中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1856-1873 DOI: 10.7536/PC200852 Previous Articles   Next Articles

• Review •

Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose

Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu()   

  1. Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University,Harbin 150040,China
  • Received: Revised: Online: Published:
  • Contact: Shouxin Liu
  • Supported by:
    Fundamental Research Funds for the Central Universities(2572017ET02); National Natural Science Foundation of China(31890773)
Richhtml ( 34 ) PDF ( 870 ) Cited
Export

EndNote

Ris

BibTeX

5-Hydroxymethylfurfural(5-HMF) is regarded as the most developing and potential platform in recent years. The hydrolysis of cellulose to glucose and then to5-HMFis the key steps in the use of biomass resources to produce green platform compounds. Understanding the catalytic conversion process from glucose to5-HMFis of great significance for improving the potential utilization of biomass resource. Solvent systems and outfield coordination used for the preparation of5-HMFfrom glucose was introduced in this work, focusing on the mechanism of the conversion from glucose to5-HMFincluding the isomerization of glucose to fructose and the dehydration of fructose to 5-HMF. Single-phase solvents, ionic liquids, biphasic solvents and deep eutectic solvent was used in5-HMFproduction. The biphasic solvents system composed of ionic liquid and organic solvent is the most effective reaction solvent system, which can quickly transfer the5-HMFto the organic phase, reduce side reactions and increase the yield of 5-HMF. Outfield coordination of ultrasound vibration, microwave radiation and pressure field accelerate mass transfer and heat transfer, greatly shorten the reaction time and improve the reaction efficiency through the synergistic reaction with the reaction solvent. The improvement of5-HMFyield and the stability of intermediates require further research.

Contents

1 Introduction

2 Solvent systems

2.1 Single-phase solvent

2.2 Ionic liquids

2.3 Biphasic systems

2.4 Deep eutectic solvents

3 Outfield assistance

3.1 Ultrasound vibration

3.2 Microwave radiation

3.3 Pressure field

4 Mechanism of 5-HMF formation

5 Conclusions

Fig. 1 High value-added chemicals derived from 5-HMF[16]
Table 1 Conversion of glucose into5-HMF in aqueous solution
Fig. 2 The reaction intermediates for the dehydration of glucose to 5-HMF
Table 2 Conversion of glucose into 5-HMF in organic solvents
Table 3 Conversion of glucose into 5-HMF in ionic liquids
Fig. 3 General scheme for the conversion of glucose into 5-HMF by Cr0-NP
Fig.4 Catalytic conversion of glucose into 5-HMF by [C4SO3Hmim]Cl in [BMIM]Cl
Fig. 5 The schematic diagram of 5-HMF production from glucose in biphasic solvent
Table 4 Conversion of glucose into 5-HMF in Biphasic systems
Fig. 6 “One-pot” synthesis of 5-HMF from glucose using Sn-Beta
Fig. 7 Biphasic solvent applied in the reaction[107]
Table 5 Conversion of glucose into 5-HMF in Deep eutectic solvents
Fig.8 Synthesis of M-D41 in DES for the efficient dehydration of carbohydrates to 5-HMF[119]
Fig. 9 (a) Physical appearance of sample treated with probe sonication at different reaction time, and(b) humin formation after mixture centrifuged(left: 3 mins; right: 10 mins)[123]
Fig. 10 Overview of different heating methods[36]
Table 6 Conversion of glucose into 5-HMF under external fields assistance
Fig. 11 The scheme of the conversion of glucose into 5-HMF
Fig. 12 Glucose degradation to 5-HMF in two steps
Fig. 13 Schematic diagram of optical isomerization of glucose under the action of [EMIM]Cl and metal halide[75]
Fig. 14 Mechanism of fructose dehydration[86]
Fig. 15 (a) The structure of [BMIM]Br and(b) the conversion of fructose into 5-HMF catalyzed by N cation with the missing electron orbital[148]
Fig. 16 Acyclic reaction pathway of dehydration of hexoses to 5-HMF
Fig. 17 Conversion of 3-DG to corresponding substituted furfural
Fig.18 Catalytic cycle of glucose 1 to 5-HMF 3 via fructose with Al(OMe)3[152]
Fig. 19 Acid-catalyzed dehydration of glucose to 5-HMF with Al-KCC-1[153]
[1]
Tyagi U, Anand N, Kumar D. Bioresour. Technol., 2019, 289: 121675.

