中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1404-1413 DOI: 10.7536/PC200764 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Investigation of Electrode Materials for Lithium Ion Capacitor Battery

Kedi Cai1, Shuang Yan1, Tianye Xu1, Xiaoshi Lang1,2(), Zhenhua Wang3()   

  1. 1 College of Chemistry and Materials Engineering, Bohai University,Jinzhou 121013, China
    2 Liaoning Engineering Technology Research Center of Supercapacitor,Jinzhou 121013, China
    3 College of Chemistry and Chemical Engineering, Beijing Institute of Technology,Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Xiaoshi Lang, Zhenhua Wang
  • Supported by:
    National Natural Science Foundation of China(22075030)
Richhtml ( 63 ) PDF ( 1079 ) Cited
Export

EndNote

Ris

BibTeX

With the advantages of both lithium ion battery and supercapacitor, lithium ion capacitor battery has become a promising new energy storage system with its advantages of high energy density, high power density, long cycle life and fast charging and discharging. However, some key problems still exist, such as dynamic imbalance, less ideal energy density and poor cycling stability between battery electrode and capacitor electrode. The electrode material is an important part of the battery and seriously affects the overall electrochemical performance. To solve this problem effectively, a variety of new type of anode and cathode electrode materials should be developed in this field. Therefore, this paper introduces in detail the research progress and technical route of cathode(layered metal oxides, graphene composite anode and other novel cathode materials) and anode(transition metal oxides, carbon materials, lithium compounds and sulfides) materials for lithium ion capacitor batteries, and analyzes the existing problems. It is found that the properties of electrode materials can be improved by nano treatment, material coating and heteroatomic doping. At the same time, the future research direction of electrode materials is prospected, and new ideas and means are provided for the research of other chemical power sources.

Contents

1 Introduction

2 Anode materials

2.1 Transition metal oxide

2.2 Carbon materials

2.3 Lithium compound

2.4 Sulfide

3 Cathode materials

3.1 Layered metal oxide

3.2 Graphene composite cathode

3.3 Other new cathode materials

4 Conclusion and outlook

Fig. 1 Diagram of advantages of Li-ion capacitor batteries
Fig. 2 Synthesis of MoS2/NC composite material[37]
Fig. 3 Preparation process of Li1.2Mn0.56Ni0.16Co0.08O2[46]
Fig. 4 (a) Synthesis of LiNi0.88Co0.095Mn0.025O2@Al composite material,(b) cycle capability at 1 C rate,(c) rate capability under different C-rates[47].
Fig. 5 (a) Schematic diagram of the synthesis of rGO/V2O5,(b) SEM images of V2O5 nanoparticles anchored on rGO nanosheets after annealing in vacuum at 300 ℃ for 2 h,(c) The rate performance at various rates from C/9 to 10 C[56].
[1]
Wang Y G, Song Y F, Xia Y Y. Chem. Soc. Rev., 2016, 45(21): 5925.

doi: 10.1039/C5CS00580A
[2]
Hou H S, Banks C E, Jing M J, Zhang Y, Ji X B. Adv. Mater., 2015, 27(47): 7861.

doi: 10.1002/adma.201503816
[3]
Shi D Y, Zheng R, Liu C S, Chen D M, Zhao J W, Du M. Inorg. Chem., 2019, 58(11): 7229.

doi: 10.1021/acs.inorgchem.9b00206
[4]
Li Z X, Zou K Y, Zhang X, Han T, Yang Y. Inorg. Chem., 2016, 55(13): 6552.

doi: 10.1021/acs.inorgchem.6b00746
[5]
Huang J L, Zhao B T, Liu T, Mou J R, Jiang Z J, Liu J, Li H X, Liu M L. Adv. Funct. Mater., 2019, 29(31): 1902255.
[6]
Wang F X, Wu X W, Yuan X H, Liu Z C, Zhang Y, Fu L J, Zhu Y S, Zhou Q M, Wu Y P, Huang W. Chem. Soc. Rev., 2017, 46(22): 6816.

doi: 10.1039/C7CS00205J
[7]
Jagadale A, Zhou X, Xiong R, Dubal D P, Xu J, Yang S. Energy Storage Mater., 2019, 19: 314.
[8]
Han P X, Xu G J, Han X Q, Zhao J W, Zhou X H, Cui G L. Adv. Energy Mater., 2018, 8(26): 1801243.
[9]
Ding J, Hu W B, Paek E, Mitlin D. Chem. Rev., 2018, 118(14): 6457.

