu L J, Xiang Y Z, Xia D H. Chem. Ind. Eng. Prog., 2017, 36(4): 1342.
( 李彦霖, 段尊斌, 霍添, 朱丽君, 项玉芝, 夏道宏. 化工进展, 2017, 36(4): 1342.)
[68]
Li X Q, Ding Y D, Liao Q, Zhu X, Li H, Wang H. Chemical Industry and Engineering Progress, 2017, 36: 3362.
( 李晓强, 丁玉栋, 廖强, 朱恂, 李恒, 王宏. 化工进展, 2017, 36: 3362.).
[69]
Kumar R, Dhasaiyan P, Naveenkumar P M, Sharma K P. Nanoscale Adv., 2019, 1(10): 4067.

doi: 10.1039/C9NA00353C
[70]
Sheng L S, Chen Z Q. Chinese Journal of Chemical Engineering, 2019, 70: 1163.
( 生丽莎, 陈振乾. 化工学报, 2019, 70: 1163.).
[71]
Zhao X R, An S H, Dai J L, Peng C J, Hu J, Liu H L. New J. Chem., 2020, 44(29): 12715.

doi: 10.1039/D0NJ02388D
[72]
Zhang F, Yang F C, Huang J S, Sumpter B G, Qiao R. J. Phys. Chem. B, 2016, 120(29): 7195.

doi: 10.1021/acs.jpcb.6b04784
[73]
Julien P A, Užarević K, Katsenis A D, Kimber S A J, Wang T, Farha O K, Zhang Y C, Casaban J, Germann L S, Etter M, Dinnebier R E, James S L, Halasz I, Frišić T. J. Am. Chem. Soc., 2016, 138(9): 2929.

doi: 10.1021/jacs.5b13038
[74]
James S L. Adv. Mater., 2016, 28(27): 5712.

doi: 10.1002/adma.v28.27
[75]
Crawford D, Casaban J, Haydon R, Giri N, McNally T, James S L. Chem. Sci., 2015, 6(3): 1645.

doi: 10.1039/c4sc03217a pmid: 29308131
[76]
Lee J S M, Cooper A I. Chem. Rev., 2020, 120(4): 2171.
[77]
Little M A, Cooper A I. Adv. Funct. Mater., 2020, 30(41): 1909842.

doi: 10.1002/adfm.v30.41
[78]
Greenaway R L, Santolini V, Pulido A, Little M A, Alston B M, Briggs M E, Day G M, Cooper A I, Jelfs K E. Angew. Chem. Int. Ed. Engl., 2019, 58: 16275.

doi: 10.1002/anie.v58.45
[79]
Liu M, Zhang L, Little M A, Kapil V, Ceriotti M, Yang S, Ding L, Holden D, Balderasxicohtencatl R, He D. Science, 2019, 366: 613.

doi: 10.1126/science.aax7427
[80]
Greenaway R L, Holden D, Eden E G B, Stephenson A, Yong C W, Bennison M J, Hasell T, Briggs M E, James S L, Cooper A I. Chem. Sci., 2017, 8(4): 2640.

doi: 10.1039/c6sc05196k pmid: 28553499
[81]
Kearsey R J, Alston B M, Briggs M E, Greenaway R L, Cooper A I. Chem. Sci., 2019, 10(41): 9454.

doi: 10.1039/c9sc03316e pmid: 32110304
[82]
Egleston B, Luzyanin K, Brand M, Clowes R, Briggs M, Greenaway R L, Cooper A. Angew. Chem. Int. Ed. Engl., 2020. 10.1002/anie.201914037.
[83]
Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(25): 8875.

doi: 10.1021/ja9015765
[84]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.

doi: 10.1021/jacs.7b11940
[85]
Lin G Q, Ding H M, Chen R F, Peng Z K, Wang B S, Wang C. J. Am. Chem. Soc., 2017, 139(25): 8705.

doi: 10.1021/jacs.7b04141
[86]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334 pmid: 30485740
[87]
Wang H L, He S F, Qin X D, Li C E, Li T. J. Am. Chem. Soc., 2018, 140(49): 17203.

doi: 10.1021/jacs.8b10138
[88]
He S F, Wang H L, Zhang C Z, Zhang S W, Yu Y, Lee Y, Li T. Chem. Sci., 2019, 10(6): 1816.

doi: 10.1039/C8SC03520B
[89]
Maiti U N, Lee W J, Lee J M, Oh Y, Kim J Y, Kim J E, Shim J, Han T H, Kim S O. Adv. Mater., 2014, 26(1): 40.