doi: 10.1016/j.biortech.2019.121675
[2]
Tang Z, Su J. Bioresources, 2019, 14: 5943.

doi: 10.15376/biores.14.3.5943-5963
[3]
Ozsel B K, Ozturk D, Nis B. Bioresour. Technol., 2019, 289: 121627.

doi: 10.1016/j.biortech.2019.121627
[4]
Zhao J, Jayakumar A, Lee J M. Acs Sustain. Chem. Eng., 2018, 6: 2976.

doi: 10.1021/acssuschemeng.7b02671
[5]
Mantovani M, Mandelli D, Gonçalves M, Carvalho W A. Chem. Eng. J., 2018, 348: 860.

doi: 10.1016/j.cej.2018.05.059
[6]
Zhang J H, Yang S S, Zhang Z X, Cui L, Jia J, Zhou D Y, Zhu B W. ChemistrySelect, 2019, 4(4): 1259.

doi: 10.1002/slct.201803528
[7]
Wang L Q, Guo H Q, Xie Q L, Wang J G, Hou B, Jia L T, Cui J L, Li D B. Appl. Catal. A: Gen., 2019, 572: 51.

doi: 10.1016/j.apcata.2018.12.023
[8]
Zhang J, Dong K J, Luo W M, Guan H F. Fuel, 2018, 234: 664.
[9]
Yu X, Peng L C, Gao X Y, He L, Chen K L. RSC Adv., 2018, 8(28): 15762.

doi: 10.1039/C8RA02056F
[10]
Delbecq F, Len C. Molecules, 2018, 23(8): 1973.

doi: 10.3390/molecules23081973
[11]
Yan L S, Ma R S, Wei H X, Li L Z, Zou B, Xu Y W. Bioresour. Technol., 2019, 279: 84.

doi: 10.1016/j.biortech.2019.01.120
[12]
Wang J J, Xi J X, Xia Q N, Liu X H, Wang Y Q. Sci. China Chem., 2017, 60(7): 870.

doi: 10.1007/s11426-016-9035-1
[13]
dos Santos Rocha M S R, Pratto B, de Sousa Jr. R, Almeida R M R G, da Cruz A J G. Bioresour. Technol., 2017, 228: 176.

doi: 10.1016/j.biortech.2016.12.087
[14]
Lin H Z, Xiong Q G, Zhao Y, Chen J P, Wang S R. AIChE J., 2017, 63(1): 257.
[15]
Guo H X, Qi X H, Hiraga Y, Aida T M, Smith Jr. R L Chem. Eng. J., 2017, 314: 508.
[16]
Zhou P, Zhang Z H. Catal. Sci. Technol., 2016, 6(11): 3694.
[17]
Wang H Y, Zhu C H, Li D, Liu Q Y, Tan J, Wang C G, Cai C L, Ma L L. Renew. Sustain. Energy Rev., 2019, 103: 227.

doi: 10.1016/j.rser.2018.12.010
[18]
Mika L T, CsÉfalvay E, NÉmeth Á. Chem. Rev., 2018, 118(2): 505.

doi: 10.1021/acs.chemrev.7b00395
[19]
Wang Y X, Hu Z X, Fan G Z, Yan J T, Song G S, Li J F. Waste Biomass Valorizat., 2019, 10(8): 2263.

doi: 10.1007/s12649-018-0242-9
[20]
Silahua-PavÓn A A, Espinosa-González C G, Ortiz-Chi F, Pacheco-Sosa J G, PÉrez-Vidal H, ArÉvalo-PÉrez J C, Godavarthi S, Torres-Torres J G. Catal. Commun., 2019, 129: 105723.

doi: 10.1016/j.catcom.2019.105723
[21]
Rathod P V, Mujmule R B, Chung W J, Jadhav A R, Kim H. Catal. Lett., 2019, 149(3): 672.
[22]
Faba L, Garces D, Diaz E, Ordonez S. ChemSusChem, 2019, 12: 3769.

doi: 10.1002/cssc.v12.16
[23]
Bizzi C A, Santos D, Sieben T C, Motta G V, Mello P A, Flores E M M. Ultrason. Sonochem., 2019, 51: 332.

