中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1538-1549 DOI: 10.7536/PC200844 Previous Articles   Next Articles

• Review •

Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine

Xinhua Cao1(), Qingqing Han1, Aiping Gao1, Guixia Wang2   

  1. 1 College of Chemistry and Chemical Engineering/Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
    2 College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
  • Received: Revised: Online: Published:
  • Contact: Xinhua Cao
  • Supported by:
    National Natural Science Foundation of China(U1704164); Training Project for Youth Backbone Teachers in College and Universities of Henan Province(2018GGJS127)
Richhtml ( 32 ) PDF ( 374 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular gels as important soft materials are formed by self-assembly of organic molecules under the driving force of non-covalent interactions, which can gel organic solvents or water. These materials possess both liquid and solid properties. This kind of materials with the advantages of stimulus response behavior and easy modification is widely used in many fields such as chemistry, biology, medicine and energy. Compared with the traditional small-molecule probes, supramolecular gels have many advantages for their application as chemical sensors. For example, the internal three-dimensional network structure of supramolecular gel material and its large contact area facilitate the rapid infiltration of analytes, and the change of gel state can be used as the output signal in the detection process. In addition, the xerogel film material also has a three-dimensional network structure, which also shows excellent detection performance in the detection of gaseous analytes. This work focuses on the application of supramolecular gels in the detection of gaseous acids and organic amines, as well as the designs and detection mechanisms of supramolecular gels, so as to provide reference for the construction of new supramolecular gels for the detection of gaseous acids and organic amines. Finally, the problems and prospects in the application of supramolecular gels are summarized and prospected.

Contents

1 Introduction

2 Mechanism of supramolecular gel response to gaseous acids and organic amines

3 Application of supramolecular gels for detection of gaseous acids and organic amines

3.1 Gaseous acid-responsive supramolecular gel

3.2 Organic amine-responsive supramolecular gel

3.3 Gaseous acid and organic amine-dual-responsive supramolecular gel

4 Conclusion and outlook

Table 1 Chemical structures of molecules with response towards gaseous acids and organic amines
Fig.1 Chemical structures of gelators 1~3 based on phenanthroimidazole derivative reported by Lu[34]
Fig.2 Chemical structures of gelators 4,5 based on carbazole derivative reported by Lu[35]
Fig.3 Chemical structures of gelators 6,7 with cyanostilbene group reported by Lu[36]
Fig.4 Chemical structures of gelators 8A~15A and 8B~15B based on β-iminoenolate and their difluoroboron complexes reported by Lu[37]
Fig.5 Chemical structure of gelator 16 based on cyanostilbene derivative containing benzoxazole reported by Xue[38]
Fig.6 Chemical structure of gelator 17 and NDI reported by Bhattacharya[39]
Fig.7 Chemical structure of two-component gelator 18 reported by Xue[40]
Fig.8 Chemical structure of 19 reported by Yi and explanation of ultrasound-accelerated gelation for visual and reversible sensing of amines[41]
Fig.9 Chemical structures of D-A-D type difluoroboron β-diketonate complexes 20~22 reported by Lu[42]
Fig.10 Chemical structure of 23 based on oligo(p-phenylenevinylene) derivative reported by Xue[43]
Fig.11 Chemical structures of 24 and 25 based on bis-naphthalimides derivative reported by our group[44]
Fig.12 Chemical structures of 26 and 27 based on naphthalimides derivative modified with isopropoxyboronic acid ester reported by our group[45]
Fig.13 Chemical structure of 28 based on terpyridine derivative reported by Yu[46]
Fig.14 Chemical structures of 29~31 based on 3-hydroxy-1,8-naphthalimide derivative reported by our group[47]
Fig.15 Chemical structures of gelators 32a, 32b and Iridium complex reported by Mahapatra[49]
Fig.16 Chemical structure of gelator 33 with multi-function reported by Maji[50]
Fig.17 Chemical structure of 34 from benzoxazole derivative reported by Xue[51]
Fig.18 Chemical structures of 35 and 36 based on cyano-substituted vinylacridine derivatives reported by Xue[52]
Fig.19 Chemical structure of 37 based on thiophene derivative and iridium complex reported by our group[53]
Fig.20 Chemical structure of 38 based on quinoline derivative reported by our group[54]
Fig.21 Chemical structure of 39 based on cyanostilbene derivative reported by our group[55]
Fig.22 Chemical structure of 40 based on naphthalimide derivative with a tetrazole group reported by our group and its detection process[56]
Fig.23 Chemical structure of 41 based on azobenzene derivative reported by our group[57]
Fig.24 Chemical structure of 42 based on naphthalimide derivative with two cholesterol groups reported by Yu[58]
[1]
Prathap A, Sureshan K M. Langmuir, 2019, 35(18): 6005.