doi: 10.1021/acs.chemrev.8b00116 pmid: 29953230
[10]
Evans D A. [2020-07-01]. http://www.evanscap.com/pdf/98SW.pdf
[11]
Amatucci G G, Badway F du Pasquier A, Zheng T. J. Electrochem. Soc., 2001, 148(8): A930.

doi: 10.1149/1.1383553
[12]
Li H Q, Cheng L, Xia Y Y. Electrochem. Solid-State Lett., 2005, 8(9): A433.

doi: 10.1149/1.1960007
[13]
Shao S M. Roll. Stock., 2008, 46(12): 21.
(邵树民. 铁道车辆, 2008, 46(12): 21.)
[14]
Liu J Q, Zheng M B, Shi X Q, Zeng H B, Xia H. Adv. Funct. Mater., 2016, 26(6): 919.

doi: 10.1002/adfm.v26.6
[15]
Jiao Y, Liu Y, Yin B S, Zhang S W, Qu F Y, Wu X. Nano Energy, 2014, 10: 90.

doi: 10.1016/j.nanoen.2014.09.002
[16]
Zhong Y, Ma Y F, Guo Q B. Sci. Rep., 2017(7): 40927.
[17]
Zheng X, Jiao Y, Chai F, Qu F Y, Umar A, Wu X. J. Colloid Interface Sci., 2015, 457: 345.

doi: 10.1016/j.jcis.2015.07.023
[18]
Wang P, Zheng Z K, Cheng X L, Sui L L, Gao S, Zhang X F, Xu Y M, Zhao H, Huo L H. J. Mater. Chem. A, 2017, 5(37): 19846.
[19]
Dong Y D, Xing L, Hu F, Umar A, Wu X. Mater. Res. Bull., 2018, 107: 391.

doi: 10.1016/j.materresbull.2018.07.038
[20]
Li H, Wu L J, Zhang S G. J. Alloys Compd., 2020, 155008.
[21]
Yin D, Huang G, Sun Q. Electrochim. Acta, 2016, 215: 410.

doi: 10.1016/j.electacta.2016.08.110
[22]
Zhao X, Wang H E, Cao J, Cai W, Sui J H. Chem. Commun., 2017, 53(77): 10723.
[23]
Lee S H, Yoo G, Cho J, Seokgyu R, Youn S K, Jeeyoung Y. Alloys Compd., 2020, 154566.
[24]
Wu Z S, Ren W C, Xu L, Li F, Cheng H M. ACS Nano, 2011, 5(7): 5463.

doi: 10.1021/nn2006249
[25]
Gomez-Urbano J L, Moreno-Fernandez G, Arnaiz M. Carbon, 2020, 162: 273.

doi: 10.1016/j.carbon.2020.02.052
[26]
Sun B, Zhang Q, Xiang H. Energy Storage Mater., 2020, 24: 450.
[27]
Jiang J, Zhang Y, Li Z. J. Colloid Interf. Sci., 2020, 567: 75.

doi: 10.1016/j.jcis.2020.01.120
[28]
Lee S H, Kim J M. Mater. Lett., 2018, 228: 220.

doi: 10.1016/j.matlet.2018.06.006
[29]
Liu Y, Wang W Q, Chen J, Li X W, Cheng Q L, Wang G C. J. Energy Chem., 2020, 50: 344.

doi: 10.1016/j.jechem.2020.03.075
[30]
Lang X S, Zhao Y L, Cai K D, Li L, Chen D M, Zhang Q G. Energy Technol., 2019, 7(12): 1900543.
[31]
Zhou Y L, Zhu Q, Tian J, Jiang F Y. Nanomaterials, 2017, 7(9): 252.

doi: 10.3390/nano7090252
[32]
Tran V C, Sahoo S, Shim J J. Mater. Lett., 2018, 210: 105.

doi: 10.1016/j.matlet.2017.08.136
[33]
Chen T H, Liu Z S. Mater. Lett., 2019, 236: 248.

doi: 10.1016/j.matlet.2018.10.114
[34]
Jia H, Wang Z, Zheng X. Electrochim. Acta, 2019, 312: 54.

doi: 10.1016/j.electacta.2019.04.192
[35]
Govindasamy M, Shanthi S, Elaiyappillai E, Wang S F, Johnson P M. Electrochim. Acta, 2019, 293: 328.

doi: 10.1016/j.electacta.2018.10.051
[36]
Gao Y P, Huang K J, Wu X, Hou Z Q, Liu Y Y. J. Alloys Compd., 2018, 741: 174.

doi: 10.1016/j.jallcom.2018.01.110
[37]
Wang X X, Tian J H, Cheng X, Na R, Wang D D, Shan Z Q. ACS Appl. Mater. Interfaces, 2018, 10(42): 35953.
[38]
Sun Z Q, Yang X, Lin H M, Zhang F, Wang Q, Qu F Y. Inorg. Chem. Front., 2019, 6(3): 659.