doi: 10.1016/j.ultsonch.2018.09.011
[24]
Li X C, Zhang Y Y, Xia Q N, Liu X H, Peng K H, Yang S H, Wang Y Q. Ind. Eng. Chem. Res., 2018, 57(10): 3545.

doi: 10.1021/acs.iecr.8b00443
[25]
Grote F, Ermilova I, Lyubartsev A P. J. Phys. Chem. B, 2018, 122(35): 8416.

doi: 10.1021/acs.jpcb.8b03350
[26]
Bhaumik P, Chou H J, Lee L C, Chung P W. ACS Sustain. Chem. Eng., 2018, 6(5): 5712.

doi: 10.1021/acssuschemeng.7b04815
[27]
Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84(5): 339.

doi: 10.1205/cherd05038
[28]
Ranoux A, Djanashvili K, Arends I W C E, Hanefeld U. ACS Catal., 2013, 3(4): 760.

doi: 10.1021/cs400099a
[29]
Zhou C S, Zhao J, Yagoub A E A, Ma H L, Yu X J, Hu J L, Bao X J, Liu S L. Egypt. J. Petrol., 2017, 26(2): 477.

doi: 10.1016/j.ejpe.2016.07.005
[30]
Daorattanachai P, Khemthong P, Viriya-Empikul N, Laosiripojana N, Faungnawakij K. Carbohydr. Res., 2012, 363: 58.

doi: 10.1016/j.carres.2012.09.022
[31]
Zheng H W, Sun Z, Yi X H, Wang S T, Li J X, Wang X H, Jiang Z J. RSC Adv., 2013, 3(45): 23051.

doi: 10.1039/c3ra43408g
[32]
Nakajima K, Baba Y, Noma R, Kitano M, Kondo J N, Hayashi S, Hara M. J. Am. Chem. Soc., 2011, 133(12): 4224.

doi: 10.1021/ja110482r
[33]
Ramli N A S, Amin N A S. Chem. Eng. J., 2016, 283: 150.

doi: 10.1016/j.cej.2015.07.044
[34]
Zhao J, Jayakumar A, Hu Z T, Yan Y B, Yang Y H, Lee J M. ACS Sustain. Chem. Eng., 2018, 6(1): 284.

doi: 10.1021/acssuschemeng.7b02408
[35]
Wang Q F, Hao J Q, Zhao Z B. Aust. J. Chem., 2018, 71(1): 24.

doi: 10.1071/CH17154
[36]
Sweygers N, Alewaters N, Dewil R, Appels L. Sci. Rep., 2018, 8(1): 1.
[37]
Chen B L, Xu G Z, Zheng Z B, Wang D X, Zou C H, Chang C. Ind. Crops Prod., 2019, 129: 503.
[38]
Yu I K M, Tsang D C W, Yip A C K, Hunt A J, Sherwood J, Shang J, Song H, Ok Y S, Poon C S. Green Chem., 2018, 20(9): 2064.

doi: 10.1039/C8GC00358K
[39]
Xuan Y L, He R, Han B, Wu T H, Wu Y. Waste Biomass Valorizat., 2018, 9(3): 401.
[40]
Zhang L X, Xi G Y, Chen Z, Qi Z Y, Wang X C. Chem. Eng. J., 2017, 307: 877.

doi: 10.1016/j.cej.2016.09.003
[41]
Ren Q H, Huang Y Z, Ma H, Gao J, Xu J. Chin. J. Catal., 2014, 35(4): 496.

doi: 10.1016/S1872-2067(14)60012-7
[42]
Wataniyakul P, Boonnoun P, Quitain A T, Kida T, Laosiripojana N, Shotipruk A. Ind. Crops Prod., 2018, 117: 286.
[43]
Mamo W, Chebude Y, Márquez-Álvarez C, Díaz I, Sastre E. Catal. Sci. Technol., 2016, 6(8): 2766.

doi: 10.1039/C5CY02070K
[44]
Walia M, Sharma U, Agnihotri V K, Singh B. RSC Adv., 2014, 4(28): 14414.
[45]
Zhang Y, Wang J G, Wang J H, Wang Y, Wang M, Cui H Y, Song F, Sun X Y, Xie Y J, Yi W M. ChemistrySelect, 2019, 4(19): 5724.