doi: 10.1021/acs.langmuir.9b00506
[2]
Lan Y, Corradini M G, Weiss R G, Raghavan S R, Rogers M A. Chem. Soc. Rev., 2015, 44(17): 6035.

doi: 10.1039/c5cs00136f pmid: 25941907
[3]
Das D, Kar T, Das P K. Soft Matter, 2012, 8(8): 2348.

doi: 10.1039/C1SM06639K
[4]
Praveen V K, Vedhanarayanan B, Mal A, Mishra R K, Ajayaghosh A. Acc. Chem. Res., 2020, 53(2): 496.

doi: 10.1021/acs.accounts.9b00580
[5]
Shimizu T, Ding W X, Kameta N. Chem. Rev., 2020, 120(4): 2347.

doi: 10.1021/acs.chemrev.9b00509
[6]
Wang P, Yang Q F, Zhao C, Prog. Chem., 2017, 29(7): 750.
(王平, 杨巧凤, 赵传. 化学进展. 2017, 29(7): 750.).

doi: 10.7536/PC170334
[7]
Yan X H, Zhu P L, Li J B. Chem. Soc. Rev., 2010, 39(6): 1877.

doi: 10.1039/b915765b
[8]
Lin D W, Xing Q G, Wang Y F, Qi I, Su R X, He Z M. Prog. Chem., 2019, 31(12): 1623.
(林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2019, 31(12): 1623.).

doi: 10.7536/PC190446
[9]
Okesola B O, Smith D K. Chem. Soc. Rev., 2016, 45(15): 4226.

doi: 10.1039/C6CS00124F
[10]
Babu S S, Praveen V K, Ajayaghosh A. Chem. Rev., 2014, 114(4): 1973.

doi: 10.1021/cr400195e
[11]
Mayr J, Saldías C, Díaz Díaz D. Chem. Soc. Rev., 2018, 47(4): 1484.

doi: 10.1039/C7CS00515F
[12]
Li J Y, Mooney D J. Nat. Rev. Mater., 2016, 1(12): 1.
[13]
Hapiot F, Menuel S, Monflier E. ACS Catal., 2013, 3(5): 1006.

doi: 10.1021/cs400118c
[14]
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5): 1660.

doi: 10.1039/C3CS60027K
[15]
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5): 1734.

doi: 10.1039/C3CS60037H
[16]
Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49(5): 1569.

doi: 10.1039/C7CS00863E
[17]
Zhong C, Deng Y D, Hu W B, Qiao J L, Zhang L, Zhang J J. Chem. Soc. Rev., 2015, 44(21): 7484.

doi: 10.1039/C5CS00303B
[18]
Ma R J, Chou S Y, Xie Y, Pei Q B. Chem. Soc. Rev., 2019, 48(6): 1741.

doi: 10.1039/C8CS00834E
[19]
Wei Z, Yang J H, Zhou J X, Xu F, Zrínyi M, Dussault P H, Osada Y, Chen Y M. Chem. Soc. Rev., 2014, 43(23): 8114.

doi: 10.1039/C4CS00219A
[20]
Yu X D, Chen L M, Zhang M M, Yi T. Chem. Soc. Rev., 2014, 43(15): 5346.

doi: 10.1039/C4CS00066H
[21]
Wang S T, Liu K S, Yao X, Jiang L. Chem. Rev., 2015, 115(16): 8230.