doi: 10.1002/adma.201303265
[90]
Li Q, Dong L J, Fang J F, Xiong C X. ACS Nano, 2010, 4(10): 5797.

doi: 10.1021/nn101542v
[91]
Ding Y X, Sun X Y, Zhang L Y, Mao S J, Xie Z L, Liu Z W, Su D S. Angew. Chem. Int. Ed., 2015, 54(1): 231.

doi: 10.1002/anie.v54.1
[92]
Ding Y X, Su D S. ChemSusChem, 2014, 7(6): 1542.

doi: 10.1002/cssc.201301226
[93]
Yang Z Y, Ning H L, Liu J P, Meng Z Y, Li Y Y, Ju X Q, Chen Z P. Chem. Eng. Res. Des., 2020, 161: 312.

doi: 10.1016/j.cherd.2020.07.025
[94]
Meng Z Y, Yang Z Y, Yin Z Q, Li Y Y, Song X Y, Zhao J J, Wu W L. Powder Technol., 2020, 359: 261.

doi: 10.1016/j.powtec.2019.09.053
[95]
Shan W D, Fulvio P F, Kong L Y, Schott J A, Do-Thanh C L, Tian T, Hu X X, Mahurin S M, Xing H B, Dai S. ACS Appl. Mater. Interfaces, 2018, 10(1): 32.

doi: 10.1021/acsami.7b15873
[96]
Liu S J, Liu J D, Hou X D, Xu T T, Tong J, Zhang J X, Ye B J, Liu B. Langmuir, 2018, 34(12): 3654.

doi: 10.1021/acs.langmuir.7b04212
[97]
Costa Gomes M, Pison L, Červinka C, Padua A. Angew. Chem. Int. Ed., 2018, 57(37): 11909.

doi: 10.1002/anie.201805495
[98]
Peh S B, Wang Y X, Zhao D. ACS Sustainable Chem. Eng., 2019, 7(4): 3647.
[99]
Kang Z X, Peng Y W, Qian Y H, Yuan D Q, Addicoat M A, Heine T, Hu Z G, Tee L, Guo Z G, Zhao D. Chem. Mater., 2016, 28(5): 1277.

doi: 10.1021/acs.chemmater.5b02902
[100]
Ying Y P, Tong M M, Ning S C, Ravi S K, Peh S B, Tan S C, Pennycook S J, Zhao D. J. Am. Chem. Soc., 2020, 142(9): 4472.

doi: 10.1021/jacs.9b13825
[101]
Wang Y X, Hu Z G, Kundu T, Cheng Y D, Dong J Q, Qian Y H, Zhai L Z, Zhao D. ACS Sustainable Chem. Eng., 2018, 6(9): 11904.

doi: 10.1021/acssuschemeng.8b02173
[102]
Liu G L, Yuan Y D, Wang J, Cheng Y D, Peh S B, Wang Y X, Qian Y H, Dong J Q, Yuan D Q, Zhao D. J. Am. Chem. Soc., 2018, 140(20): 6231.

doi: 10.1021/jacs.8b03517
[103]
Lan J H, Cao D P, Wang W C, Smit B. ACS Nano, 2010, 4(7): 4225.

doi: 10.1021/nn100962r
[104]
Yang W B, Greenaway A, Lin X, Matsuda R, Blake A J, Wilson C, Lewis W, Hubberstey P, Kitagawa S, Champness N R, Schröder M. J. Am. Chem. Soc., 2010, 132(41): 14457.

doi: 10.1021/ja1042935
[105]
Chen C, Huang Y, Meng Z Y, Xu Z P, Liu P B, Li T H. J. Energy Chem., 2021, 54: 482.

doi: 10.1016/j.jechem.2020.06.025
[1] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[2] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[3] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[4] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[5] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[6] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[7] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[8] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[9] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[10] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[11] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[12] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[13] Yaoyang Liu, Zhibin Liu, Chuang Zhao, Yu Zhou, Yang Gao, Hui He. Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides [J]. Progress in Chemistry, 2020, 32(2/3): 219-229.
[14] Jinghao Liu, Xueqian Wu, Yufeng Wu, Jiamei Yu. Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks [J]. Progress in Chemistry, 2020, 32(1): 133-144.
[15] Axin Liang, Bo Tang, Liquan Sun, Xin Zhang, Huipeng Hou, Aiqin Luo. New Materials for the Separation and Enrichment of N-Glycopeptides/Glycoproteins [J]. Progress in Chemistry, 2019, 31(7): 996-1006.