doi: 10.1002/slct.201901084
[46]
Meng Q W, Qiu C W, Zheng H Y, Li X Q, Zhu Y L, Li Y W. Mol. Catal., 2017, 433: 111.
[47]
Inshina O, Korduban A, Tel'Biz G, Brei V. Adsorpt. Sci. Technol., 2017, 35(5/6): 439.

doi: 10.1177/0263617417694887
[48]
Jiao H F, Zhao X L, Lv C, Wang Y J, Yang D J, Li Z H, Yao X D. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[49]
Amarasekara A S, Razzaq A. Carbohydr. Res., 2014, 386: 86.
[50]
Amarasekara A S, Williams L D, Ebede C C. Carbohydr. Res., 2008, 343(18): 3021.

doi: 10.1016/j.carres.2008.09.008
[51]
Meier S. Catal. Commun., 2020, 135: 105894.

doi: 10.1016/j.catcom.2019.105894
[52]
Yang L, Tsilomelekis G, Caratzoulas S, Vlachos D G. ChemSusChem, 2015, 8(8): 1334.

doi: 10.1002/cssc.201403264 pmid: 25572774
[53]
Yang G, Pidko E A, Hensen E J M. J. Catal., 2012, 295: 122.

doi: 10.1016/j.jcat.2012.08.002
[54]
Mushrif S H, Caratzoulas S, Vlachos D G. Phys. Chem. Chem. Phys., 2012, 14(8): 2637.

doi: 10.1039/c2cp22694d pmid: 22273799
[55]
Ren L K, Zhu L F, Qi T, Tang J Q, Yang H Q, Hu C W. ACS Catal., 2017, 7(3): 2199.

doi: 10.1021/acscatal.6b01802
[56]
Tsilomelekis G, Josephson T R, Nikolakis V, Caratzoulas S. ChemSusChem, 2014, 7(1): 117.

doi: 10.1002/cssc.201300786 pmid: 24408726
[57]
Tian G, Tong X L, Cheng Y, Xue S. Carbohydr. Res., 2013, 370: 33.

doi: 10.1016/j.carres.2013.01.012
[58]
Wang Y F, Gu Z, Liu W T, Yao Y, Wang H J, Xia X F, Li W. RSC Adv., 2015, 5(75): 60736.

doi: 10.1039/C5RA08080K
[59]
Liu J, Li H, Liu Y C, Lu Y M, He J, Liu X F, Wu Z B, Yang S. Catal. Commun., 2015, 62: 19.

doi: 10.1016/j.catcom.2015.01.008
[60]
Lam E, Luong J H T. ACS Catal., 2014, 4(10): 3393.
[61]
Zhao Q M, Tao S, Miao X Y, Zhu Y. Chem. Eng. J., 2019, 372: 1164.

doi: 10.1016/j.cej.2019.05.014
[62]
Li Y N, Min S X, Wang F. Sustain. Energy Fuels, 2019, 3(10): 2753.
[63]
Lv G, Deng L L, Lu B Q, Li J L, Hou X L, Yang Y X. J. Clean. Prod., 2017, 142: 2244.
[64]
Zou B, Chen X S, Zhou C S, Yu X J, Ma H L, Zhao J, Bao X J. Can. J. Chem. Eng., 2018, 96(6): 1337.

doi: 10.1002/cjce.v96.6
[65]
Thombal R S, Jadhav V H. Appl. Catal. A: Gen., 2015, 499: 213.

doi: 10.1016/j.apcata.2015.04.021
[66]
Li W Z, Zhang T W, Xin H S, Su M X, Ma L L, Jameel H, Chang H M, Pei G. RSC Adv., 2017, 7(44): 27682.

doi: 10.1039/C7RA03155F
[67]
Zhang T W, Li W Z, Xin H S, Jin L L, Liu Q Y. Catal. Commun., 2019, 124: 56.

doi: 10.1016/j.catcom.2019.03.001
[68]
Huang F M, Su Y W, Tao Y, Sun W, Wang W T. Fuel, 2018, 226: 417.
[69]
Yang Y, Hu C W, Abu-Omar M M. Bioresour. Technol., 2012, 116: 190.