doi: 10.1021/cr400083y
[22]
Kuang M X, Wang J X, Jiang L. Chem. Soc. Rev., 2016, 45(24): 6833.

doi: 10.1039/C6CS00562D
[23]
Liu M H, Zhang L, Wang T. Chem. Rev., 2015, 115(15): 7304.

doi: 10.1021/cr500671p
[24]
Jin Q X, Li J, Li X G, Zhang L, Fang S M, Liu M H. Prog. Chem., 2014, 26(6): 919.
(靳清贤, 李晶, 靳清贤, 李孝刚, 张莉, 方少明, 刘鸣华. 化学进展, 2014, 26(6): 919.).
[25]
Busschaert N, Caltagirone C, van Rossom W, Gale P A. Chem. Rev., 2015, 115(15): 8038.

doi: 10.1021/acs.chemrev.5b00099 pmid: 25996028
[26]
Ren Y S, Xie S, Svensson Grape E, Inge A K, Ramström O. J. Am. Chem. Soc., 2018, 140(42): 13640.

doi: 10.1021/jacs.8b09843
[27]
Liu J Y, Yuan F, Ma X Y, Auphedeous D I Y, Zhao C L, Liu C T, Shen C Y, Feng C L. Angew. Chem. Int. Ed., 2018, 57(22): 6475.

doi: 10.1002/anie.v57.22
[28]
Tu Y F, Peng F, Adawy A, Men Y J, Abdelmohsen L K E A, Wilson D A. Chem. Rev., 2016, 116(4): 2023.

doi: 10.1021/acs.chemrev.5b00344
[29]
Liu G F, Zhang D, Feng C L. Angew. Chem. Int. Ed., 2014, 53(30): 7789.

doi: 10.1002/anie.201403249
[30]
Miao R, Peng J X, Fang Y. Langmuir, 2017, 33(40): 10419.

doi: 10.1021/acs.langmuir.6b04655
[31]
Huang R R, Liu K, Liu H J, Wang G, Liu T H, Miao R, Peng H N, Fang Y. Anal. Chem., 2018, 90(23): 14088.

doi: 10.1021/acs.analchem.8b04897
[32]
Chang X M, Zhou Z X, Shang C D, Wang G, Wang Z L, Qi Y Y, Li Z Y, Wang H, Cao L P, Li X P, Fang Y, Stang P J. J. Am. Chem. Soc., 2019, 141(4): 1757.

doi: 10.1021/jacs.8b12749
[33]
Che Y K, Yang X M, Loser S, Zang L. Nano Lett., 2008, 8(8): 2219.

doi: 10.1021/nl080761g
[34]
Peng J, Sun J B, Gong P, Xue P C, Zhang Z Q, Zhang G H, Lu R. Chem. Asian J., 2015, 10(8): 1717.

doi: 10.1002/asia.v10.8
[35]
Sun J B, Xue P C, Sun J B, Gong P, Wang P P, Lu R. J. Mater. Chem. C, 2015, 3(34): 8888.

doi: 10.1039/C5TC02012C
[36]
Wu Z, Sun J B, Zhang Z Q, Gong P, Xue P C, Lu R. RSC Adv., 2016, 6(99): 97293.

doi: 10.1039/C6RA20910F
[37]
Wu Z, Sun J B, Zhang Z Q, Yang H, Xue P C, Lu R. Chem. Eur. J., 2017, 23(8): 1901.

doi: 10.1002/chem.v23.8
[38]
Xue P C, Yao B Q, Shen Y B, Gao H Q. J. Mater. Chem. C, 2017, 5(44): 11496.

doi: 10.1039/C7TC03752J
[39]
Bhattacharjee S, Maiti B, Bhattacharya S. Nanoscale, 2016, 8(21): 11224.

doi: 10.1039/c6nr01128d pmid: 27187776
[40]
Wang S S, Xue P C, Wang P P, Yao B Q. New J. Chem., 2015, 39(9): 6874.