doi: 10.1039/C8QI01230J
[39]
Ohzuku T, Makimura Y. Chem. Lett., 2001, 30(8): 744.

doi: 10.1246/cl.2001.744
[40]
Li S, Zhu K, Zhao D, Zhao Q, Zhang N. Ionics Kiel, 2018.
[41]
Li L, Wu L, Wu F, Song S P, Zhang X Q, Fu C, Yuan D D, Xiang Y. J. Electrochem. Soc., 2017, 164(9): A2138.
[42]
Talebi-Esfandarani M, Savadogo O. Rare Met., 2016, 35(4): 303.

doi: 10.1007/s12598-015-0449-x
[43]
Wang X F, Feng Z J, Hou X L, Liu L L, He M, He X S, Huang J T, Wen Z H. Chem. Eng. J., 2020, 379: 122371.
[44]
Julien C, Mauger A, Vijh A, Zaghib K.. Lithium Batteries. Cham: Springer International Publishing, 2016: 201.
[45]
Zhang Y Y, Liang Q Q, Huang C, Gao P, Shu H B, Zhang X Y, Yang X K, Liu L, Wang X Y. J. Solid State Electrochem., 2018, 22(7): 1995.

doi: 10.1007/s10008-018-3905-3
[46]
Shi S J, Wang T, Cao M, Wang J W, Zhao M X, Yang G. ACS Appl. Mater. Interfaces, 2016, 8(18): 11476.
[47]
Yang X, Tang Y W, Shang G Z, Wu J, Lai Y Q, Li J, Qu Y H, Zhang Z A. ACS Appl. Mater. Interfaces, 2019, 11(35): 32015.
[48]
Cai K, Li Y Y, Lang X, Li L, Zhang Q. Intern. J. Energy R., 2019, 43(13): 7664.
[49]
Liu H Q, Tang Y P, Wang C. Adv. Funct. Mater., 2017, 27(12): 1606269.
[50]
Zhang Y, Lai J Y, Gong Y D, Hu Y M, Liu J, Sun C W, Wang Z L. ACS Appl. Mater. Interfaces, 2016, 8(50): 34309.
[51]
Yan Y, Li B, Guo W, Pang H, Xue H G. J. Power Sources, 2016, 329: 148.

doi: 10.1016/j.jpowsour.2016.08.039
[52]
Chen Z, Augustyn V, Wen J. Adv. Mater., 2011, 23(6): 791.

doi: 10.1002/adma.201003658
[53]
Qu Q T, Zhu Y S, Gao X W, Wu Y P. Adv. Energy Mater., 2012, 2(8): 950.

doi: 10.1002/aenm.v2.8
[54]
Xing L L, Zhao G G, Huang K J, Wu X. Dalton Trans., 2018, 47(7): 2256.

doi: 10.1039/C7DT04660J
[55]
Yao L, Zhang C R, Huang N T. Electrochim. Acta, 2019, 295: 14.

doi: 10.1016/j.electacta.2018.10.134
[56]
Pandey G P, Liu T, Brown E, Yang Y Q, Li Y H, Sun X S, Fang Y P, Li J. ACS Appl. Mater. Interfaces, 2016, 8(14): 9200.

doi: 10.1021/acsami.6b02372
[57]
Wang B, Al Abdulla W, Wang D L, Zhao X S. Energy Environ. Sci., 2015, 8(3): 869.

doi: 10.1039/C4EE03825H
[58]
Wang B, Xie Y, Liu T, Zhao X S. Nano Energy, 2017, 42: 363.

doi: 10.1016/j.nanoen.2017.11.040
[59]
Legagneur V, An Y, Mosbah A, Portal R, La S A, Verbaere D, Guyomard Y. Solid State Ionics, 2001, 139(1/2): 37.

doi: 10.1016/S0167-2738(00)00813-4
[60]
Yamada A, Iwane N, Harada Y, Nishimura S I, Koyama Y, Tanaka I. Adv. Mater., 2010, 22(32): 3583.

doi: 10.1002/adma.201001039
[61]
NytÉn A, Kamali S, Häggström L, Gustafsson T, Tomas J O. J. Mater. Chem. A, 2006, 16: 2266-2272.
[1] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[2] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[3] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[4] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[5] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Yibin Zhi, Lan Yu, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Arylsilanes Host Materials and Their Application in Phosphorescent Organic Light Emitting Diodes [J]. Progress in Chemistry, 2022, 34(5): 1109-1123.
[8] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[11] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[14] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[15] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.