doi: 10.1016/j.biortech.2012.03.126
[70]
Zhang Y L, Xiong Q G, Chen Y, Liu M, Jin P, Yan Y S, Pan J M. Ind. Eng. Chem. Res., 2018, 57(6): 1968.

doi: 10.1021/acs.iecr.7b04671
[71]
Sweygers N, Harrer J, Dewil R, Appels L. J. Clean. Prod., 2018, 187: 1014.

doi: 10.1016/j.jclepro.2018.03.204
[72]
Enomoto K, Hosoya T, Miyafuji H. Cellulose, 2018, 25(4): 2249.

doi: 10.1007/s10570-018-1717-3
[73]
Eminov S, Brandt A, Wilton-Ely J D E T, Hallett J P. PLoS ONE, 2016, 11(10): e0163835.
[74]
Caes B R, Palte M J, Raines R T. Chem. Sci., 2013, 4(1): 196.

doi: 10.1039/C2SC21403B
[75]
Zhao H, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316(5831): 1597.

doi: 10.1126/science.1141199
[76]
Zhang Z H, Wang Q, Xie H B, Liu W J, Zhao Z K. ChemSusChem, 2011, 4(1): 131.

doi: 10.1002/cssc.v4.1
[77]
He J H, Zhang Y T, Chen E Y X. ChemSusChem, 2013, 6(1): 61.
[78]
Chinnappan A, Jadhav A H, Chung W J, Kim H. Ind. Crops Prod., 2015, 76: 12.

doi: 10.1016/j.indcrop.2015.05.085
[79]
Liu H, Wang H W, Li Y, Yang W, Song C H, Li H M, Zhu W S, Jiang W. RSC Adv., 2015, 5(12): 9290.

doi: 10.1039/C4RA09131K
[80]
Aylak A R, Akmaz S, Koc S N. Chem. Eng. Commun., 2020, 207(8): 1103.

doi: 10.1080/00986445.2019.1641489
[81]
Sezgin E, Esen Keçeci M, Akmaz S, Koc S N. Cellulose, 2019, 26(17): 9035.

doi: 10.1007/s10570-019-02702-8
[82]
Hou Q D, Zhen M N, Liu L, Chen Y, Huang F, Zhang S Q, Li W Z, Ju M T. Appl. Catal. B: Environ., 2018, 224: 183.

doi: 10.1016/j.apcatb.2017.09.049
[83]
Hou Q D, Zhen M N, Li W Z, Liu L, Liu J P, Zhang S Q, Nie Y F, Bai C, Bai X Y, Ju M T. Appl. Catal. B: Environ., 2019, 253: 1.
[84]
Fakhraee M. J. Mol. Liq., 2019, 279: 51.

doi: 10.1016/j.molliq.2019.01.109
[85]
Burrell A K, Sesto R E D, Baker S N, McCleskey T M, Baker G A. Green Chem., 2007, 9(5): 449.

doi: 10.1039/b615950h
[86]
de Melo F C, de Souza R F, Coutinho P L A, de Souza M O. J. Braz. Chem. Soc., 2014, 25: 2378.
[87]
Song J L, Zhang B B, Shi J H, Fan H L, Ma J, Yang Y Y, Han B X. RSC Adv., 2013, 3(43): 20085.

doi: 10.1039/c3ra43934h
[88]
Wu L Q, Song J L, Zhang B B, Zhou B W, Zhou H C, Fan H L, Yang Y Y, Han B X. Green Chem., 2014, 16(8): 3935.

doi: 10.1039/C4GC00311J
[89]
Zhang Q Q, Zhang C Y, Sun Y N, Guo Y H, Song D Y. Appl. Catal. A: Gen., 2019, 574: 10.

doi: 10.1016/j.apcata.2019.01.021
[90]
Valiyev I, Abdullayev Y, Yagubova S, Baybekov S, Salmanov C, Autschbach J. J. Mol. Liq., 2019, 280: 410.

doi: 10.1016/j.molliq.2019.02.035
[91]
Kalghatgi S G, Bhanage B M. J. Mol. Liq., 2019, 281: 70.

doi: 10.1016/j.molliq.2019.02.053
[92]
Jiang F, Zhu Q J, Ma D, Liu X M, Han X W. J. Mol. Catal. A: Chem., 2011, 334(1/2): 8.