doi: 10.1039/C5NJ01168J
[41]
Pang X L, Yu X D, Lan H C, Ge X T, Li Y J, Zhen X L, Yi T. ACS Appl. Mater. Interfaces, 2015, 7(24): 13569.

doi: 10.1021/acsami.5b03000
[42]
Zhai L, Liu M Y, Xue P C, Sun J B, Gong P, Zhang Z Q, Sun J B, Lu R. J. Mater. Chem. C, 2016, 4(34): 7939.

doi: 10.1039/C6TC01790H
[43]
Xue P C, Yao B Q, Ding J P, Shen Y B, Wang P P, Lu R, Zhao X J. ChemistrySelect, 2017, 2(9): 2841.

doi: 10.1002/slct.201700423
[44]
Cao X H, Zhao N, Gao A P, Lv H T, Jia Y L, Wu R M, Wu Y Q, Mater. Sci. Eng. C, 2017, 70: 216.

doi: 10.1016/j.msec.2016.08.079
[45]
Cao X H, Ding Q Q, Zhao N, Gao A P, Jing Q S. Sens. Actuat. B: Chem., 2018, 256: 711.

doi: 10.1016/j.snb.2017.09.210
[46]
Wang Y Q, Yu X D, Li Y J, Zhang Y J, Geng L J, Shen F J, Ren J J. ACS Appl. Mater. Interfaces, 2019, 11(21): 19605.

doi: 10.1021/acsami.9b02592
[47]
Cao X H, Li Y R, Gao A P, Yu Y S, Chang X P, Hei X H. ACS Appl. Polym. Mater., 2019, 1(6): 1485.

doi: 10.1021/acsapm.9b00238
[48]
Yuan J P, Wen D, Gaponik N, Eychmüller A. Angew. Chem., 2013, 125(3): 1010.

doi: 10.1002/ange.201205791
[49]
Mahapatra T S, Singh H, Maity A, Dey A, Pramanik S K, Suresh E, Das A. J. Mater. Chem. C, 2018, 6(36): 9756.

doi: 10.1039/C8TC03487G
[50]
Sutar P, Maji T K. Inorg. Chem., 2017, 56(16): 9417.

doi: 10.1021/acs.inorgchem.7b01002
[51]
Xue P C, Yao B Q, Wang P P, Gong P, Zhang Z Q, Lu R. Chem. Eur. J., 2015, 21(48): 17508.

doi: 10.1002/chem.201502401
[52]
Xue P C, Ding J P, Shen Y B, Gao H Q, Zhao J Y, Sun J B, Lu R. J. Mater. Chem. C, 2017, 5(44): 11532.

doi: 10.1039/C7TC03192K
[53]
Cao X H, Zhao N, Zou G D, Gao A P, Ding Q Q, Zeng G J, Wu Y Q. Soft Matter, 2017, 13(20): 3802.

doi: 10.1039/C7SM00714K
[54]
Cao X H, Ding Q Q, Gao A P, Li Y R, Chang X P, Wu Y Q. New J. Chem., 2018, 42(8): 6305.

doi: 10.1039/C8NJ00753E
[55]
Cao X H, Ding Q Q, Li Y R, Gao A P, Chang X P. J. Mater. Chem. C, 2019, 7(1): 133.

doi: 10.1039/C8TC04964E
[56]
Cao X H, Li Y R, Gao A P, Yu Y S, Zhou Q J, Chang X P, Hei X H. J. Mater. Chem. C, 2019, 7(34): 10589.

doi: 10.1039/C9TC03243F
[57]
Cao X H, Li Y R, Yu Y C, Fu S Y, Gao A P, Chang X P. Nanoscale, 2019, 11(22): 10911.

doi: 10.1039/C9NR01433K
[58]
Wang T, Yu X D, Li Y J, Ren J J, Zhen X L. ACS Appl. Mater. Interfaces, 2017, 9(15): 13666.

doi: 10.1021/acsami.6b15249
[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[7] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[8] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[9] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[10] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[11] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[12] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[13] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[14] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[15] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.