doi: 10.1016/j.molcata.2010.10.006
[93]
Ramli N A S, Amin N A S. Chem. Eng. J., 2018, 335: 221.
[94]
Rout P K, Nannaware A D, Prakash O, Kalra A, Rajasekharan R. Chem. Eng. Sci., 2016, 142: 318.
[95]
Steinbach D, Kruse A, Sauer J. Biomass Convers. Biorefinery, 2017, 7(2): 247.

doi: 10.1007/s13399-017-0243-0
[96]
Zhang Y L, Li B, Guan W, Wei Y N, Yan C H, Meng M J, Pan J M, Yan Y S. Cellulose, 2020, 27(6): 3037.

doi: 10.1007/s10570-020-02994-1
[97]
Mittal A, Pilath H M, Johnson D K. Energy Fuels, 2020, 34(3): 3284.

doi: 10.1021/acs.energyfuels.9b04047
[98]
Fang J, Zheng W, Liu K, Li H, Li C. Chem. Eng. J., 2020, 385:123796.

doi: 10.1016/j.cej.2019.123796
[99]
Feng Y C, Zuo M, Zeng X H, Sun Y, Tang X, Lin L. Prog. Chem., 2018, 30: 314.
[100]
Nikolla E, Román-Leshkov Y, Moliner M, Davis M E. ACS Catal., 2011, 1(4): 408.

doi: 10.1021/cs2000544
[101]
Nahavandi M, Kasanneni T, Yuan Z S, Xu C C, Rohani S. ACS Sustain. Chem. Eng., 2019, 7(14): 11970.

doi: 10.1021/acssuschemeng.9b00250
[102]
Zhao P P, Zhang Y Y, Wang Y, Cui H Y, Song F, Sun X Y, Zhang L P. Green Chem., 2018, 20(7): 1551.
[103]
Chen D W, Liang F B, Feng D X, Xian M, Zhang H B, Liu H Z, Du F L. Chem. Eng. J., 2016, 300: 177.
[104]
Subsadsana M, Miyake K, Ono K, Ota M, Hirota Y, Nishiyama N, Sansuk S. New J. Chem., 2019, 43(24): 9483.

doi: 10.1039/c9nj00462a
[105]
Cao Z, Fan Z X, Chen Y, Li M, Shen T, Zhu C J, Ying H J. Appl. Catal. B: Environ., 2019, 244: 170.

doi: 10.1016/j.apcatb.2018.11.019
[106]
Feng Y C, Li M Z, Gao Z B, Zhang X, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. ChemSusChem, 2019, 12(2): 495.

doi: 10.1002/cssc.v12.2
[107]
Feng Y C, Zuo M, Wang T, Jia W L, Zhao X Y, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. J. Taiwan Inst. Chem. Eng., 2019, 96: 431.

doi: 10.1016/j.jtice.2018.12.013
[108]
Qiu G, Huang C P, Sun X L, Chen B H. Green Chem., 2019, 21(14): 3930.

doi: 10.1039/C9GC01225G
[109]
Pagán-Torres Y J, Wang T F, Gallo J M R, Shanks B H, Dumesic J A. ACS Catal., 2012, 2(6): 930.

doi: 10.1021/cs300192z
[110]
Gallo J M R, Alonso D M, Mellmer M A, Dumesic J A. Green Chem., 2013, 15(1): 85.

doi: 10.1039/C2GC36536G
[111]
Liu D J, Chen E Y X. Biomass Bioenergy, 2013, 48: 181.

doi: 10.1016/j.biombioe.2012.11.020
[112]
Saha B, De S, Fan M H. Fuel, 2013, 111: 598.

doi: 10.1016/j.fuel.2013.03.031
[113]
Hou Q D, Li W Z, Zhen M N, Liu L, Chen Y, Yang Q, Huang F, Zhang S Q, Ju M T. RSC Adv., 2017, 7(75): 47288.
[114]
Guo H X, Duereh A, Hiraga Y, Qi X H, Smith R L Jr. Energy Fuels, 2018, 32(8): 8411.

doi: 10.1021/acs.energyfuels.8b00717
[115]
Marullo S, Rizzo C, D'Anna F. ACS Sustain. Chem. Eng., 2019, 7(15): 13359.

doi: 10.1021/acssuschemeng.9b02605
[116]
Matsumiya H, Hara T. Biomass Bioenergy, 2015, 72: 227.

doi: 10.1016/j.biombioe.2014.11.001
[117]
Zuo M, Le K, Li Z, Jiang Y T, Zeng X H, Tang X, Sun Y, Lin L. Ind. Crops Prod., 2017, 99: 1.

doi: 10.1016/j.indcrop.2017.01.027
[118]
Zuo M, Le K, Feng Y C, Xiong C X, Li Z, Zeng X H, Tang X, Sun Y, Lin L. Ind. Crops Prod., 2018, 112: 18.

doi: 10.1016/j.indcrop.2017.11.001
[119]
Feng Y C, Yan G H, Wang T, Jia W L, Zeng X H, Sperry J, Sun Y, Tang X, Lei T Z, Lin L. ChemSusChem, 2019, 12(5): 978.

doi: 10.1002/cssc.v12.5
[120]
D'Anna F, Marullo S, Vitale P, Rizzo C, Lo Meo P, Noto R. Appl. Catal. A: Gen., 2014, 482: 287.

doi: 10.1016/j.apcata.2014.05.039
[121]
Marullo S, Rizzo C, Meli A, D'Anna F. ACS Sustain. Chem. Eng., 2019, 7(6): 5818.

doi: 10.1021/acssuschemeng.8b05584
[122]
Chu Q Y, Chen J, Hou W H, Yu H X, Wang P, Liu R, Song G L, Zhu H J, Zhao P P. Chin. J. Catal., 2018, 39(5): 955.

doi: 10.1016/S1872-2067(17)63007-9
[123]
Sarwono A, Man Z, Muhammad N, Khan A S, Hamzah W S W, Rahim A H A, Ullah Z, Wilfred C D. Ultrason. Sonochemistry, 2017, 37: 310.

doi: 10.1016/j.ultsonch.2017.01.028
[124]
Rasrendra C B, Soetedjo J N M, Makertihartha I G B N, Adisasmito S, Heeres H J. Top. Catal., 2012, 55(7/10): 543.

doi: 10.1007/s11244-012-9826-y
[125]
Lu J H, Yan Y N, Zhang Y H, Tang Y. RSC Adv., 2012, 2(20): 7652.

doi: 10.1039/c2ra21011h
[126]
Palav T, Seetharaman K. Carbohydr. Polym., 2006, 65(3): 364.

doi: 10.1016/j.carbpol.2006.01.024
[127]
Guo F, Fang Z, Zhou T J. Bioresour. Technol., 2012, 112: 313.

doi: 10.1016/j.biortech.2012.02.108
[128]
Li K L, Xia L X, Li J, Pang J, Cao G Y, Xi Z W. Carbohydr. Res., 2001, 331(1): 9.

doi: 10.1016/S0008-6215(00)00311-6
[129]
Wang P, Ren L H, Lu Q Y, Huang Y B. Chem. Eng. Commun., 2016, 203(11): 1507.

doi: 10.1080/00986445.2016.1213724
[130]
Zhou X M, Zhang Z H, Liu B, Xu Z, Deng K J. Carbohydr. Res., 2013, 375: 68.
[131]
Li X C, Peng K H, Xia Q N, Liu X H, Wang Y Q. Chem. Eng. J., 2018, 332: 528.

doi: 10.1016/j.cej.2017.06.105
[132]
Jing S S, Cao X F, Zhong L X, Peng X W, Sun R C, Liu J C. Ind. Crops Prod., 2018, 126: 151.

doi: 10.1016/j.indcrop.2018.10.028
[133]
Garces D, Faba L, Diaz E, Ordonez S. ChemSusChem, 2019, 12(4): 924.

doi: 10.1002/cssc.201802315
[134]
Girisuta B, Dussan K, Haverty D, Leahy J J, Hayes M H B. Chem. Eng. J., 2013, 217: 61.

doi: 10.1016/j.cej.2012.11.094
[135]
Kang S M, Fu J X, Zhang G. Renew. Sustain. Energy Rev., 2018, 94: 340.
[136]
Zou X L, Zhu C, Wang Q, Yang G. Biofuels, Bioprod. Bioref., 2019, 13(1): 153.
[137]
Kunnikuruvan S, Nair N N. ACS Catal., 2019, 9(8): 7250.

doi: 10.1021/acscatal.9b00678
[138]
Saang'Onyo D, Parkin S, Ladipo F T. Polyhedron, 2018, 149: 153.

doi: 10.1016/j.poly.2018.03.035
[139]
Li Z H, Su K M, Ren J, Yang D J, Cheng B W, Kim C K, Yao X D. Green Chem., 2018, 20(4): 863.

doi: 10.1039/C7GC03318D
[140]
Song J L, Han B X, Zhou B W, Wu L Q. Chin. Sci. Bull., 2015, 60(16): 1522.

doi: 10.1360/N972014-01397
[141]
Li J J, Li J H, Zhang D J, Liu C B. J. Phys. Chem. B, 2015, 119(42): 13398.

doi: 10.1021/acs.jpcb.5b07773
[142]
Pidko E A, Degirmenci V, Hensen E J M. ChemCatChem, 2012, 4(9): 1263.

doi: 10.1002/cctc.201200111
[143]
Overton J C, Zhu X, Mosier N S. ACS Sustainable Chem. Eng., 2019, 7(15): 12997.

doi: 10.1021/acssuschemeng.9b02096
[144]
Li G N, Pidko E A, Hensen E J M, Nakajima K. ChemCatChem, 2018, 10(18): 4084.

doi: 10.1002/cctc.v10.18
[145]
Hu B, Lu Q, Jiang X Y, Dong X C, Cui M S, Dong C Q, Yang Y P. J. Energy Chem., 2018, 27(2): 486.

doi: 10.1016/j.jechem.2017.11.013
[146]
Asim A M, Uroos M, Naz S, Sultan M, Griffin G, Muhammad N, Khan A S. J. Mol. Liq., 2019, 287.
[147]
Labauze H, Camy S, Floquet P, Benjelloun-Mlayah B, Condoret J S. Ind. Eng. Chem. Res., 2019, 58(1): 92.

doi: 10.1021/acs.iecr.8b04694
[148]
Wang Q H, Su K M, Li Z H. Mol. Catal., 2017, 438: 197.
[149]
Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G. Appl. Catal. A: Gen., 1996, 145(1/2): 211.

doi: 10.1016/0926-860X(96)00136-6
[150]
Jadhav H, Pedersen C M, Sølling T, Bols M. ChemSusChem, 2011, 4(8): 1049.

doi: 10.1002/cssc.201100249
[151]
Guan J, Cao Q, Guo X C, Mu X D. Comput. Theor. Chem., 2011, 963(2/3): 453.

doi: 10.1016/j.comptc.2010.11.012
[152]
Wang Q, Fu M X, Li X J, Huang R F, Glaser R E, Zhao L L. J. Comput. Chem., 2019, 40(16): 1599.
[153]
Shahangi F, Najafi Chermahini A, Saraji M. J. Energy Chem., 2018, 27(3): 769.
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[3] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[4] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[5] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[6] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[7] Fang Li, He Jinlu. Nonenzymatic Glucose Sensors [J]. Progress in Chemistry, 2015, 27(5): 585-593.
[8] Zhang Yuqi, Yu Jicheng, Shen Qundong, Gu Zhen. Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems [J]. Progress in Chemistry, 2015, 27(1): 11-26.
[9] Zhou Lilong, Wu Tinghua, Wu Ying. Degradation and Conversion of Cellulose in Ionic Liquids [J]. Progress in Chemistry, 2012, 24(08): 1533-1543.
[10] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[11] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[12] Hu Lei, Sun Yong, Lin Lu. Pathways and Mechanisms of Liquid Fuel 2,5-Dimethylfuran from Biomass [J]. Progress in Chemistry, 2011, 23(10): 2079-2084.
[13] Li Yan, Wei Zuojun, Chen Chuanjie, Liu Yingxin. Preparation of 5-hydroxymethylfurfural by Dehydration of Carbohydrates [J]. Progress in Chemistry, 2010, 22(08): 1603-1609.
[14] Huang Shiyong Wang Fuli Pan Lixia. Synthesis of 5-Hydroxymethylfurfural via Dehydration of Fructose [J]. Progress in Chemistry, 2009, 21(0708): 1442-1449.